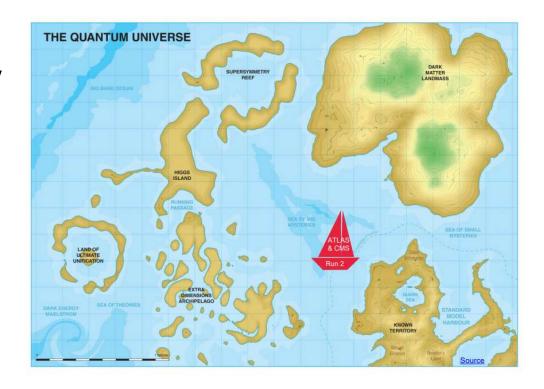
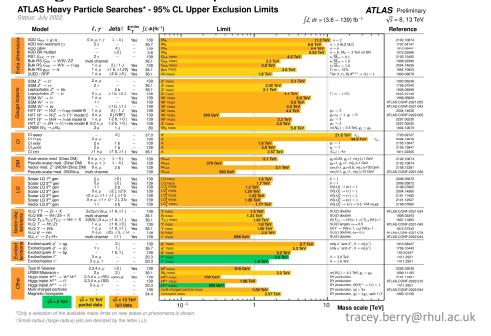


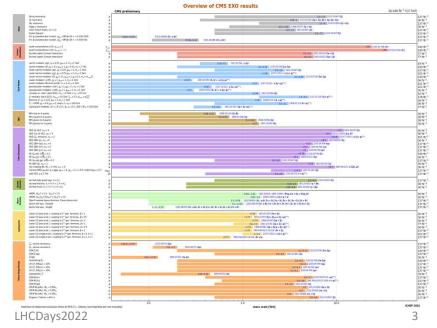
EXOTICS AND BSM IN ATLAS AND CMS

Dr Tracey Berry on behalf of ATLAS & CMS



- The Standard Model (SM) leaves many questions unanswered
- Plethora of beyond SM models (BSM)
- Only few observational hints
- Run 3 will present more opportunities

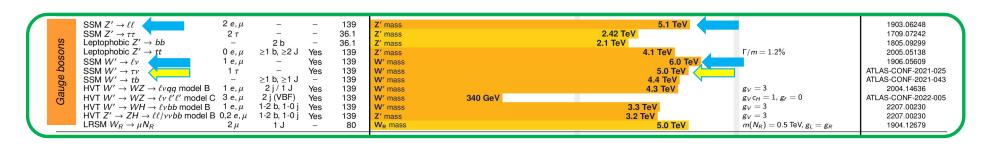


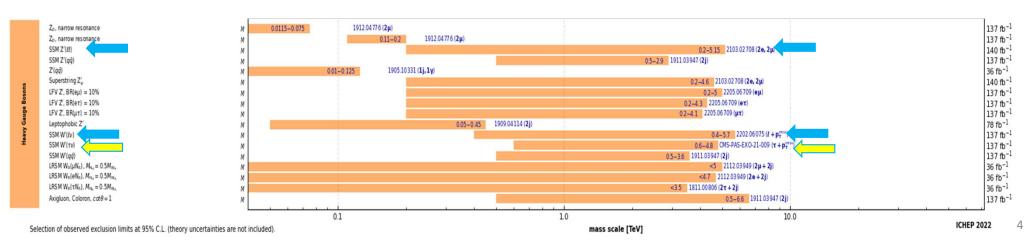


Exotics and BSM Searches in ATLAS and CMS

ATLAS and CMS have a rich and very active exotics program of searches

- Public results webpages <u>ATLAS Exotics HDBS CMS Exotics Preliminary B2G</u>
 ... only a select few here highlighted to show breadth, focus on full Run 2 results, more coming
- Run 2 (2015-2018) collected ~140fb⁻¹ of pp collision data at \sqrt{s} = 13TeV recorded in Run 3 has started!
- Pushing mass limits and precision

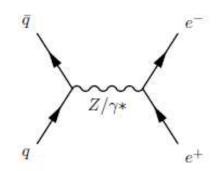


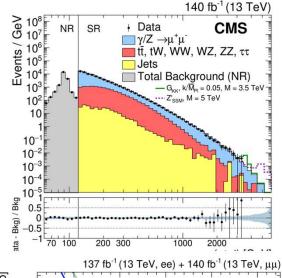


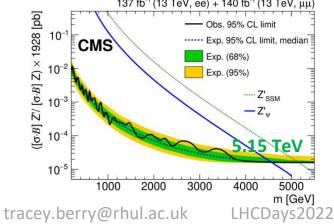
New Gauge Bosons

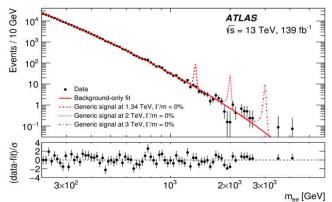
Heavy charged and neutral gauge bosons (W' and Z') in theories with extended gauge sectors (technicolour, Little Higgs, composite Higgs)

Heavy Gauge Bosons: Z' Dilepton Resonance Search




Search Channel


Decays to 2 electrons or 2 muons

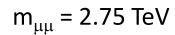

- + very clean signatures
- + good to search for other new physics: Z', Extra Dimensions

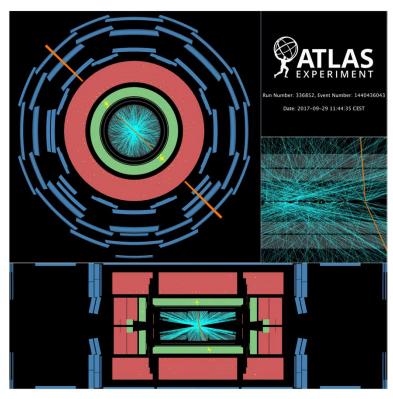
Search for deviations in invariant mass

Functional form fitted to invariant-mass

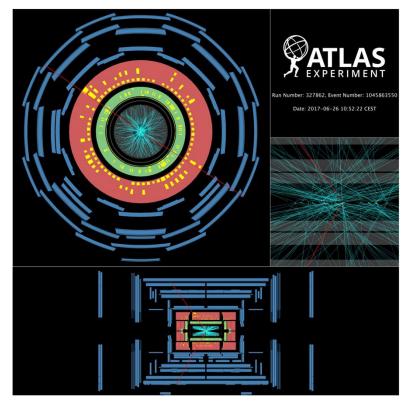
A generic signal shape

Limits applied to spin-0, spin-1 and spin-2 signal hypotheses


	Lower limits on $m_{Z^{'}}$ [TeV]								
Model	ee		$\mid \mu$	μ	$\ell\ell$				
	obs	\exp	obs	\exp	obs	\exp			
Z_ψ'	4.1	4.3	4.0	4.0	4.5	4.5			
Z_χ'	4.6	4.6	4.2	4.2	4.8	4.8			
$Z'_{ m SSM}$	4.9	4.9	4.5	4.5	5.1	5.1			

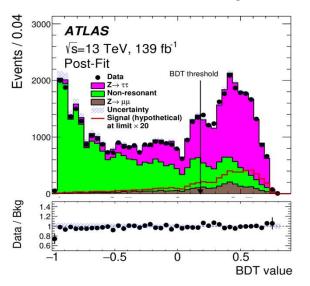


Highest invariant mass (2015—2018)

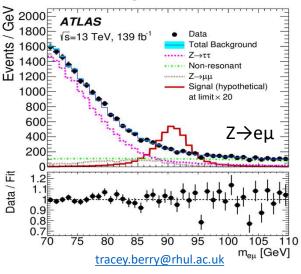


 $m_{ee} = 4.06 \text{ TeV}$

 E_{T} = 2.01 TeV, E_{T} = 1.92 TeV


 $p_T = 1.82 \text{ TeV}, p_T = 1.04 \text{ TeV},$

Lepton Flavor Violating Z decay


Neutrino mixing /

- Lepton flavour is an accidental symmetry in the SM
- Often violated in BSM theories
- LHC is a Z machine: ~ 8 billion Z's in ATLAS in Run 2
 - $Z \rightarrow e^{\pm} \mu^{\mp}$
- Search for peak around Z mass
- BDT to suppress backgrounds

- No excess is observed
- Upper limit on Branching Fraction (Z→eµ)<2.62×10⁻⁷ @95% C.L.

Most stringent limit to date

Ζ→ετ/μτ	BSM-induced vertex			
2 /ει/μι	Z ~~~~			

Neutrino oscillations show that LFV indeed occurs in nature

Upper 95% CL limits	ATLAS	LEP		
В(Z —> е т)	8.1 × 10-6	9.8 × 10-6 [OPAL]		
В(Z —> µ т)	9.5 × 10-6	12 × 10-6 [DELPHI]		

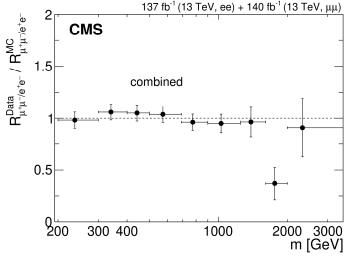
- NN used in analysis Set current most stringent upper limits on BR $Z \rightarrow \ell \tau$, previous limits by LEP ==> thanks to improved tau ID and lumi
- Primarily limited by statistics

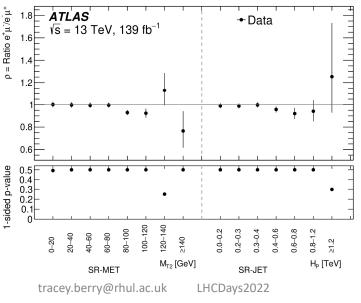
LHCDays2022

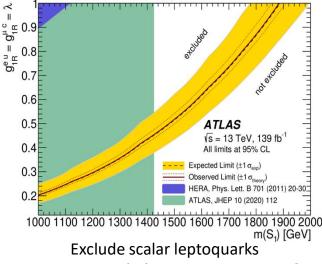
Di-lepton Ratios

CMS-EXO-19-019

EXOT-2018-29/


- Resonant and non-resonant di-lepton final states with high mass in many SM extensions (ex. Z', LQs)
- BSM physics can cause *R* to deviate from unity

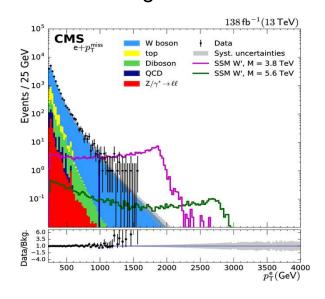

$$R_{\mu + \mu - /e + e -} = \frac{\mathrm{d}\sigma(qq \rightarrow \mu + \mu -)/\mathrm{d}m_{\ell\ell}}{\mathrm{d}\sigma(qq \rightarrow e + e -)/\mathrm{d}m_{\ell\ell}}$$

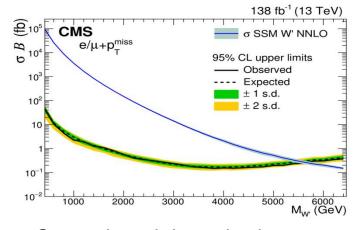

• Measure ratio of $e+\mu$ to $e-\mu$ pairs

$$\rho = \sigma(pp \to e + \mu - + X)$$
$$\sigma(pp \to e - \mu + X)$$

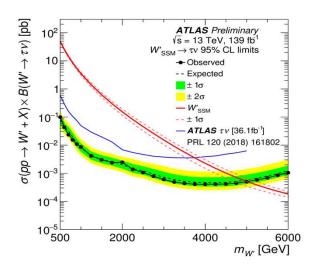
- ρ < 1 at LHC (ex. $W^+ \rightarrow \mu + v + \text{jet} \rightarrow e^- \text{ fake})$
- ρ > 1 induced by BSM physics, ex. RPV-SUSY, LQs

masses below 1880 GeV


Heavy Gauge Bosons: W'


ATLAS-EXOT-2018-30 CMS-PAS-EXO-19-017 ATLAS-CONF-021-025

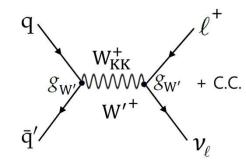
$W' \rightarrow \ell \nu$ decays

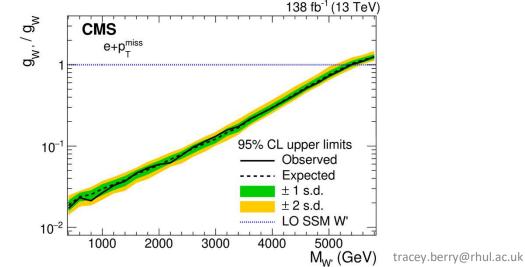

In the transverse plane: lepton back-toback to missing transverse momentum

Several models probed: SSM, split-UED, RPV-SUSY, EFT W' boson mass less than 5.7 TeV is excluded at 95% C.L.

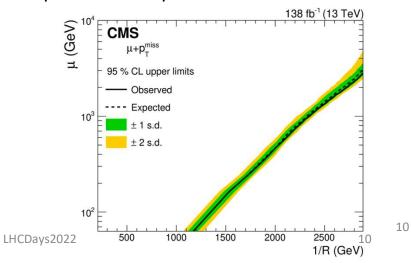
 $W' \rightarrow \tau \nu$ decays

 $W' \rightarrow \tau \nu$ production cross section W' bosons masses up to 5.0 TeV excluded at the 95% C.L.



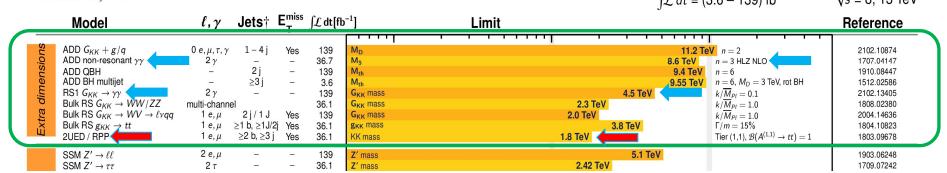

Other BSM searches: W'

CMS-PAS-EXO-19-017 $W' \rightarrow tb \text{ decays}$ ATLAS-CONF-2021-043



- Set limits on other models: e.g. Extra-dimensions: split UED, RPV SUSY
- First LHC results on a SM precision test :
 determination of the oblique electroweak gw parameter
- Extend existing constraints on composite Higgs scenarios using results with those from the direct W' resonance search
- First experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements

Exclusion limits in the 2D plane (1/R, μ) for the split-UED interpretation for the n=2 case

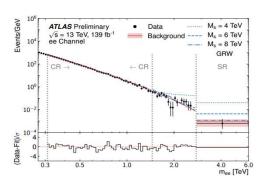


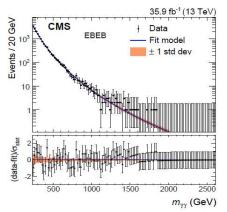
Extra Dimensions

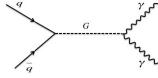
ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits Status: July 2022

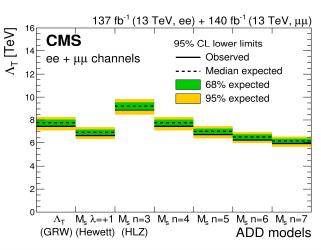
ATLAS Preliminary $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1} \qquad \sqrt{s} = 8, 13 \text{ TeV}$

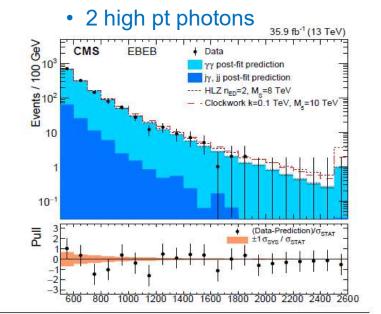
ADD model Searches

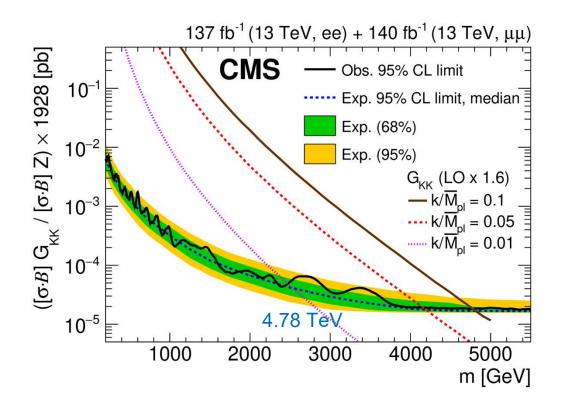

ATL-PHYS-PUB-2021-021/


CMS-EXO-19-019 CMS-EXO-17-017




Searches for large extra dimensions


• 2 high pt electrons and muons


Signal GI	GRW	Hev	HLZ						
		negative	positive	$n_{\rm ED}=2$	$n_{\rm ED}=3$	$n_{\rm ED}=4$	$n_{\rm ED}=5$	$n_{\rm ED}=6$	$n_{\rm ED}=7$
Expected	$7.1^{+0.7}_{-0.5}$	$5.5^{+0.1}_{-0.3}$	$6.3^{+0.6}_{-0.4}$	$8.4^{+1.3}_{-1.1}$	$8.4^{+0.8}_{-0.6}$	$7.1^{+0.7}_{-0.5}$	$6.4^{+0.6}_{-0.5}$	$6.0^{+0.6}_{-0.4}$	$5.6^{+0.6}_{-0.4}$
Observed	7.8	5.6	7.0	9.7	9.3	7.8	7.0	6.6	6.2

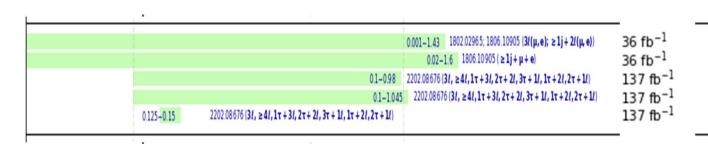
tracey.berry@rhul.ac.uk

LHCDays2022

Extra Dimensions – RS Model

tracey.berry@rhul.ac.uk

LHCDays2022



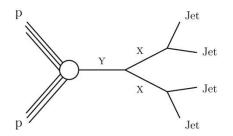
Vector-like fermions/quarks

See Dylan's talk

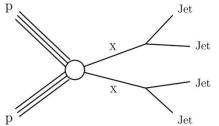
Heavy Fermions ν MSM, $|V_{eV}|^2=1.0$, $|V_{\mu V}|^2=1.0$ ν MSM, $|V_{eV}V_{\mu N}^*|^2/(|V_{eV}|^2+|V_{\mu N}|^2)=1.0$ Type-III seesaw heavy fermions, Flavor-democratic Vector like taus, Doublet Vector like taus, Singlet

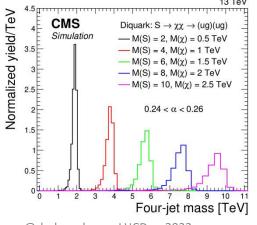
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36.1 s 36.1 s 139 s 36.1 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass	1.4 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \to Wt) = 1$, $c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \to Wb) = 1$, $c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044
---	--	--	---	--	--

Search for resonant and nonresonant production of pairs of dijet resonances



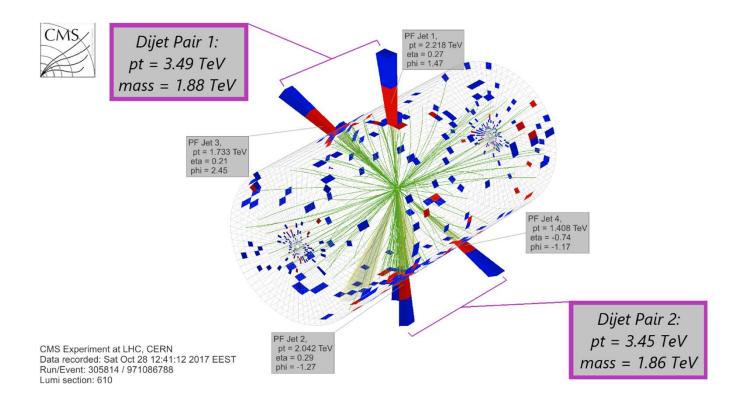
See Dylan's talk


CMS-EXO-21-010


- Search for pairs of dijet resonances with same mass in final states with at least four jets
- · Where 4 jet production proceeds
 - via an intermediate resonant state or
 - nonresonant production
- Model-independent limits, at 95% C.L, on production cross section of four-jet and dijet resonances set
- First LHC limits on a signal model of diquarks that decay into pairs of vector-like quarks,
- excluding diquark masses below 7.6 TeV
- Nonresonant search excludes pair production of top squarks

Resonant production

Nonresonant production


tracev.berry@rhul.ac.uk

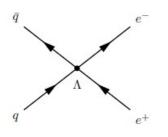
LHCDays2022

Highest four-jet mass of 8.0 TeV

16

tracey.berry@rhul.ac.uk LHCDays2022



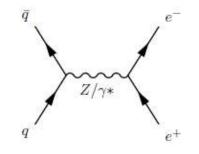

Contact Interactions

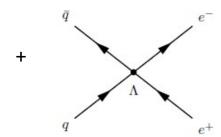
A contact interaction (CI) could be caused by

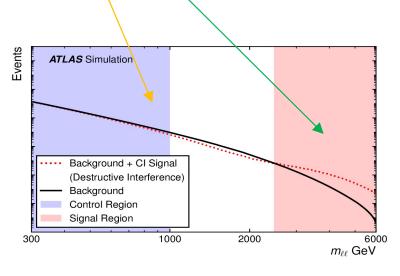
- Quark-lepton compositeness or
- Any new interaction with a massive mediator

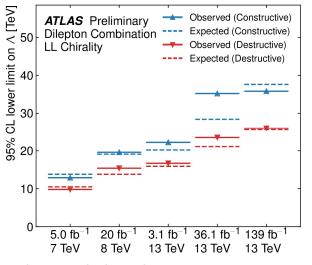
Contact Interactions: ee, µµ

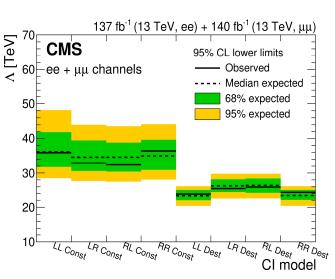
EXOT-2019-16/ CMS-EXO-19-019



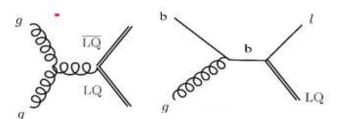

Search in invariant mass only

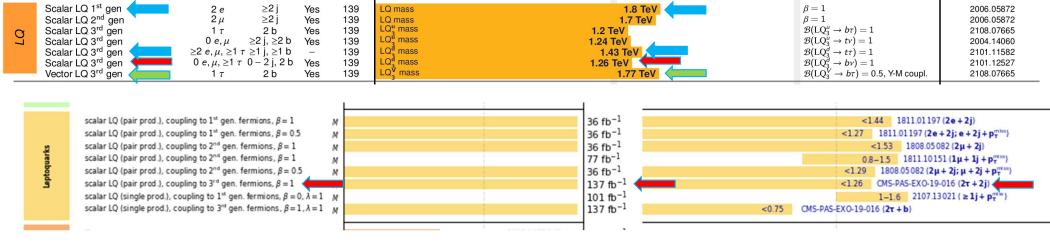

First non-resonant search


to use data-driven background estimation


- Fit in the low mass control region
- Extrapolate to high mass

tracey.berry@rhul.ac.uk


LHCDays2022

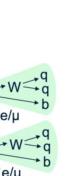


Leptoquarks

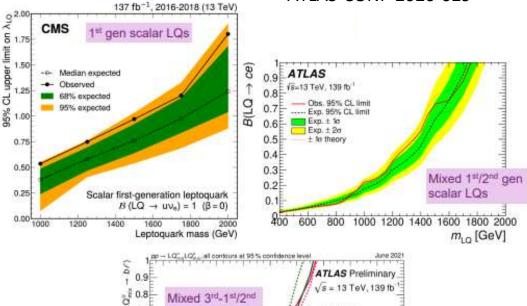
- Leptoquarks (LQs) predicted in GUTs and composite Higgs models
- LQs produced in pairs in gg fusion and $q\overline{q}$ annihilation or singly in association with a lepton
- Decays into a quark and lepton
- Searches for 1st, 2nd, 3rd and mixed generations final states
- Scalar and vector LQs are investigated

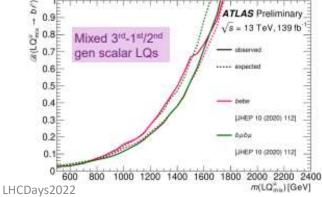
Leptoquarks

ATL-PHYS-PUB-2021-017 CMS-EXO-19-015 CMS-EXO-20-004


ATLAS EXOT-2019-13

ATLAS-CONF-2020-029


- Searches for 1st, 2nd, 3rd and mixed generations final states
- Scalar LQs are investigated


LQ → te te

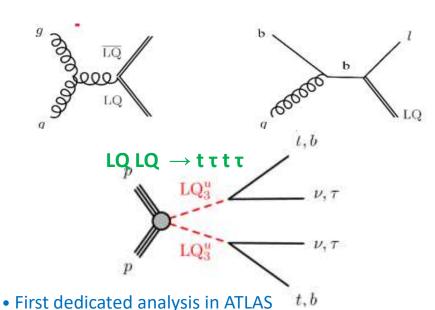
Decays into a quark and lepton

cross-generational LQ m(LQ) > 1.48 TeV

tracey.berry@rhul.ac.uk

20

Leptoquarks


ATL-PHYS-PUB-2021-017 CMS-EXO-19-015 CMS-EXO-20-004 ATLAS-EXOT-2019-13 ATLAS SUSY-2019-18 (arXiv)

Searches for 3rd generation only and mixed generations final states

Scalar and vector LQs are investigated

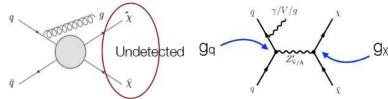
Decays into a quark and lepton

ATLAS Preliminary (s = 13 TeV, 139 fb1 $B(LQ_a^d \rightarrow bv) = 1 - B(LQ_a^d \rightarrow t\tau)$ --- Exp. limit Exp. limit ±1σ [arXiv:2101.11582] Exp. limit ±2σ ATLAS CONF-2021-008 Theory ±1a arXiv:2101.12527 $m(LQ_1^d)[GeV]$ m(LQ) > 1.43 TeVRe-interpretation 800 1400 600 of SUSY results m_{LQ} [GeV 137 fb⁻¹ (13 TeV) --- La, La, + v La, LQ, TQ, + TLQ, LQ. TQ. + VLQ. --- LQ, LQ, ++ LQ, --- LQ, TQ, ---- v LQ. gen scalar LQs 3rd gen vector LQs Single + pair Single + pair LQ production LQ production

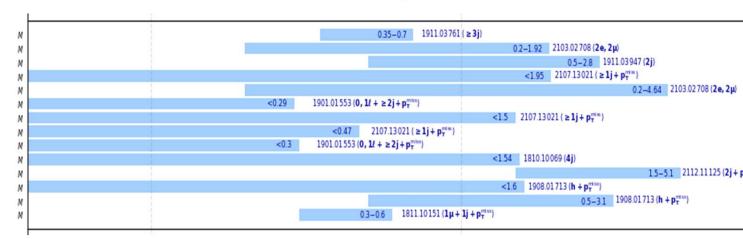
Improvement of a factor of x10 in sensitivity (~500 GeV in m_{1.0}) with respect to ATLAS and CMS 36 fb -1)

tracey.berry@rhul.ac.uk

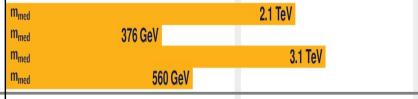
LHCDays2022



Dark Matter


See Adelina's talk

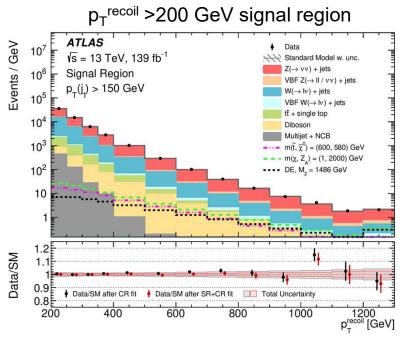
- Pair production at LHC
- DM candidates escape detector (weakly interacting)
- Large **missing energy** (MET) is the key variable

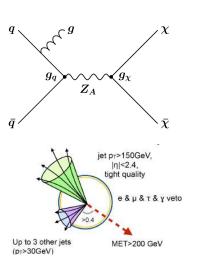


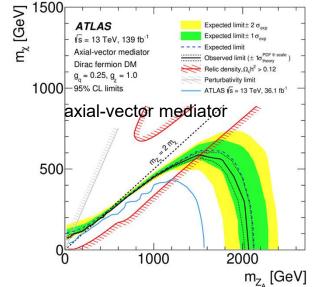
vector mediator $\{q\hat{q}\},\ g_q=0.25,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ vector mediator $\{l\hat{t}\},\ g_q=0.1,\ g_{CNR}=1,\ g_t=0.01,\ m_\chi>1\ \text{TeV}$ (axial-)vector mediator $\{q\hat{q}\},\ g_q=0.25,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ (axial-)vector mediator $\{q\hat{q}\},\ g_q=0.25,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ (axial-)vector mediator $\{l\hat{t}\},\ g_q=0.25,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ (axial)-vector mediator $\{l\hat{t}\},\ g_q=0.1,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ scalar mediator $\{+l\hat{t}l\hat{t}\},\ g_q=1,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ scalar mediator $\{+l\hat{t}l\hat{t}\},\ g_q=1,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ pseudoscalar mediator $\{+l\hat{t}l\hat{t}\},\ g_q=1,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ pseudoscalar mediator $\{+l\hat{t}l\hat{t}\},\ g_q=1,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ complex sc. med. (dark QCD), $m_{d_{NR}}=20\ \text{GeV},\ cr_{\chi_{TL}}=25\ \text{mm}$ Z' mediator (dark QCD), $m_{d_{NR}}=20\ \text{GeV},\ r_{p_V}=0.3,\ a_{d_{NR}}=a_{d_{NR}}^{const}$ Baryonic $Z',\ g_q=0.25,\ g_{CNR}=1,\ m_\chi=1\ \text{GeV}$ Leptoquark mediator, $\beta=1,\ B=0.1,\ \Delta_{X,CNR}=0.1,\ 800< M_{LQ}<1500\ \text{GeV}$

DM

Pseudo-scalar med. (Dirac DM) $0 e, \mu, \tau, \gamma$ 1 -	- 4 j Yes - 4 j Yes 2 b Yes	139 139 139 139
--	-----------------------------------	--------------------------

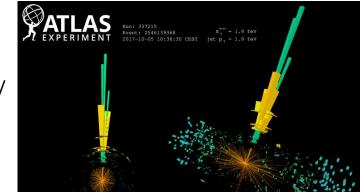



Mono-jet


- EXOT-2018-06/

Most sensitive mono-X channel for ISR processes

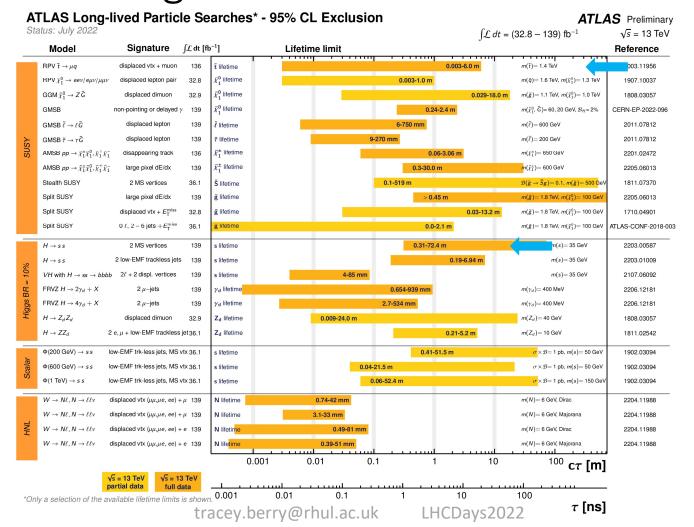
- Search: for a Missing Energy excess.
- Dominant backgrounds: Z(vv)+jets and W(lv)+jets constrained in 1 and 2 lepton control regions



tracey.berry@rhul.ac.uk

LHCDays2022

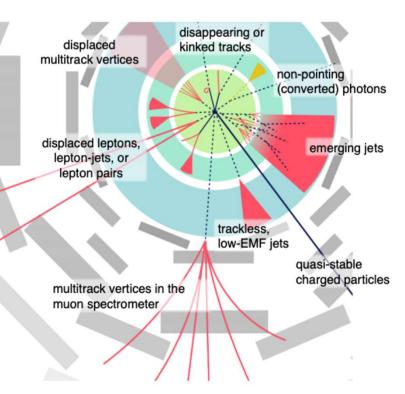
1500


ATLAS

vs = 13 TeV, 139 fb

23

Long-Lived Particle Searches


Searches for long lived particles

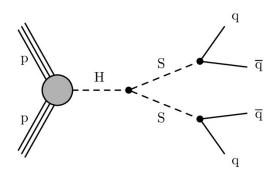
• Long-lived (LL) and unconventional exotic particles with striking signatures predicted by many extensions of the SM.

- Examples:
- Heavy, long-lived, charged particles
- Sleptons
- Particles can decay in the detector after few cm
- Neutralinos in GMSB, mass-degenerate gauginos, particles of a Hidden Sector

Challenging experimentally

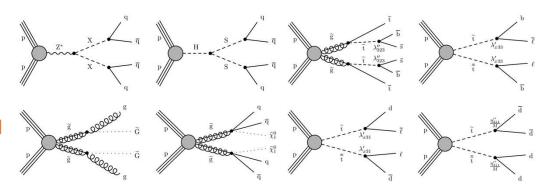
- Non-standard reconstruction
- Displacements, timing and ionization
- Dedicated triggers
- Non-standard background is a challenge
- Detector noise, cosmic rays, reconstruction failures
- Usually estimated from data

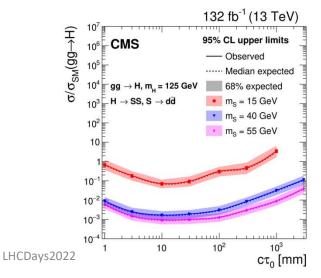
tracey.berry@rhul.ac.uk


LHCDays2022

CMS-EXO-19-021

CMS


Displaced jets

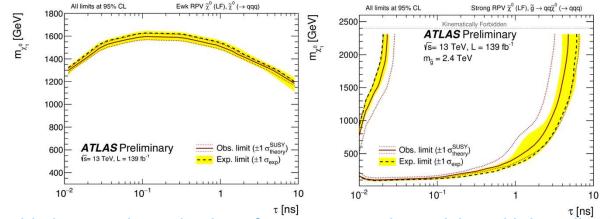

- Distinctive topology: pair of jets originating at a secondary vertex
- Different signal models targeted:
- LLP decaying to q-qbar,
 Exotic decays of Higgs: gg → H → 2S, S → qq
 where cτ ~ 1mm to 3m

Highlights:

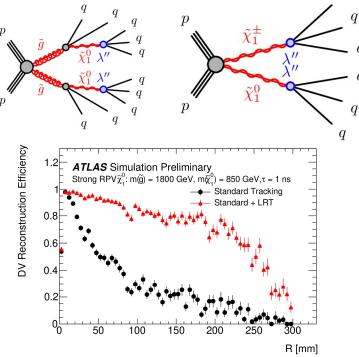
- Dedicated displaced triggers
- Dedicated secondary vertex reconstruction
- BDT with variables like vertex track multiplicity

tracey.berry@rhul.ac.uk

ATLAS-CONF-2022-054/


Displaced vertex + jets

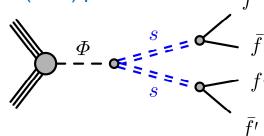
Search for long-lived particles (LLPs) decaying into hadrons In events with a displaced vertex (DV) and several jets

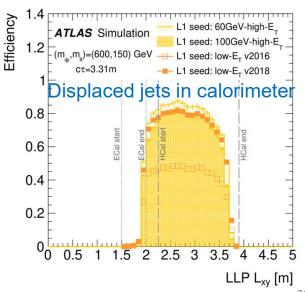

Uses dedicated reconstruction techniques that significantly increase the sensitivity to LLP decays

Backgrounds are instrumental, data-driven estimation

Interpretations in strong and electroweak SUSY models

Limits on pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small R-parity-violating coupling

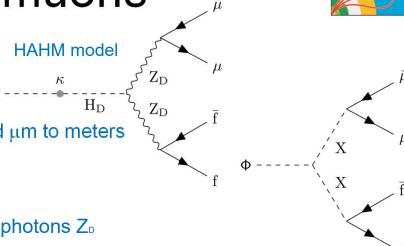

Electroweakino masses below 1.5 TeV are excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns

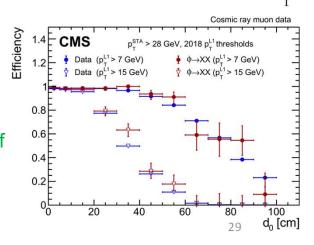

Displaced jets in muon system (2vtx)

EXOT-2019-24/

- Search for events with two displaced vertices from long-lived particles (LLP) pairs
- In the muon spectrometer (MS): reconstruct vertices of LLPs decaying to jets
- Vertices displaced between 3 m and 14 m w.r.t primary
- Observed number of events consistent with expected background
- Limits for several benchmark signals are determined
- First exclusion limits for branching fractions (BF) into neutral LLPs below 0.1%, for m_H =125 GeV
- BF above 10% are excluded at 95% C.L. for LLP proper lifetimes ranging from 4 cm to 72.4 m
- First results for LLPs decaying into into tt in MS

EXO-21-006/

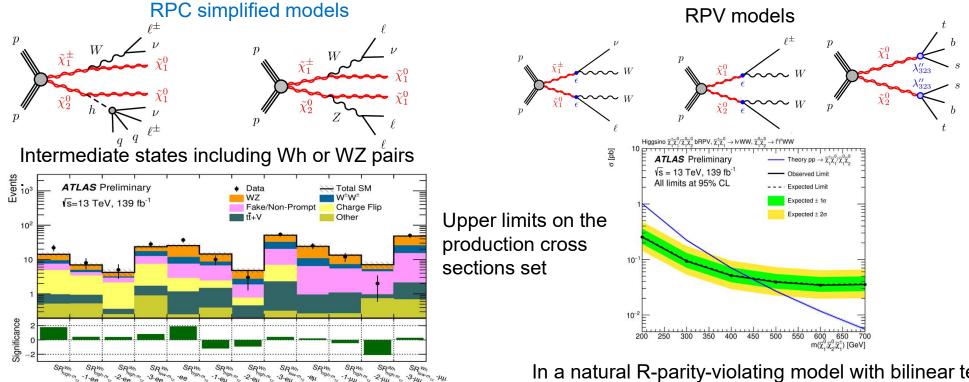

LLPs decaying to a pair of muons



- Signature: pair of oppositely charged muons originating from a common secondary vertex displaced from pp interaction point by several hundred μm to meters
- Results interpreted in frameworks:
 - Hidden Abelian Higgs Model (HAHM)
 in which Higgs boson decays to a pair of long-lived dark photons Z₀
 - Simplified model
 - LLPs produced in decays of an exotic heavy neutral scalar boson

Best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau(Z_D)$ between 0.03 and 0.5 mm, for HAHM with $m(Z_D) > 20$ GeV && < $m_H/2$

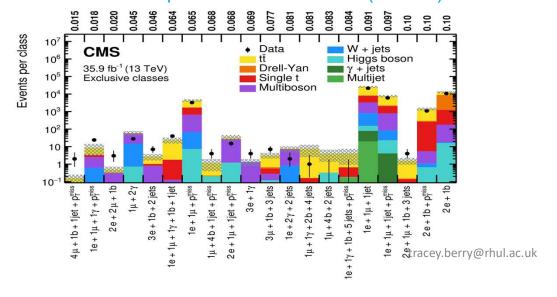
Best constraints on LLPs with masses larger than 10 GeV, produced in decays of an exotic scalar boson heavier than the Higgs and decaying to pair of muons



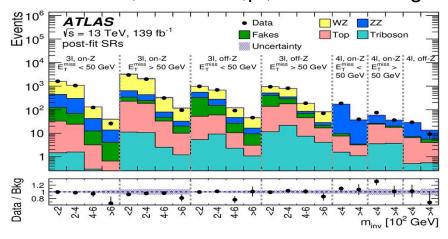
Electroweak same-sign / 3-lepton

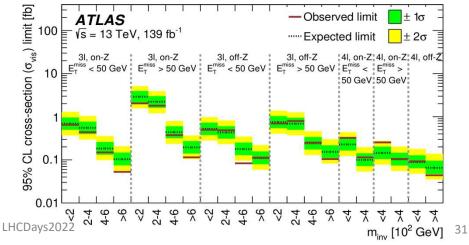
Search for winos and higgsinos in events with either a pair of **same-sign** leptons (e/ μ) or 3 leptons Interpretations in R-parity conserving (RPC) and R-parity violating (RPV) models

Wino masses up to 525 GeV and 260 GeV are excluded respectively, for a bino of vanishing mass


In a natural R-parity-violating model with bilinear terms Higgsino masses smaller than 440 GeV are excluded

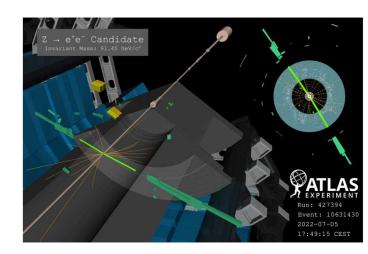
ATLAS-EXOT-2019-36/ CMS-EXO-19-008/ EXPERIMENT


Multilepton General


- Leaving no stone unturned
- Potential signals may be overlooked by modelspecific analyses
- Identify interesting channels & search with minimal model dependance.
- Aims to be sensitive to a wide range of potential newphysics theories simultaneously

Model Unspecific Search in CMS (MUSiC)

3ℓ and 4ℓ events, where ℓ=e,μ, 22 event categories



Conclusion

- Searching for exotics is a broad program:
 both in terms of questions asked and of final states
- Exciting and varied area to work in
- Some Run 2 results being finalised
- Looking forward to analysing Run 3 data

Thanks for listening!

• Any Questions?

