
Neutrino Theory - Main Issues

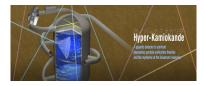
Vedran Brdar (CERN–TH)

Neutrino Oscillations

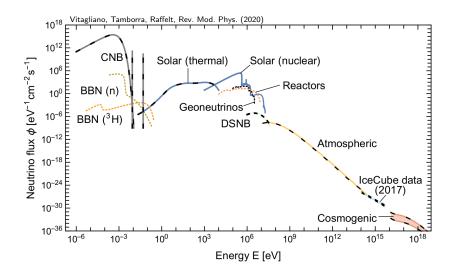
 $P_{\alpha\beta} = \sin^2 2\theta \sin^2(\frac{\Delta m^2 L}{4E})$

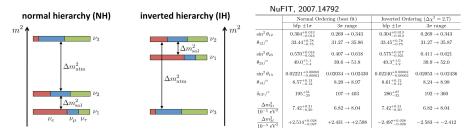
(Some of the) Open Questions

- What is the origin of neutrino mass?
- CP violation in neutrino sector?
- Ordering of neutrino masses?
- Is the neutrino its own antiparticle?
- Absolute neutrino mass scale?
- Sterile neutrinos?



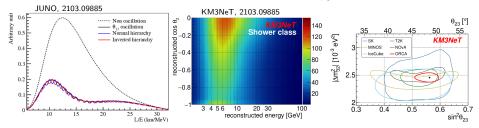
Neutrino Theory - Main Issues




2022 LHC Days, October 2022

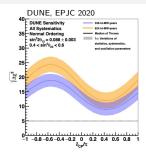
3/18

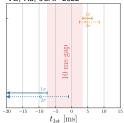
Grand Unified Neutrino Spectrum at Earth



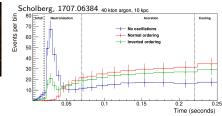
Neutrino Mass Ordering

• vacuum, $E_{
u} \sim {
m MeV}$



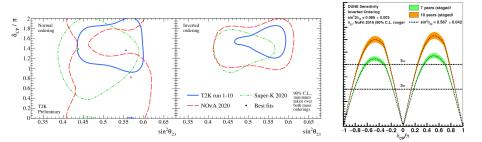

Neutrino Theory - Main Issues

Neutrino Mass Ordering

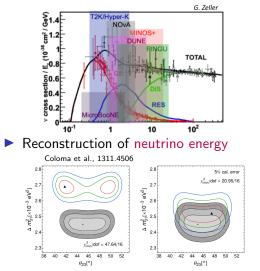


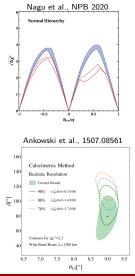
VB, Xu, JCAP 2022



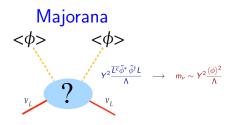

Supernovae

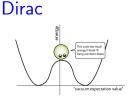
Neutrino Theory - Main Issues


CP Violation in Lepton Sector



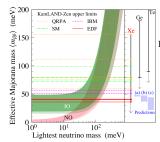
Prerequisites for the Discovery


• Reduction of ν -nucleus cross section uncertainties



Neutrino Theory - Main Issues

Is the Neutrino its own Antiparticle?



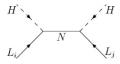
 $y\bar{\psi}_L\phi\psi_R \Rightarrow m_
u = y\langle\phi
angle \Rightarrow y \sim 10^{-12}$

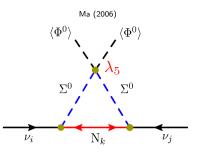
 $\Gamma_{0\nu 2\beta} \propto G_F^4 |\tilde{M}_{0\nu 2\beta}|^2 \left| \sum U_{ej}^2 m_j \right|^2 p_e^2$

Theory Challenge: Matrix Elements

Neutrino Theory - Main Issues

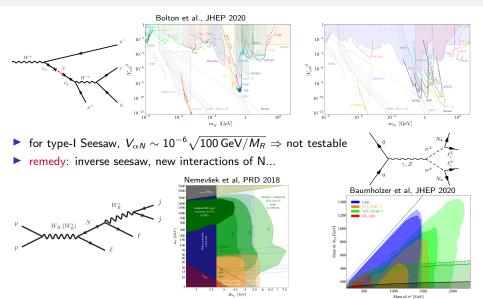
Neutrino Mass


Type-I Seesaw

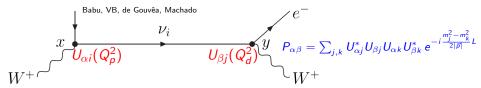

Scotogenic Model

	SU(2) _L	U(1) _Y	Z ₂
Σ	2	1/2	-
N _i	1	0	-
Φ	2	1/2	+
L	2	-1/2	+

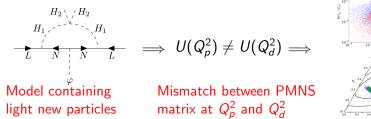
Minkowski, Mohapatra, Senjanović, Gell-Mann, Ramond, Slansky, Yanagida

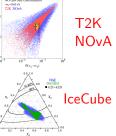


 $m_{\nu} = -M_D M_R^{-1} M_D^T$


Neutrino Theory - Main Issues

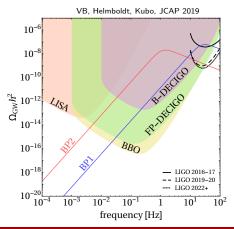
Probing the Low Scale Origin of Neutrino Mass


Neutrino Theory - Main Issues

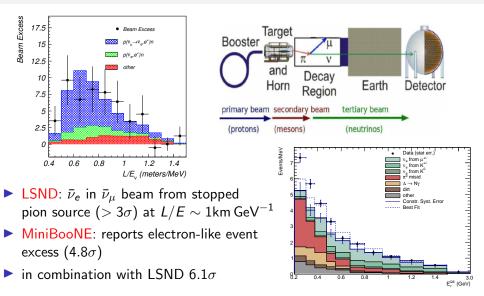

11 / 18

Energy dependence of oscillation parameters:

- ▶ propagating neutrino is on shell $(Q^2 = p_{\nu}^2 = m_{\nu}^2 \approx 0) \rightarrow m_i$ in formula is the mass at $\sqrt{Q^2} = m_i$
- ▶ at production, contribution to the amplitude should be Lorentz invariant; in the rest frame of decaying pion $E = m_{\pi} \rightarrow U_{\alpha i} = U_{\alpha i} (Q_p^2 = m_{\pi}^2)$
- ▶ at detection site we take $U_{\beta i}(Q_d^2)$ where Q_d^2 is Mandelstam *t* which has no dependence on m_{π}^2

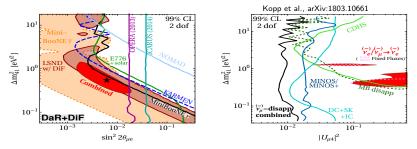


Neutrino Theory - Main Issues


12 / 18

Probing the High Scale Origin of Neutrino Mass

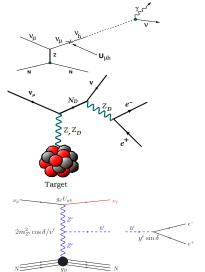
- GW detectors as a window to unexplored seesaw scales
- ▶ testing $M_N \lesssim 10^8$ GeV in models featuring first-order phase transition (for GW from topological defects, e.g. cosmic strings GUT scale can be probed)



Anomalies: LSND and MiniBooNE

eV-scale Sterile Neutrino as an Explanation?

- Oscillation maxima for standard oscillations expected at
 - $L/E \sim 500 \text{ km/GeV}$ (from $\Delta m_{31}^2 \sim 2.4 \times 10^{-3} \text{eV}^2$)
 - $L/E \sim 15000 \text{ km/GeV}$ (from $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{eV}^2$)
- the minimal solution for LSND and MiniBooNE requires an additional mass squared difference Δm²₄₁ ~ 1 eV²

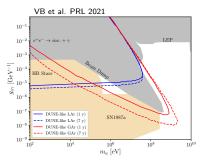


 while ν_e appearance data supports eV-scale ν_s explanation of LSND and MiniBooNE, ν_μ disappearance data puts such solution in strong tension

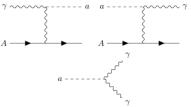
Non-oscillatory Explanations of MiniBooNE Anomaly

▶ single shower events can be produced by e, γ , collimated e^+e^- and $\gamma\gamma$

Model	U. Signature	LSND	МВ
3+1	Oscillations		
(3+1) + inv-v decay	Damped oscillations		
(3+1) + NSI	Modified matter effects		
Anomalous matter	Resonant appearance		
Large extra dim	Osc with related freqs.		
LNV in $\boldsymbol{\mu}$ decays	$\mu^{*} \rightarrow \text{anti-} \nu_{_{\Theta}}$		
Lorentz violation	Sidereal time variation		
Dark neutrinos	Upscattering to N \rightarrow v e ⁺ e ⁻		
Dipole portal	Upscattering to $N \to v \gamma$		
(3+1) + vis-v decay	DIF of $\rm v_s \rightarrow ~v_e$		
(3+1) + vis decay	DIF of $N \to v \gamma$		
Dark sectors: dark matter	Upscattering to $\chi' \rightarrow \chi e^+e^-$		
Dark sectors: (pseudo)-scalar	Forward scattering to y		



Neutrino Theory - Main Issues


Beyond Neutrino Mass, Beyond Anomalies

from Jae Yu (Snowmass 2021)

Process	Signatures	Background
ALP	Scattering: γ+e/ γ+N (n) Decay in flight : γγ	$ \begin{array}{c} \nu \text{ coherent, NC w/} \ \pi^{0} \!\!\!, \ \nu_{\mathrm{e}} \mathrm{CC} \mathrm{w/} \\ \pi^{0} \!\!\!, \ \mathrm{etc} \end{array} $
LDM	χe [.] →χe [.] , χN→N'n	NC w/ $\pi^{\rm 0,}\nu_{\rm e}$ CC, QE, RES
mCP	Multiple e scatterings	$v_e CC w/ \pi^0$
Dark Photon	A→ere⁺, μ·μ⁺	v CC + mis-ID π, Accidental overlap of CC
HNL	$\label{eq:N} \begin{split} N & \to \nu e^- e^+, \nu \mu^- \mu^+, \nu e \mu, \nu \pi^0, \\ e \pi, \mu \pi \end{split}$	ν CC + mis-ID π,ν_{e} CC w/ π^{0}
v trident	ν→ve ⁻ e ⁺ , νμ ⁻ μ ⁺ , νeμ	$\nu_{\mu} N \rightarrow \nu_{\mu} \pi N \Box (\nu CC)$
BDM/ iBDM	χN→e'N	ν coherent, NC w/ π^0,ν_e CC

Summary. Quo Vadis, Neutrino?

▶ Goal for the oscillation physics: CP phase, mass ordering, θ_{23} octant

- Theory input: reducing the ν -nucleus cross section uncertainties
- Bonus: Neutrino experiments as a powerful probe of BSM (ALPs...)
- Holy Grail for Neutrino Theory: The Origin of Neutrino Mass
- HL-LHC? Gravitational Waves? New Ideas?
- In the meantime...... Anomalies!

