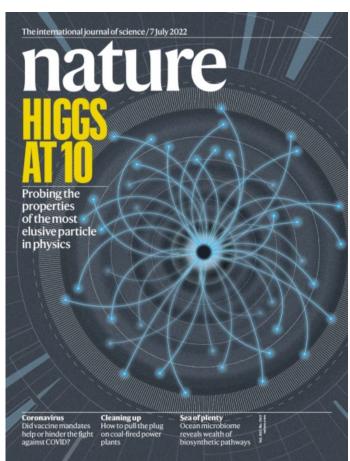
Higgs boson physics at CMS: combination and recent highlights

Julie Malclès (CEA-Saclay IRFU)
on behalf of the CMS Collaboration
3rd October 2022, LHC Days at Split

Introduction & overview



1. Focus on production cross sections & couplings from the combination of single Higgs boson measurements in CMS with Run 2 data (138 fb⁻¹ at 13 TeV)

Results included in the combination:

Prod/decay	ggH	qqH	VH	ttH/tH
$H \rightarrow \gamma \gamma$	✓	✓	✓	✓
H→ZZ	√	✓	✓	✓
H→WW	√	✓	✓	✓
$H \rightarrow \tau \tau$	√	✓	✓	✓
$H{ ightarrow} bar{b}$	✓	✓	√ *	/ *
$H \rightarrow \mu\mu$	✓	✓	✓	✓
$H \rightarrow c\bar{c}$				
$H \rightarrow Z\gamma$	✓	✓	✓	✓
H→inv.	✓	✓	✓	

Individual results already presented by Matteo Bonanomi * not using full stat.

Combination released in Nature in July 2022

2

Malclès

Introduction & overview

1. Focus on production cross sections & couplings from the combination of single Higgs boson measurements in CMS with Run 2 data (138 fb⁻¹ at 13 TeV)

Results included in the combination:

Prod/decay	ggH	qqH	VH	ttH/tH
$H \rightarrow \gamma \gamma$	✓	✓	✓	√
H→ZZ	✓	✓	✓	✓
H→WW	✓	✓	✓	✓
$H \rightarrow \tau \tau$	✓	✓	✓	✓
$H { ightarrow} b ar{b}$	✓	✓	/ *	√ *
$H \rightarrow \mu\mu$	✓	✓	✓	✓
$H \rightarrow c\bar{c}$	*		*	
H→Zγ	✓	✓	✓	✓
H→inv.	✓	✓	*	*

Individual results already presented by Matteo Bananomi * not using full stat.

- 2. Highlight two recent results not included in the combination:
- $H \rightarrow c\bar{c}$, VH and boosted ggH [arXiv:2205.05550, HIG-21-012]
- H→invisible, in association with a pair of top quarks or a vector boson

Other recent results from CMS described by other speakers:

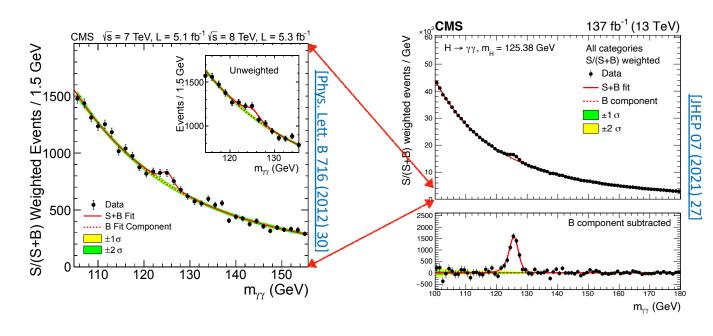
- Simplified template cross section for VHbb: Saswat
 Mishra
 [HIG-20-001]
- BSM searches $(X \rightarrow HY \rightarrow bb\gamma\gamma, H \rightarrow AA \rightarrow \gamma\gamma\gamma\gamma)$: Alexandre Nikitenko [HIG-21-011, arXiv:2209.06197]
- Double Higgs combination: Roberto Salerno

[Nature 607, 60-68 (2022)]

Several open questions in particle physics call for a deeper understanding of the Higgs boson

⇒ Test compatibility with the SM, probe possible BSM effects inducing deviations

Individual analyses study **specific** Higgs boson characteristics


→ need to **combine** them to get a **full portrait** of the Higgs boson, **with reduced uncertainties**

Will show today:

- Main Higgs boson production XS and decay BR
- Couplings to fermions and vector bosons

Ingredients: a big step from discovery to Run2!

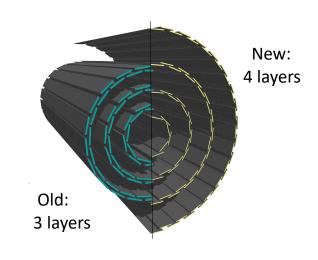
- Luminosity: 138 fb⁻¹ versus about 10 fb⁻¹
- Increased energy: 13 TeV versus 7/8 TeV
 - \Rightarrow production cross-sections x 2 to 4

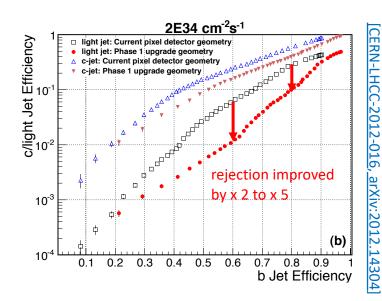
Several open questions in particle physics call for a deeper understanding of the Higgs boson

⇒ Test compatibility with the SM, probe possible BSM effects inducing deviations

Individual analyses study **specific** Higgs boson characteristics

→ need to **combine** them to get a **full portrait** of the Higgs boson, **with reduced uncertainties**


Will show today:


- Main Higgs boson production XS and decay BR
- Couplings to fermions and vector bosons

Ingredients: a big step from discovery to Run2!

- Luminosity: 138 fb⁻¹ versus about 10 fb⁻¹
- Increased energy: 13 TeV versus 7/8 TeV
 ⇒ production cross-sections x 2 to 4
- Detector upgrades:

New silicon pixel detector \rightarrow × 2 improvement in H \rightarrow $b\bar{b}$ sensitivity, improved L1 trigger

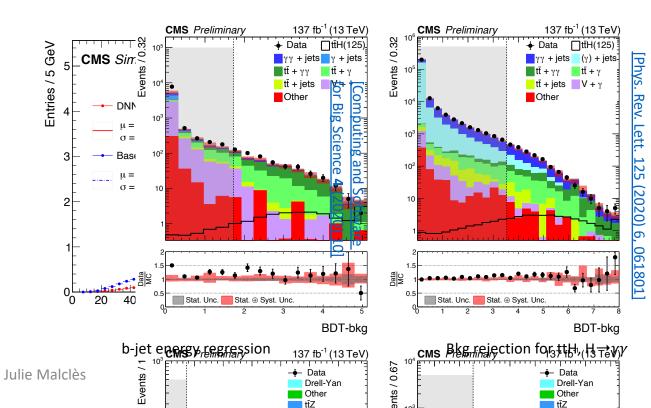
Several open questions in particle physics call for a deeper understanding of the Higgs boson

⇒ Test compatibility with the SM, probe possible BSM effects inducing deviations

Individual analyses study **specific** Higgs boson characteristics

→ need to combine them to get a full portrait of the Higgs boson, with reduced uncertainties

Will show today:


- Main Higgs boson production XS and decay BR
- Couplings to fermions and vector bosons

Ingredients: a big step from discovery to Run2!

- Luminosity: 138 fb⁻¹ versus about 10 fb⁻¹
- Increased energy: 13 TeV versus 7/8 TeV
 ⇒ production cross-sections x 2 to 4
- Detector upgrades:

New silicon pixel detector \rightarrow × 2 improvement in

- $H \rightarrow b\bar{b}$ sensitivity, improved L1 trigger
- Analysis methods: extensive use of machine learning in regression and classification algorithms

Several open questions in particle physics call for a deeper understanding of the Higgs boson

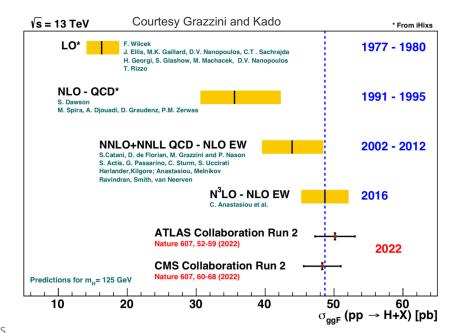
⇒ Test compatibility with the SM, probe possible BSM effects inducing deviations

Individual analyses study **specific** Higgs boson characteristics

→ need to **combine** them to get a **full portrait** of the Higgs boson, **with reduced uncertainties**

Will show today:

- Main Higgs boson production XS and decay BR
- Couplings to fermions and vector bosons


Ingredients: a big step from discovery to Run2!

- Luminosity: 138 fb⁻¹ versus about 10 fb⁻¹
- Increased energy: 13 TeV versus 7/8 TeV
 ⇒ production cross-sections x 2 to 4
- Detector upgrades:

New silicon pixel detector \rightarrow × 2 improvement in

- $H \rightarrow b\bar{b}$ sensitivity, improved L1 trigger
- Analysis methods: extensive use of machine learning in regression and classification algorithms
- Theoretical calculations: a huge leap in precision

ggH cross section prediction

[M. Kado, GGI seminars, YR4 arXiv:1610.07922]

Nature 607, 60-68 (2022)

Global signal strength: evolution since discovery

Fitting data from all production modes/decay channels with a common signal strength : $\mu = \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$

$$\mu = 1.002 \pm 0.057$$

= 1.002 \pm 0.036 (th) \pm 0.033 (syst) \pm 0.029 (stat)

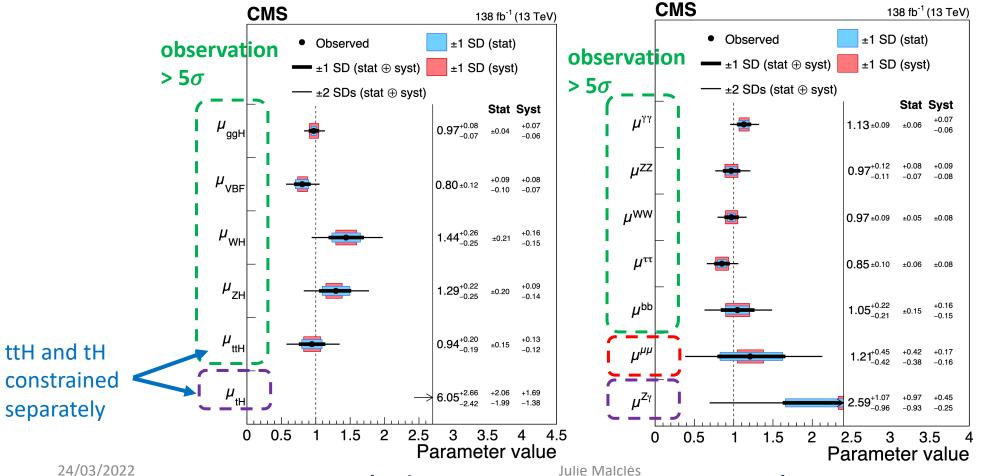
• At discovery: $\mu = 0.87 \pm 0.23$ dominated by statistics

• Full run 1: $\mu = 1.00 \pm 0.14$ = 1.00 \pm 0.08 (th) \pm 0.07 (syst) \pm 0.09 (stat)

Fourfold improvement in precision with regard to the discovery

Theoretical uncertainty and systematic uncertainty at the same level as the statistical uncertainty

Production modes and decay channels

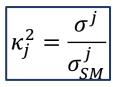


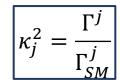
Assuming different scaling for production and decay:

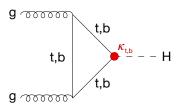
$$\mu_i = \frac{\sigma_i}{\sigma_i^{\mathrm{SM}}}$$

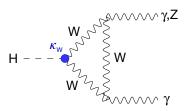
$$\mu^f = \frac{\mathscr{B}^f}{\mathscr{B}^f_{SM}}$$

$$\mu_i^f = \frac{\sigma_i \cdot \mathscr{B}^f}{(\sigma_i \cdot \mathscr{B}^f)_{\text{SM}}} = \mu_i \times \mu^f$$

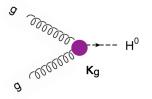

first evidence 3σ

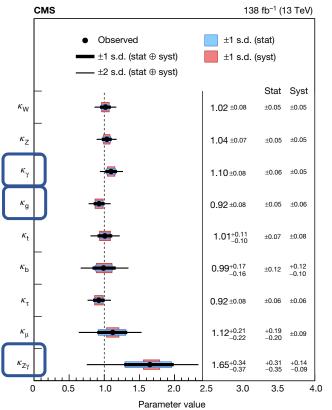

small excesses with large uncertainties


Couplings, k framework



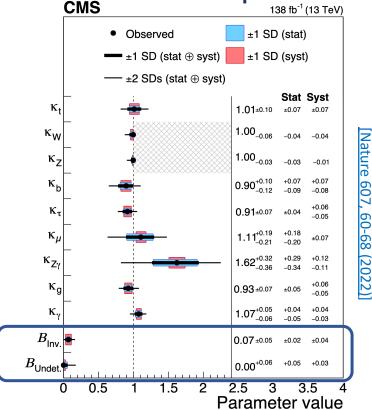
Coupling modifiers κ to quantify couplings deviations from SM predictions




Alternatively, the loop could not be resolved and an effective coupling could be used:

Invisible (v, DM = M_{ET}) or undetected decay (non-closure of other BRs to unity)

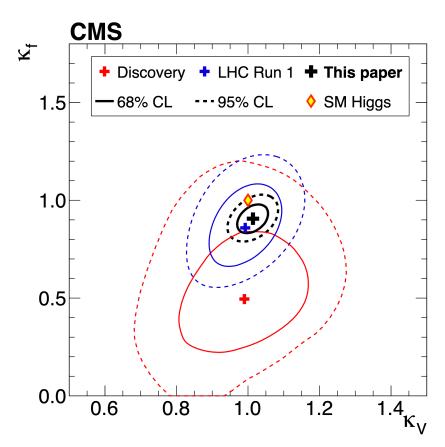
$$\frac{\Gamma_{\mathsf{H}}}{\Gamma_{\mathsf{H}}^{\mathsf{SM}}} = \frac{\kappa_{\mathsf{H}}^2}{(1 - \mathcal{B}_{\mathsf{inv}} - \mathcal{B}_{\mathsf{undet}})}$$


Scenario assuming effective couplings for ggH, $H \rightarrow \gamma \gamma$, $H \rightarrow Z \gamma$

Compatibility with SM within 10%

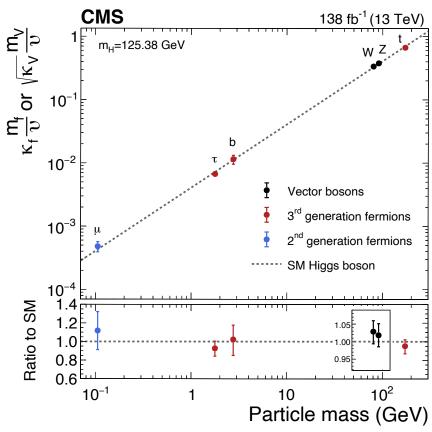
Stat. unc \cong syst unc except for k_{μ} and and k_{ZY} Julie Marclès

Also assuming Higgs boson decays to invisible or undetected particles



Both invisible and undetectable BR's compatible with zero 16-1

24/03/2022 Julie Marclès 10


Couplings, k framework

Couplings to fermions and vector bosons

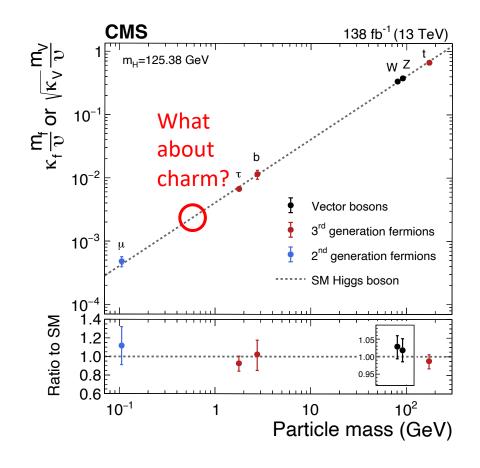
Compatibility with SM within 10% Improvement by ~5x wrt discovery

Couplings versus particle mass: scenario with resolved loops

Agreement with SM for masses within 0.1- 200 GeV Stat. and syst. uncertainties at the same level except for κ_{μ}

[Nature 607, 60-68 (2022)]

Higgs-charm coupling: introduction

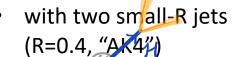

Few ways to constrain Higgs charm coupling at CMS:

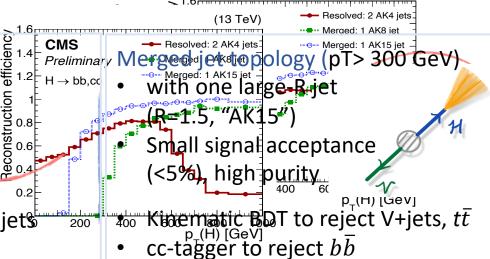
- Direct search for $H \rightarrow c\bar{c}$ decay:
 - in VH [arXiv:2205.05550]
 - in ggH boosted (recent!) [HIG-21-012]
- Indirect constraints from Higgs kinematics
- Rare H \rightarrow J/ ψ + γ decay

$H \rightarrow c\bar{c}$ extremely challenging to be measured at SM value

- Small BR (~3%) and large backgrounds at hadron collider
- Charm quark ID is the key: CMS developed new charm tagging techniques for resolved and boosted jets
- Current analyses sensitive to NP that would increase the coupling to charm ~10 x SM
- Calibration candle is the $\mathbf{Z} \rightarrow c\bar{c}$ decay

Couplings versus particle mass: scenario with resolved loops

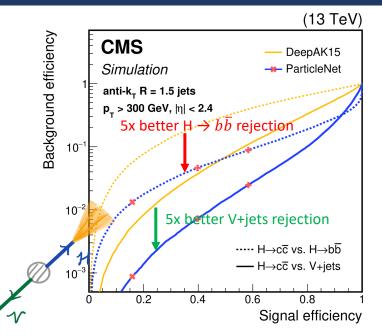

VH, $H \rightarrow c\bar{c}$: analysis strategy


- Three channels for the boson decay:
 - $Z \rightarrow vv$ (OL), $W \rightarrow lv$ (1L), $Z \rightarrow ll$ (2L) $[l = e, \mu]$
- Main backgrounds:
 - V+jets, single and pair production of top quarks, dibosons

• VH(H \rightarrow bb): small but hard to reduc

 Two approaches for the Resolved-jet topology

- bulk (>95%) of signal acceptance
- c-tagger to reject b/light jets (deepJet)
- Fit BDT score (including mass as input)
- Mass regressed + kinematic fit (2L)
- CR to control V+jets, $t\bar{t}$



Fit mass of the H candidate (jet

mass, dedicated regression)

CR to normalise V+jets, $t\bar{t}$

(13 TeV)

ParticleNet: charm tagger for AK15 Same spirit as deepJet:

- a multi-class DNN jet classifier
- using jet constituents (PF candidates, secondary vertices)

Improvements: GNN instead of 1D CNN, novel mass decorrelation technique

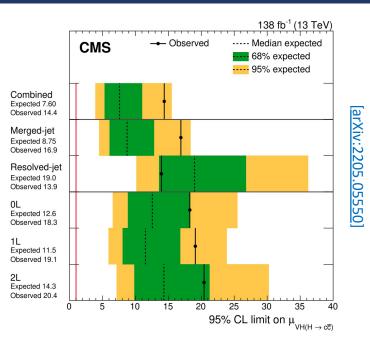
> 2x improvement on the final sensitivity

VH, $H \rightarrow c\bar{c}$: results

Final result combines merged and resolved:

• Observed (expected) upper limit on VH ($H \rightarrow c\bar{c}$) signal strength:

 $\mu_{VH(H \to c \overline{c})} < 14~(7.6) @ 95\%~CL$ Strongest limit on VH (H $\to c \overline{c}$) process to date!


- Best fit signal strength: $\mu_{VH(H\to c\bar{c})}=7.7^{+3.8}_{-3.5}$
- Upper limits from each topology:
 - Resolved-jet topology: 14 (19) × SM
 - Merged-jet topology: 17 (8.8) × SM

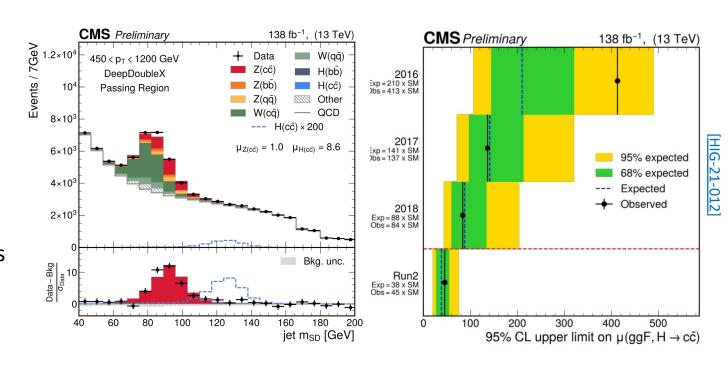
Analysis validated with the candle $Z \rightarrow c\overline{c}$:

 $\mu_{VZ(Z\to c\bar{c})}=1.01^{+0.23}_{-0.21}$, significance 5.7 σ First observation of Z $\rightarrow c\bar{c}$ at a hadron collider!

Main uncertainties: limited statistics of data, V+jets samples statistics, charm tagging efficiencies

Results used to place new constraints on $\kappa_{\rm c}$

- Only considering effects on B($\mathbf{H} \rightarrow c\overline{c}$) and fixing other couplings to SM
- 95% CL intervals:
 - observed: $1.1 < |\kappa_c| < 5.5$
 - expected: $|\kappa_c| < 3.4$


Strongest constraints on $| \kappa_c |$ to date!

ggH boosted, $H \rightarrow c\bar{c}$ (recent!)

- Higgs candidate is reconstruted as a single fat jet of cone radius 0.8 (AK8) with p_T > 450 GeV
- Inclusive in production mode, primarily targeting the ggF (50%) and VBF (30%) \rightarrow complementary to VH (H $\rightarrow c\bar{c}$) analysis
- Similar strategy as ggF H $\rightarrow bb$ analysis [JHEP12 (2020) 085]
 - Signal identification with *DeepDoubleX* tagger
 - DNN with low-level inputs
- [CMS-DP-2018-046]

- Mass-independent
- Used to define signal and control regions
- Fit jet mass distributions in signal and control regions
- Limit set @95% C.L.: 45 (38) x SM
 - Not yet sensitive to $\kappa_{
 m c}$

Validation with $Z \rightarrow c\bar{c}$ measurement: First observation of $Z \rightarrow c\bar{c}$ in Z+jets at LHC

$H \rightarrow invisible$: introduction

• H(125) to invisible decays very small in the SM:

SM
$$\mathcal{B}(H \rightarrow ZZ^* \rightarrow 4\nu) \sim 0.1\%$$

Combination of direct searches + indirect constraints:

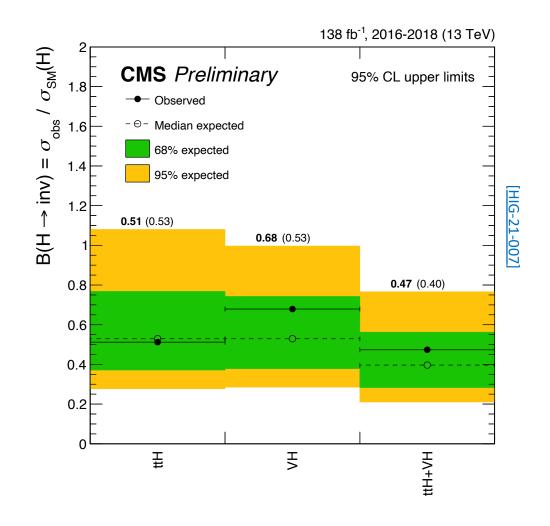
best fit
$$\mathcal{B}(H \rightarrow inv.) \sim 7\% \pm 5\%$$

- Several models predict an enhancement
 - H(125) could decay to a pair DM particles
 - There could be a Dark Higgs sector with mixing to the SM Higgs sector
- H→invisible searches at the LHC:
 - Complementary to direct DM searches
 - Observation would be a very exciting sign of New Physics
 - Using M_{ET}+X signatures

Searches in CMS:

Signal type	Reference	
MonoJet	EXO-20-004	
MonoV	JHEP 11(2021) 153	
ZH, Z→ℓℓ	EXO-19-003 EPJC 81, 1 (2021) 13	
VBF	HIG-20-003 PRD 105(2022) 092007	— most sensitive
ttH semi leptonic	SUS-19-009 JHEP 05 (2020) 032	
ttH fully leptonic	SUS-19-011 EPJC8 1 (2021) 3	
tt̄H hadronic		
VH hadronic	HIG-21-007 ◆	most recent: shown today
combination		Silowii today

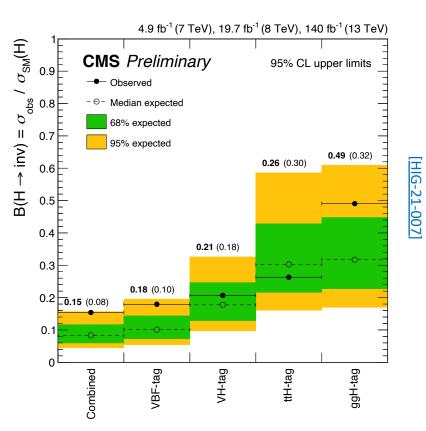
$H \rightarrow invisible: t\bar{t}H/VH \text{ hadronic (recent!)}$

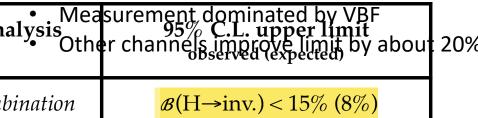


- Common selection: large H_{T,miss}, large p_{T,miss}, large leading jet p_T
- Categorisation: VH resolved, ttH resolved, ttH boosted
 - based on jet and b-jet multiplicity, m_{ii} for VH category
 - $t\bar{t}$ H boosted: top quarks/W bosons reconstructed as a single large-cone jet (AK8). Use of DeepAK8 taggers.
- Backgrounds: $Z \rightarrow \nu\nu$, $t\bar{t}$ + jets, W+jets, controlled with CR with lepton(s) or photons, remaining QCD background estimated with sidebands and MC derived transfer factor
- Fit to p_{T,miss} distribution simultaneously in SR and CR

Results:

- ttH hadronic and VH resolved yielding similar performance in terms exclusion limits
- Observed (expected) upper limit:


 $\mathcal{B}(H \rightarrow inv.) < 47\% (40\%) @ 95\% C.L.$


$H \rightarrow invisible$: combination (recent!)

NEW!

Channels grouped by production mode:

Combining all Run1 and Run2 results

- Overlap between analyses made negligible with specific cuts
- Combined observed (expected) upper limit:

 $\mathcal{B}(H\rightarrow inv.) < 15\%$ (8%) @ 95% C.L.

Strongest expected exclusion limit to date from direct searches!

• Best fit signal strength: $\mu_{H \to inv}$ = 0.08 ± 0.04 excess wrt bkg only hypothesis at 1.9 σ

Julie Malclès 18

Conclusion

Run 2 combination of single Higgs boson results:

- Fourfold improvement in precision with respect to the discovery in most of the results
- Coupling modifiers show excellent agreement with SM predictions
- Statistical and systematic uncertainties at the same level for most couplings

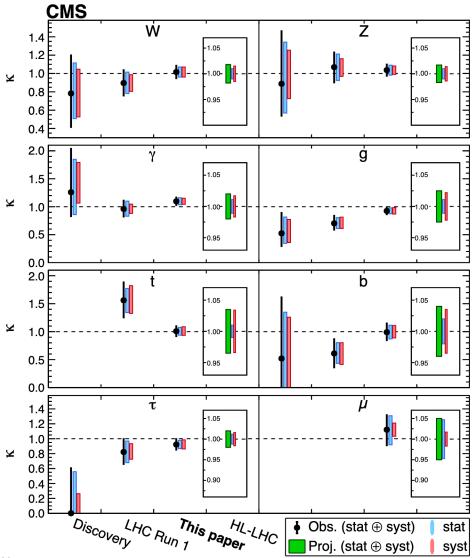
$H \rightarrow c\bar{c}$:

- VH, $H \rightarrow c\bar{c}$:
 - $\mu_{VH(H\to c\bar{c})}$ < 14 (7.6) @95% C.L., strongest limit on VH (H $\to c\bar{c}$) process to date!
 - 1.1 < κ_c < 5.5 @ 95 C.L., strongest constraint on | κ_c | to date!
- ggH boosted, $H \rightarrow c\bar{c}$: upper limit @95% C.L.: 45 (38) x SM

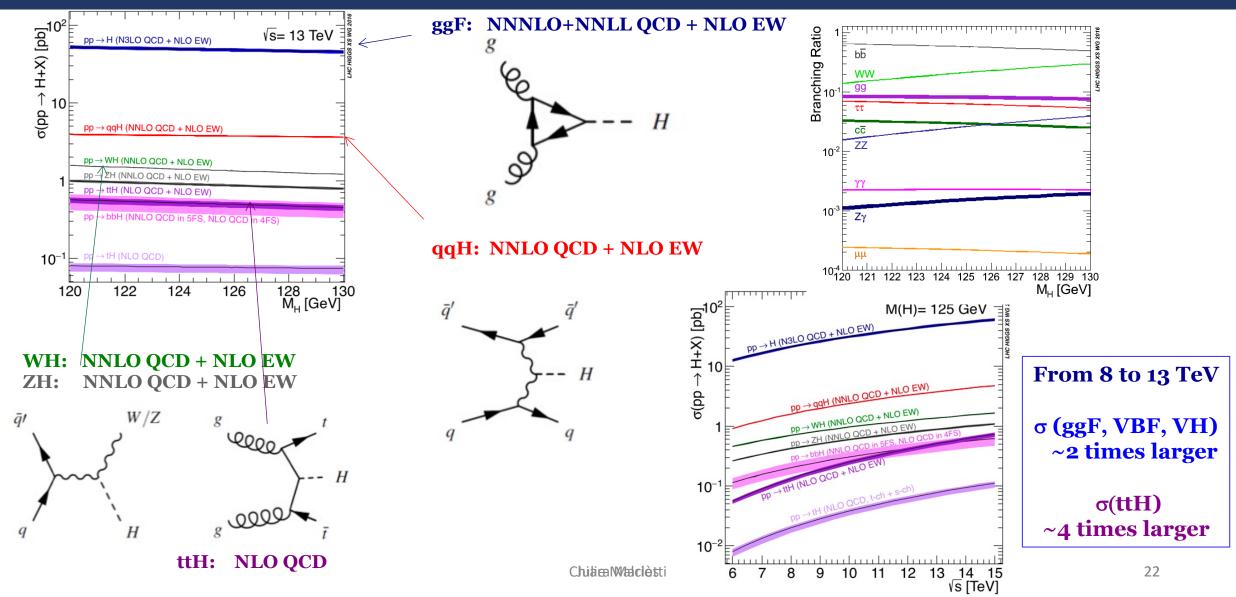
H→invisible:

- $t\bar{t}H/VH$ hadronic: $\mathcal{B}(H\to inv.) < 47\%$ (40%) @ 95% C.L.
- Combined results: $\mathcal{B}(H \rightarrow inv.) < 15\%$ (8%) @ 95% C.L., strongest expected exclusion limit to date from direct searches!

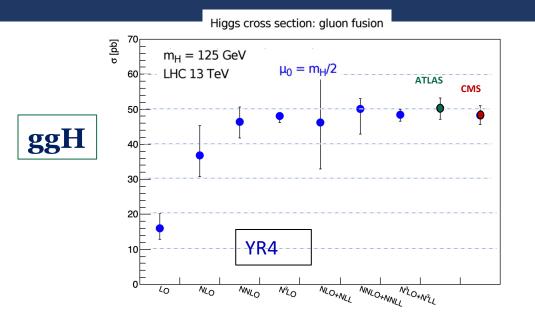
Great progress in understanding the Higgs boson since its discovery and exciting times ahead!

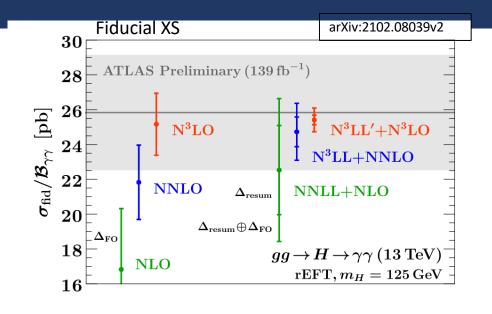

Backup slides

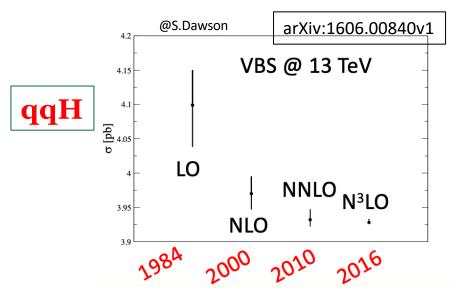
Projections

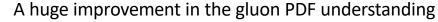


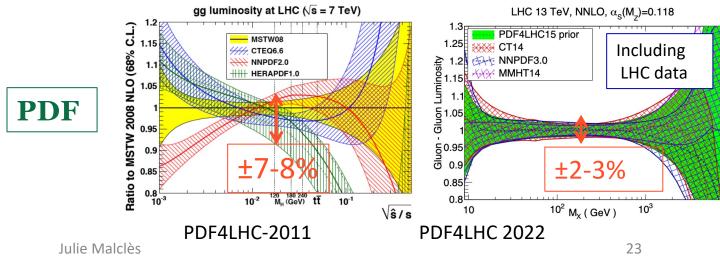
- At HL-LHC precision below 5% for all considered couplings
- Potential for more extensive tests of SM e.g. EFT

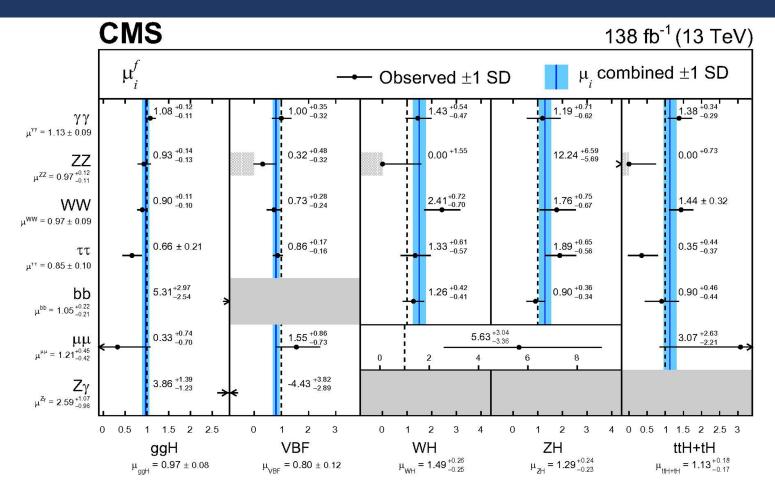

XS & BR



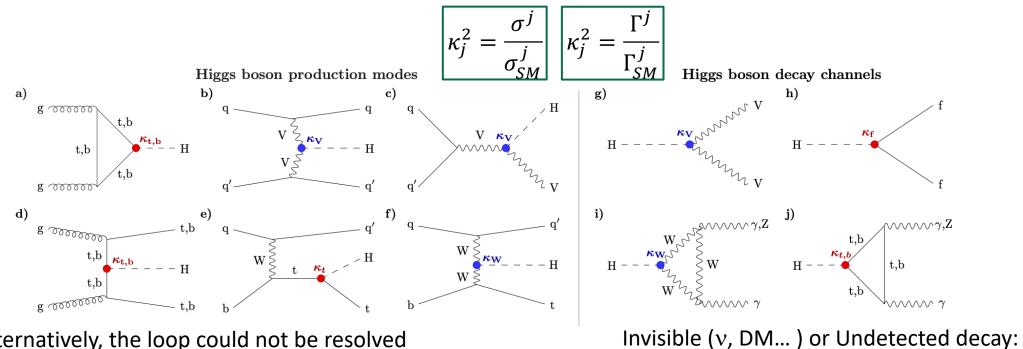

Theory progress



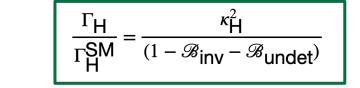




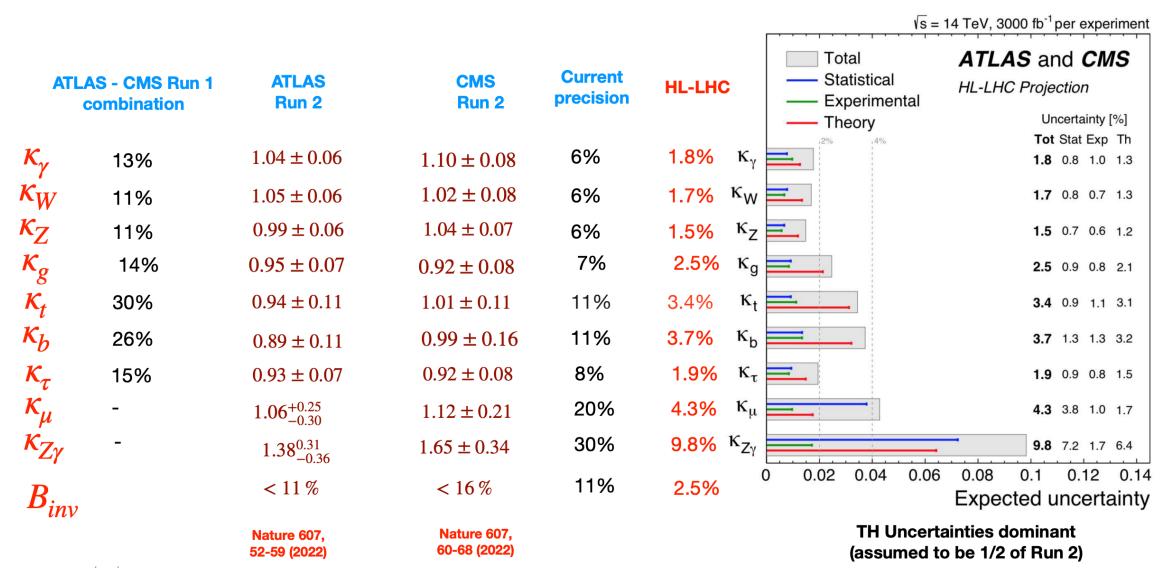
Test XS and BR compatibility with the SM



More general test of the SM with all μ_i^f floated also shows good agreement

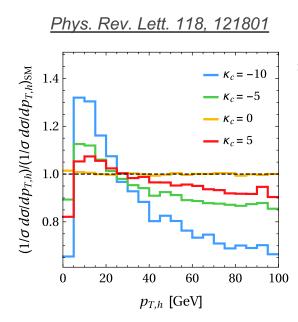

Couplings: κ framework

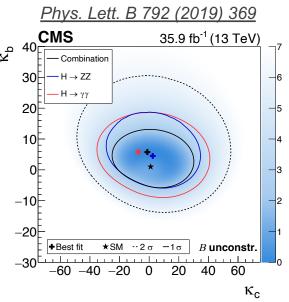
Coupling modifiers k to quantify couplings deviations from SM predictions



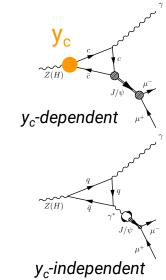
Alternatively, the loop could not be resolved and an effective coupling could be used:

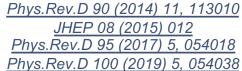
Couplings: precision evolution

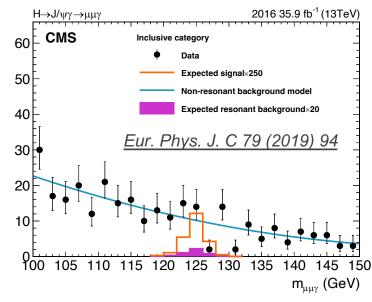



Higgs charm coupling

Indirect constraint from Higgs kinematics

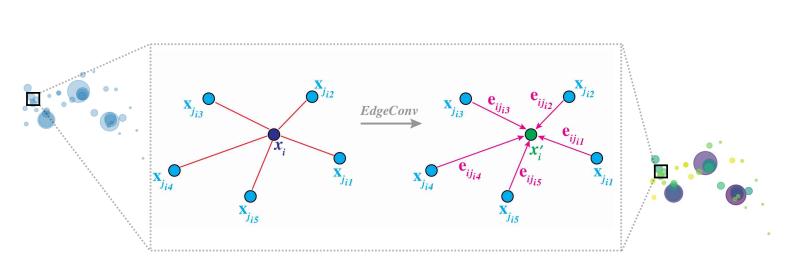

Variation of $p_T(H)$ shape as a function $\kappa_c = y_c/y_c^{SM}$


 $-33 < \kappa_c < 38 \text{ (obs.)}$ $-31 < \kappa_c < 36 \text{ (exp.)}$

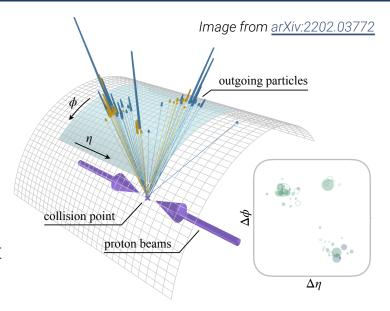

Search for exclusive $H \rightarrow J/\Psi \gamma$ decays

Events / 2 GeV

(dominant contribution)



$$\mathcal{B}(H \to J/\Psi \gamma)$$
 < 220x SM(obs.) $\mathcal{B}(H \to J/\Psi \gamma)$ < 170x SM(exp.) Roughly translates to κ_c < $O(100)$


ParticleNet architecture

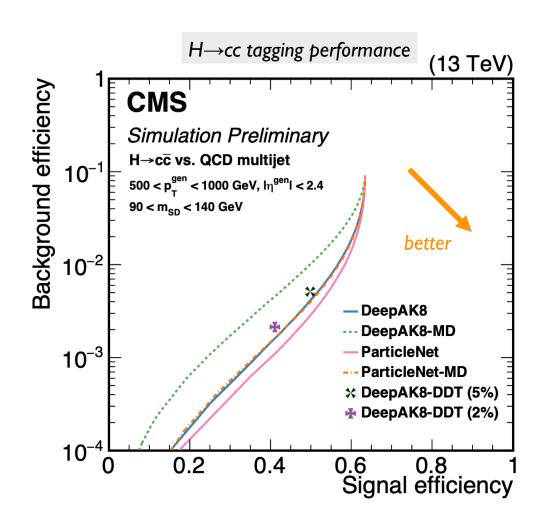
- New jet representation: "particle cloud"
 - treating a jet as an unordered set of particles in the $\eta \varphi$ space
- ☐ ParticleNet [Phys.Rev.D 101 (2020) 5, 056019]
 - graph neural network architecture adapted from DGCNN [arXiv:1801.07829]
 - permutation-invariant architecture leads to significant performance improvement

Julie Malclès

collision event

jet reconstruction

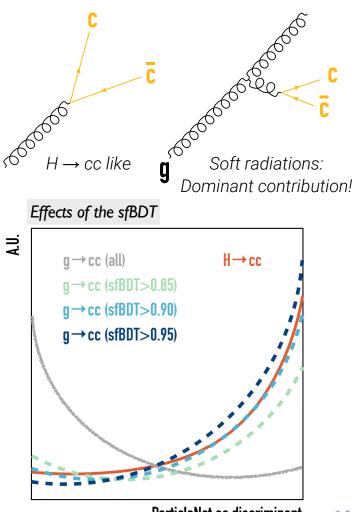
Performance on top quark tagging benchmark [SciPost Phys. 7, 014 (2019)]


	$1/\varepsilon_b$ at $\varepsilon_s = 30\%$
ResNeXt-50	1147 ± 58
P-CNN	759 ± 24
PFN	888 ± 17
ParticleNet-Lite	1262 ± 49
ParticleNet	1615 ± 93

24/03/2022

Mass decorrelation

CMS-DP-2020-002

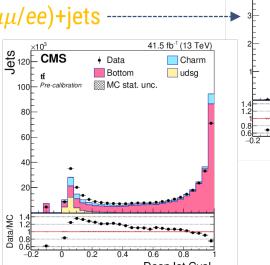


- ☐ "Mass sculpting": background jet mass shape becomes similar to signal after tagger selection
- New approach to prevent mass sculpting
 - using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$
 - not a fixed mass, but a flat mass spectrum
 - m(X) ∈ [15, 250] GeV
 - allows to easily reweight both signal and background to a \sim flat 2D distribution in (p_T, mass) for the training
- ☐ Performance loss due to mass decorrelation greatly reduced compared to the previous approach (DeepAK8-MD, based on "adversarial training")

Calibration of the cc tagger

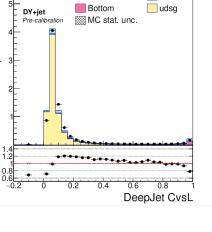
- Need to measure ParticleNet cc-tagging efficiency in data
 - no pure sample of $H \rightarrow cc$ jets (or even $Z \rightarrow cc$) in data
 - using g → cc in QCD multi-jet events as a proxy
- lacktriangled Difficulty: select a phase-space in $g \rightarrow cc$ that resembles $H \rightarrow cc$
 - solution: a dedicated sfBDT developed to distinguish hard 2-prong splittings
 (i.e., high quark contribution to the jet momentum) from soft cc radiations (i.e.,
 high gluon contribution to the jet momentum)
 - also allows to adjust the similarity between proxy and signal jets
 - by varying the sfBDT cut treated as a systematic uncertainty
- Perform a fit to the secondary vertex mass shapes in the "passing" and "failing" regions simultaneously to extract the scale factors
 - three templates: cc (+ single c), bb (+ single b), light flavor jets
- Derived cc-tagging scale factors typically 0.9—1.3
 - corresponding uncertainties are 20-30%

ParticleNet cc discriminant


30

Calibration of the charm tagger

Charm


- Methodology
 - Iterative approach exploiting 3 distinct control regions,
 each enriched in b-jets, c-jets, or light-flavour jets
- Selecting an abundant and pure source of charm-jets Sig: OS event
 - Target W production in association with charm quarks (W+c)
 - Major background has 50% chance to have SS or OS final states
 - performing an OS-SS subtraction reduces considerably the W+gluon process
 - To enrich in b-jets and light-jets: semi-(di-)leptonic $t\bar{t}$ +jets and DY(Z $\rightarrow \mu\mu$ /ee)+jets
- ☐ First time that a calibration method to correct the 2D distribution of c-tagging discriminator shapes is presented
 - → arXiv:2111.03027 (accepted by JINST)

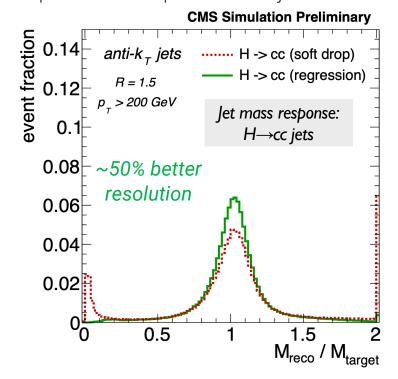
(from arXiv:2111.03027)

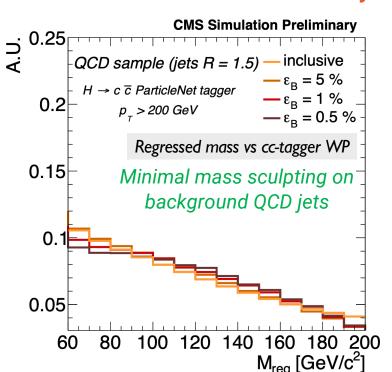
Bka: 50% OS, 50% SS

Sig: OS event

♦ Data

Large-R jet mas regression


- ☐ Jet mass: one of the most powerful observable to distinguish signal and backgrounds
- CMS DP-2021/017


20 – 25% improvement

in the final sensitivity

- New ParticleNet-based regression algorithm to improve the large-R jet mass reconstruction
 - training setup similar to the ParticleNet tagger; the regression target:
 - signal (X \rightarrow bb/cc/qq): generated particle mass of X [flat spectrum in 15 250 GeV]
 - background (QCD) jets: soft drop mass of the particle-level jet

Large-R jet mass of different processes (13 TeV) → 0.18 — QCD multijet Simulation 0.16 $500 < p_{_{T}}^{jet} < 1000 \text{ GeV}, |\eta^{jet}| < 2.4$ Higgs boson 0.12 JINST 15 (2020) P06005 0.1 0.08 0.06 0.04 0.02 60 80 100 120 140 160 180 200 m_{SD} [GeV]

Invisible combination

Analysis Tag	Production Mode	Integrated Luminosity (fb ⁻¹)		
12101/010 100	110000011111000	7 TeV	8 TeV	13 TeV (Run 2)
VBF-tagged [20]	VBF	-	19.2	140
	Z(ll)H	4.9	19.7	140
VH-tagged [24][22]	Z(bb)H	-	18.9	138
	V(jj)H	-	19.7	140
ttH-tagged [68, 69]	ttH (had)	-	-	138
	ttH (lep)			138
ggH-tagged [24]	MonoJet	-	19.7	140

Combination of all channels presented today

- + tt(leptonic)H \rightarrow invisible re-interpretation from SUS-19-009 and SUS-19-011
- + $(Z\rightarrow\ell\ell)H\rightarrow$ invisible from EXO-19-003

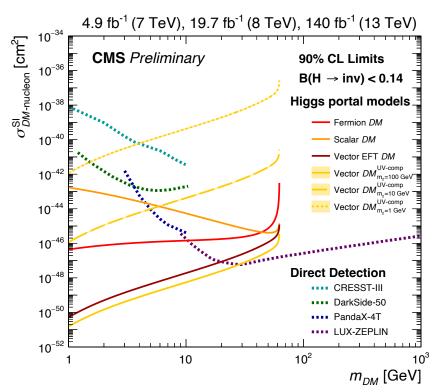
Overlap between analyses

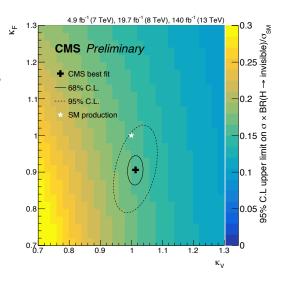
Canceled/made negligible through specific cuts, e.g.:

- Overlap with VBF: in other analyses, veto events with 2 jets with $p_T > 80$, 40 GeV, in opposite hemispheres, with $m_{jj} > 200$ GeV
- Overlap with MonoJet/MonoV: in VH resolved analysis, remove events that have $65 < m_{jj} < 120 \text{ GeV}$

Treatment of systematics

- Theo. signal systematics → correlated
- Theo. background systematics → uncorrelated (≠ phase space)
- Luminosity → correlated
- Trigger → correlated if same paths / datasets
- Lepton efficiencies → correlated if identical
- JES & JER → correlated between VBF/MonoJet/MonoV
- Everything else → uncorrelated


Invisible combination



Observed limit on $\mathcal{B}(H\rightarrow inv.)$ also set as a function of the k_V and k_F coupling modifiers

- Best fit / contours from CMS Higgs10 paper [Nature 607 (2022) 60]
- In the 95% C.L. ellipse, observed limit on $\mathcal{B}(H\rightarrow inv.)$ ranges between 14 and 17%

Result also interpreted in the context of Higgs portal models (i.e. where there is a substantial coupling of DM to the Higgs), setting 90% C.L. limits on the DM-nucleon cross section for:

- Fermion / scalar DM
- Vector DM using the "historical" EFT
- Vector DM using new EFT approach: UV-complete model at dark Higgs masses of m_2 =1,10,100 GeV, mixing angle θ =0.2 [LHEP 2022 (2022) 270]

Result competitive/complementary with direct DM detection

- ≤ 10 GeV for fermion DM
- ≤ 6 GeV for scalar DM
- ${\rm \lesssim 20~GeV}$ for vector DM in the most favorable case shown here (with $m_2{\rm =}100~GeV)$

24/03/202∠ Julie ividicies 34