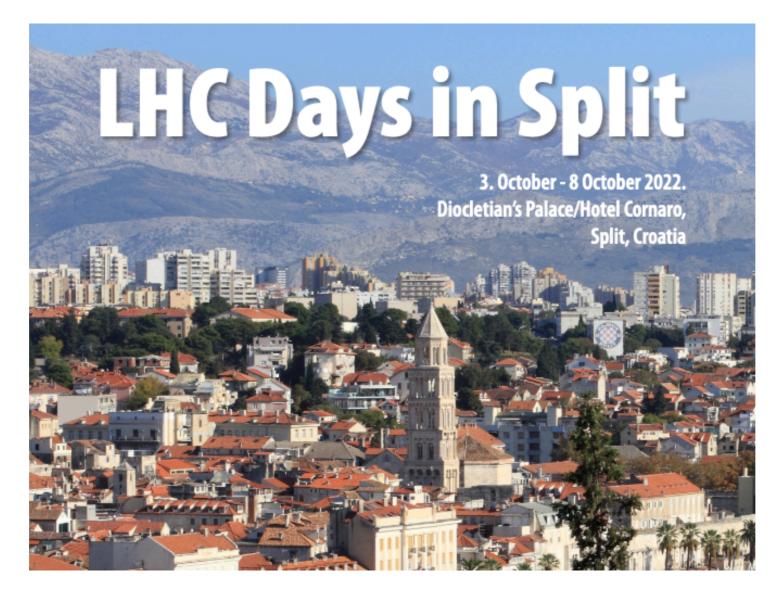
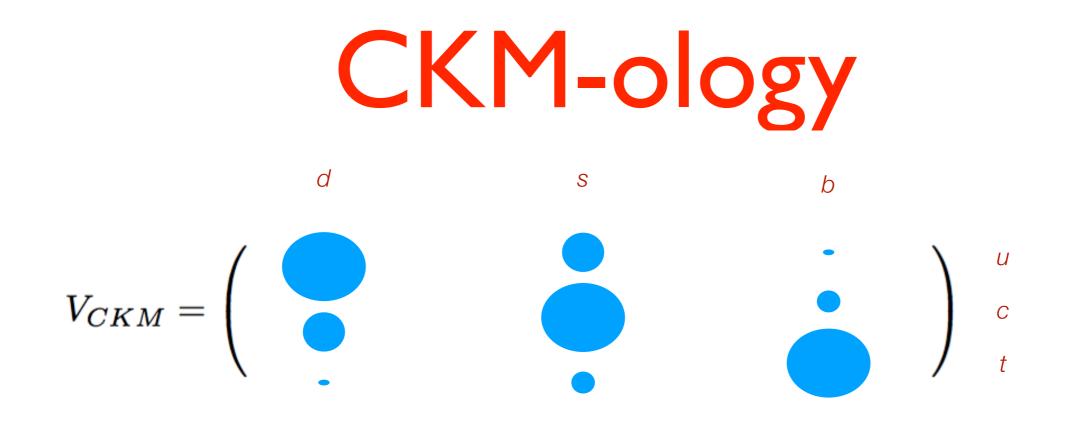
Flavor Physics at LHC, LFUV in B-decays

Damir Bečirević

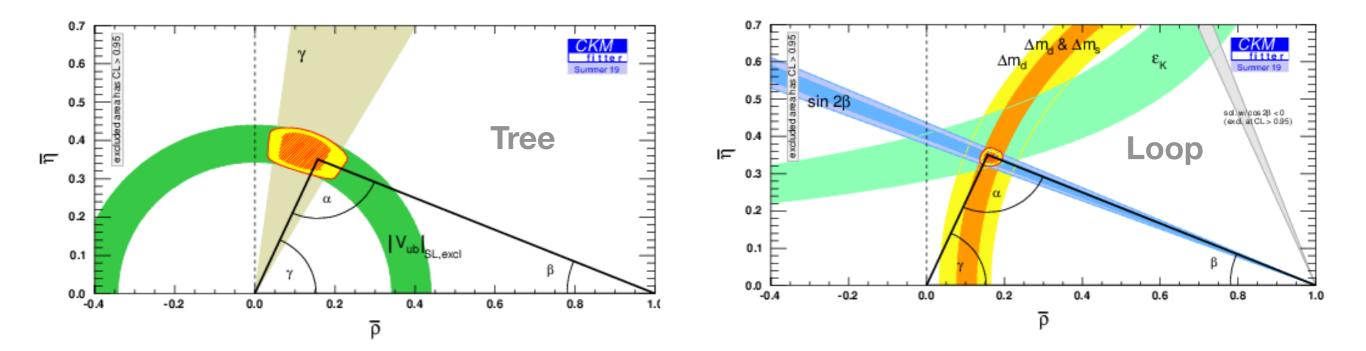
Pôle Théorie, IJCLab CNRS et Université Paris-Saclay



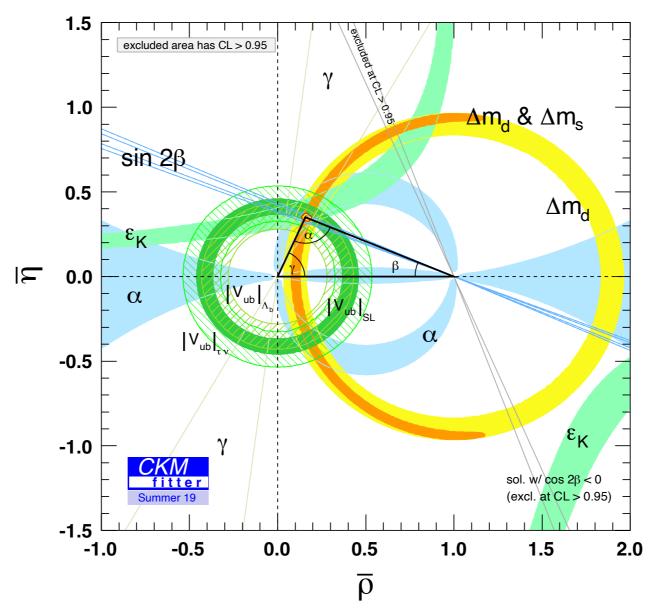
based on works done with A. Angelescu, I. Doršner, S. Fajfer, D. Faroughy, F. Jaffredo, N. Košnik, O. Sumensari



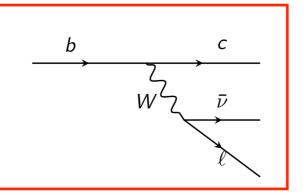
Fix CKM entries through tree level processes & overconstrain by loop-induced ones [progress through precision!]



CKM-ology

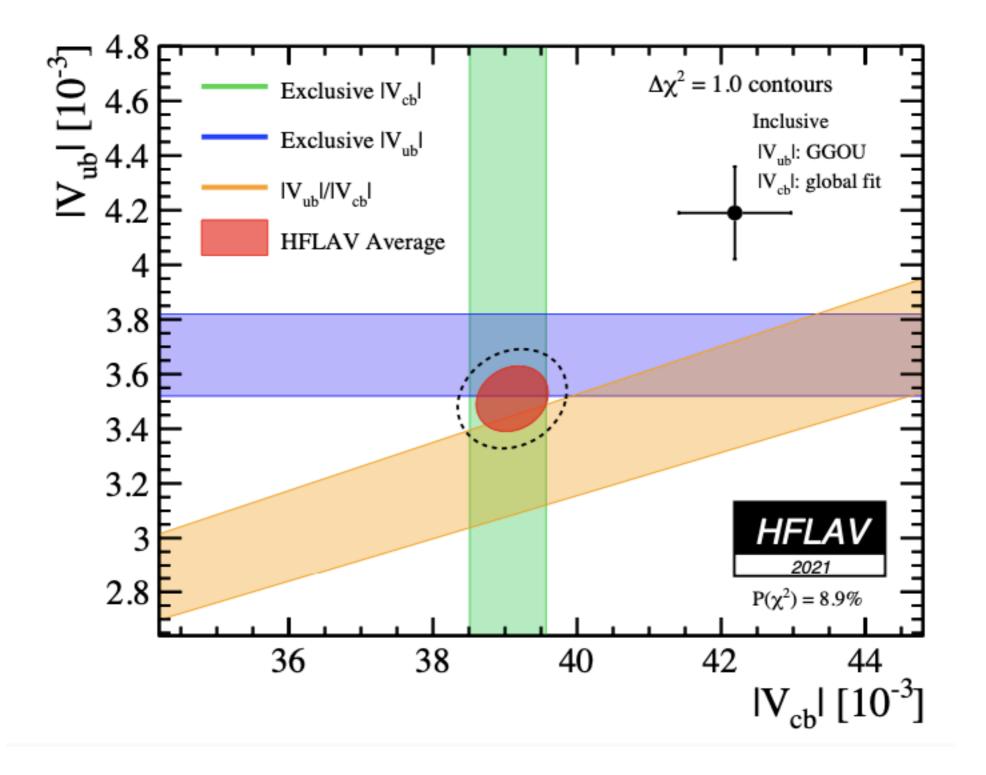


Still open: inclusive v exclusive Vub and Vcb?
 Is Vud well controlled? Vus keeps coming back (EM)...



CKM-ology - Small flavor 'anomaly'

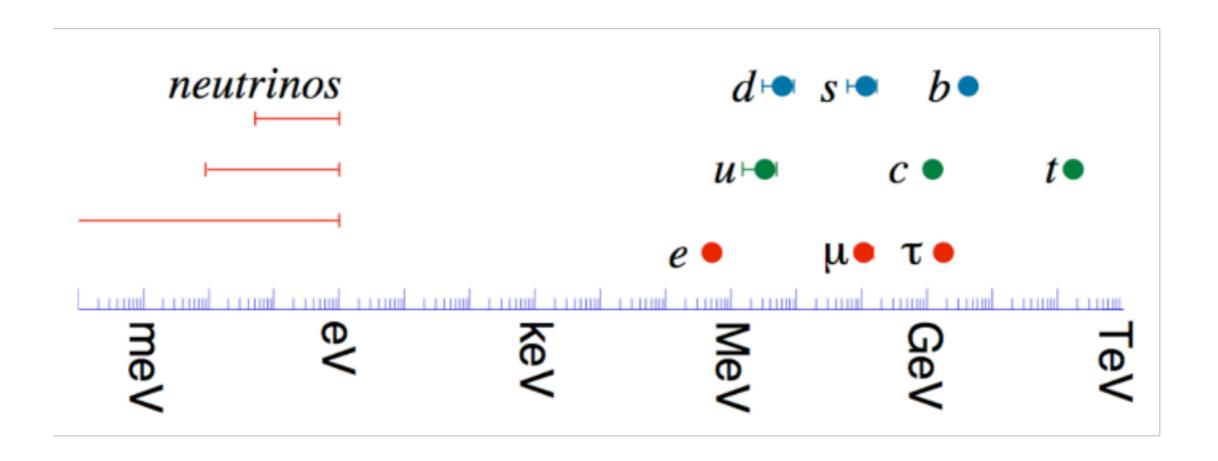
X Still open: inclusive v exclusive V_{ub} and V_{cb}?



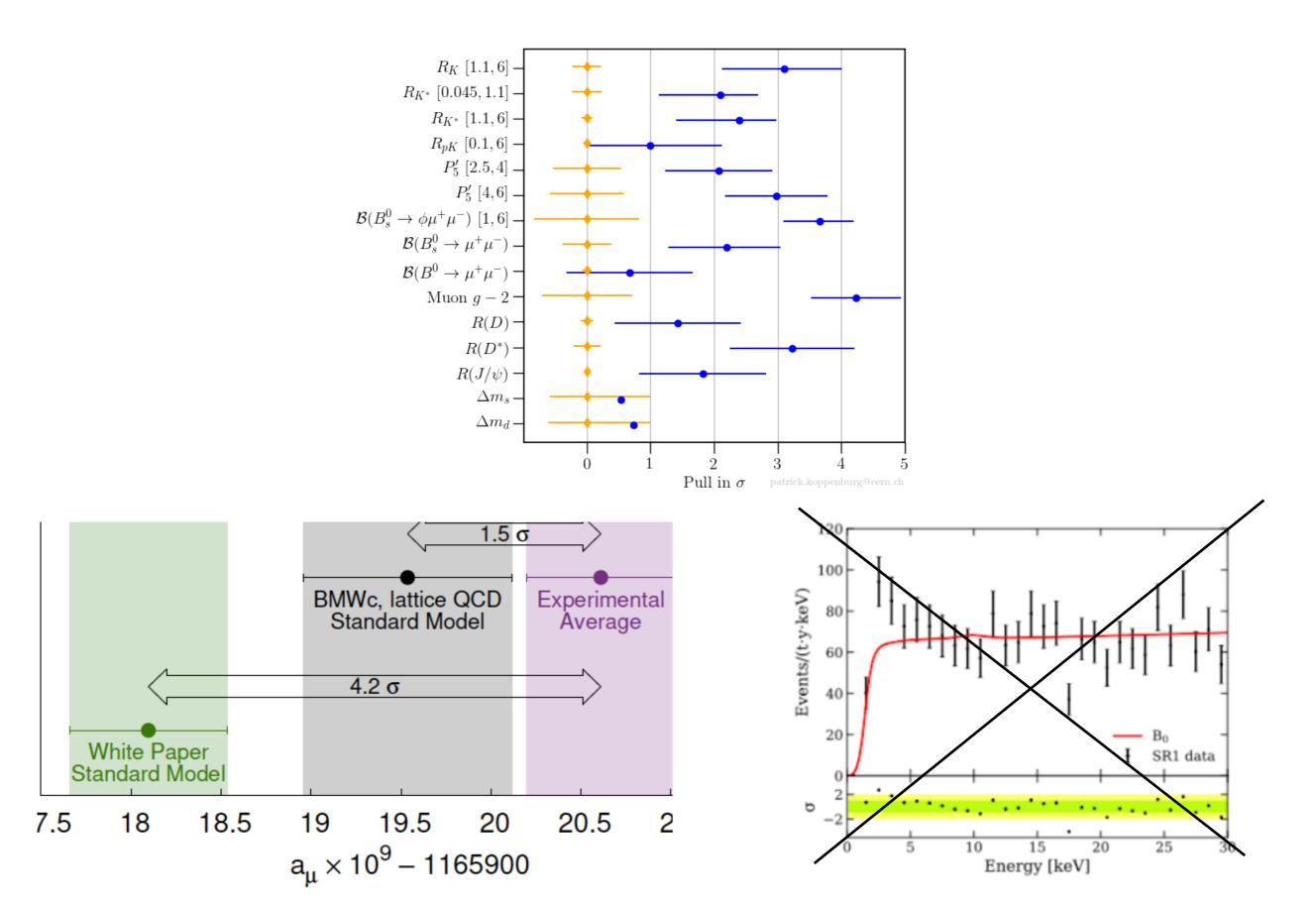
2206.07501

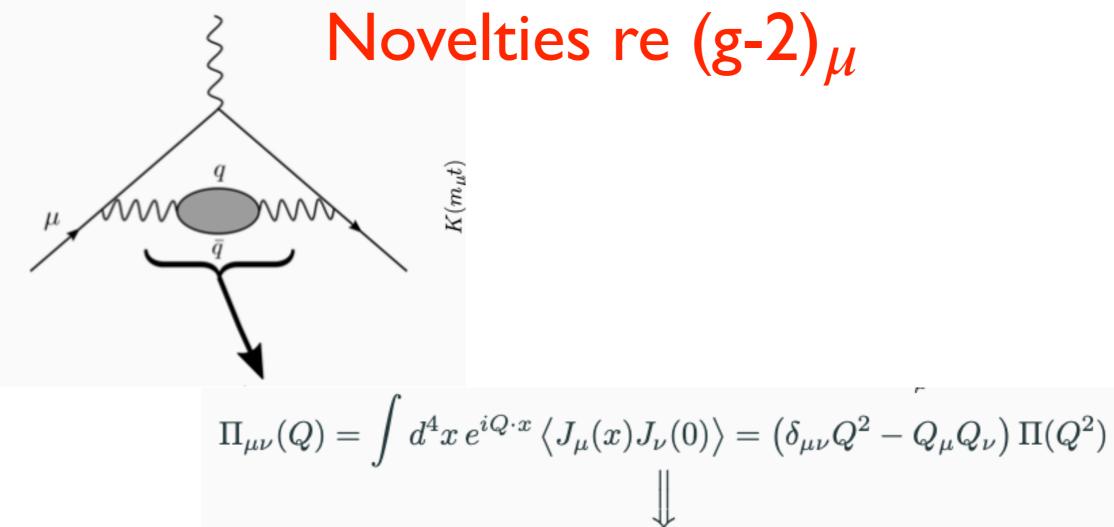
Flavor Physics

- **×** Why three generations?
- X Why such hierarchy of masses and mixing?
- Why so small CPV phase?



Flavor Anomalies



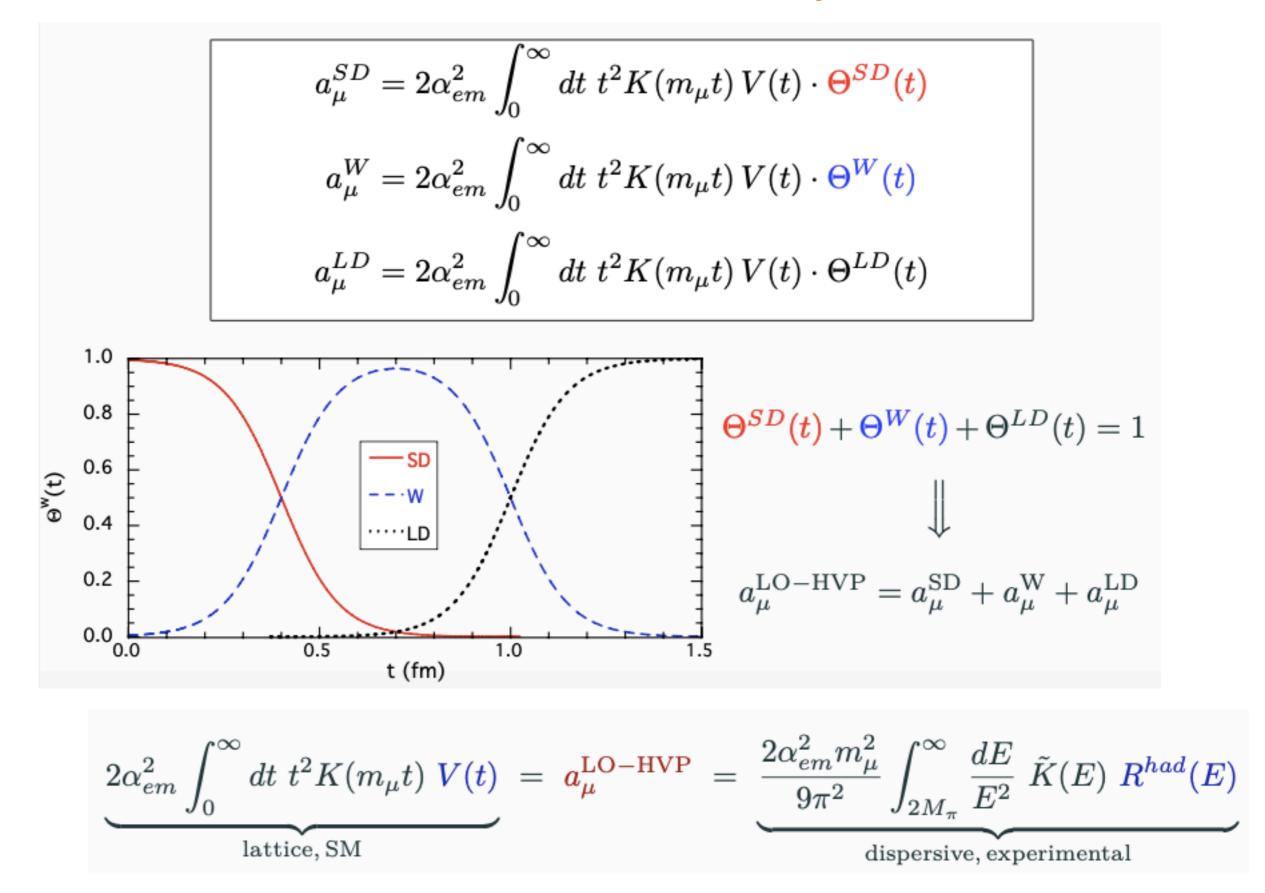


$$a_{\mu}^{\rm LO-HVP} = 4\alpha_{em}^2 \int_0^{\infty} dQ^2 \frac{1}{m_{\mu}^2} f\left(\frac{Q^2}{m_{\mu}^2}\right) \cdot \left(\Pi(Q^2) - \Pi(0)\right).$$

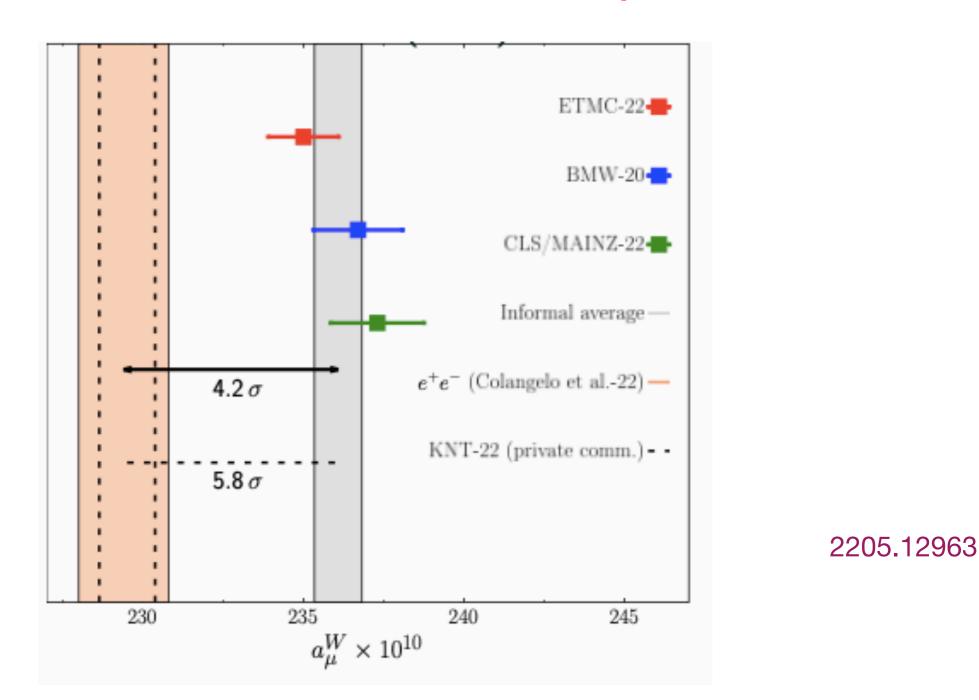
$$a_{\mu}^{\rm LO-HVP} = 2\alpha_{em}^2 \int_0^\infty dt \ t^2 K(m_{\mu}t) V(t), \quad V(t) \equiv \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

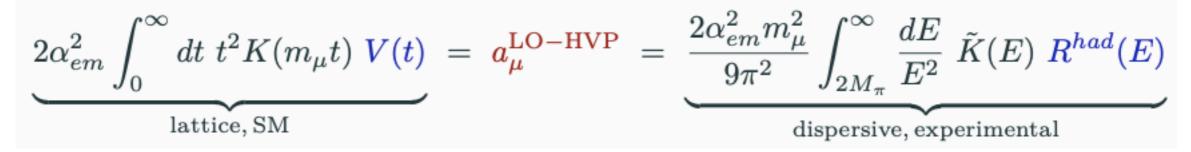
See talk by L. Varnhorst

Novelties re $(g-2)_{\mu}$



Novelties re $(g-2)_{\mu}$





Lepton Flavor Universality Violation

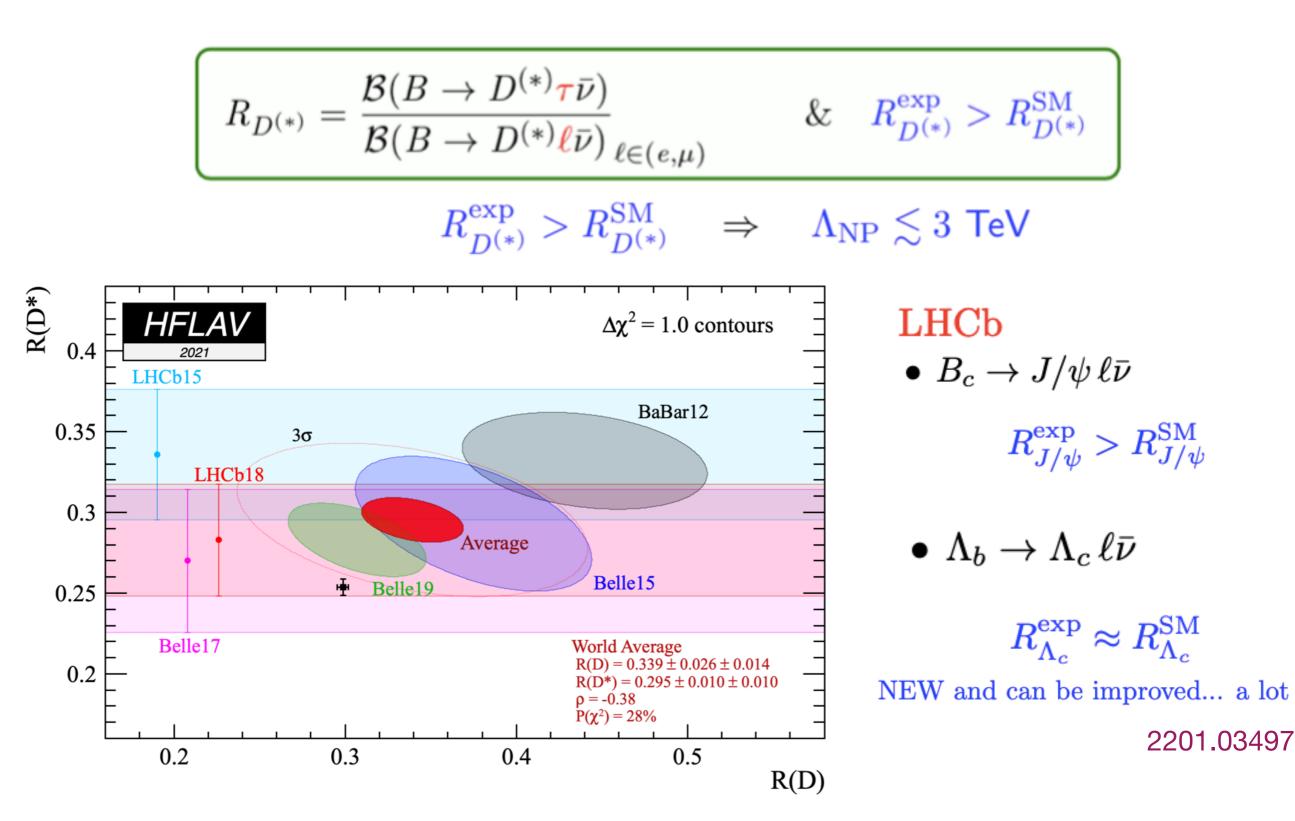
$$\begin{split} \hline R_{D^{(*)}} &= \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& \quad R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{\mathrm{SM}} \\ \hline R_{K^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} e e)} \Big|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\mathrm{SM}} \end{split}$$

- CKM factor cancels
- Bulk of hadronic uncertainties cancel

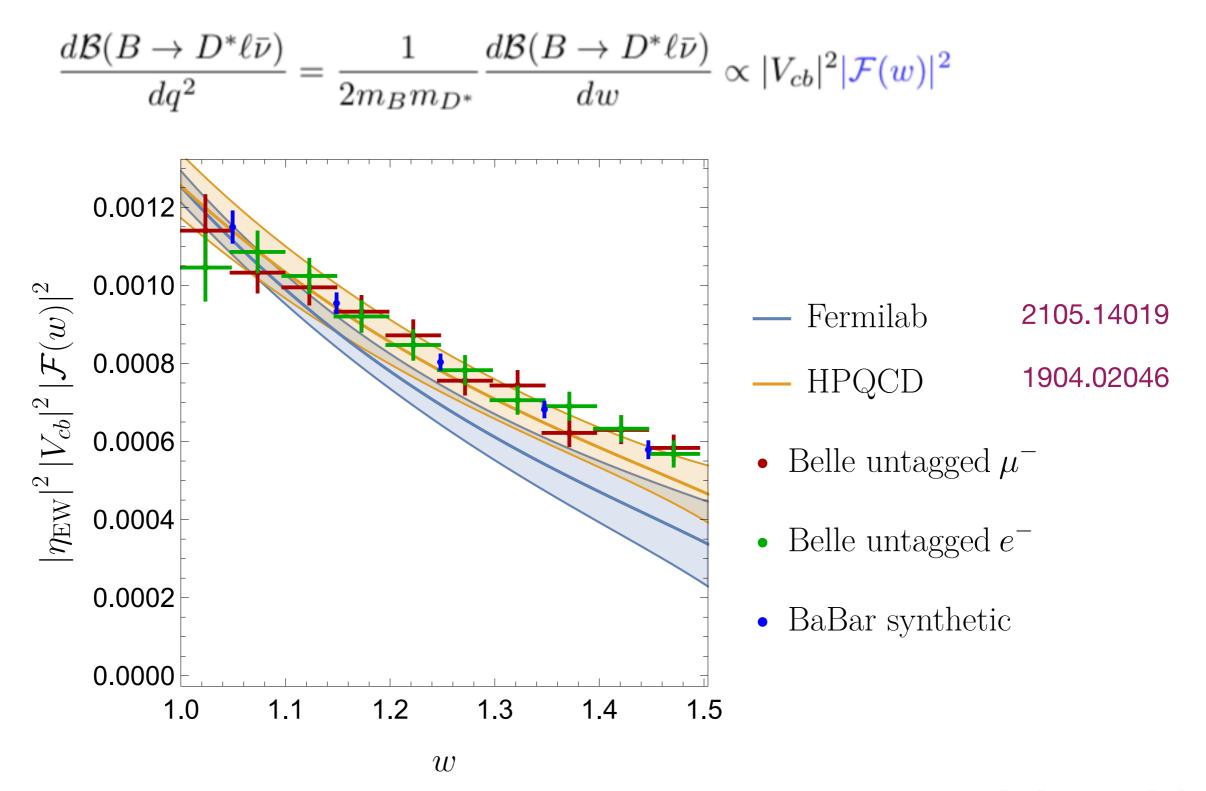
Lepton Flavor Universality Violation

$$egin{aligned} R_{D^{(*)}}^{ ext{exp}} &> R_{D^{(*)}}^{ ext{SM}} &\Rightarrow & \Lambda_{ ext{NP}} \lesssim 3 ext{ TeV} \ R_{K^{(*)}}^{ ext{exp}} &< R_{K^{(*)}}^{ ext{SM}} &\Rightarrow & \Lambda_{ ext{NP}} \lesssim 30 ext{ TeV} \end{aligned}$$

LFUV need studying NP effects



We still do not have a control over hadronic uncertainties with



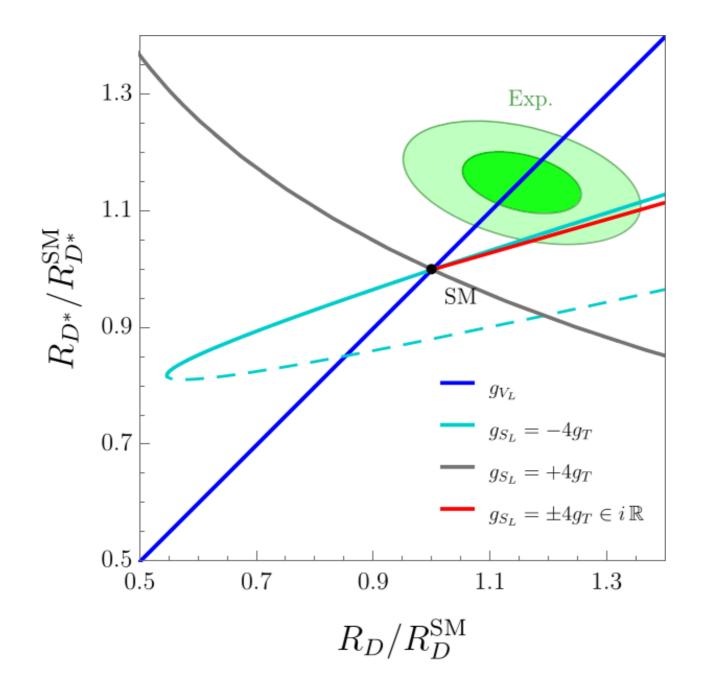
• Assuming with HPQCD that $\mathcal{F}(w)^{B_s \to D_s^*} = \mathcal{F}(w)^{B \to D^*}$

We still do not have a full/good control over hadronic uncertainties

Mode	$B ightarrow D \ell \bar{ u}$	$B o D^* \ell \bar{\nu}$	$\Lambda_b o \Lambda_c \ell ar{ u}$
$\langle V_{\mu} angle$	2 🗸	1 🗸	3 🗸
$\langle A_{\mu} angle$		3 🗸	3 🗸
$\langle T_{\mu\nu} \rangle$	$1 \times$	3 ×	4 🗸
	1503.07237	1904.02046	1503.01421
	1505.03925	2105.14019	1702.02243

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$

 $\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L)$ $+ g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$



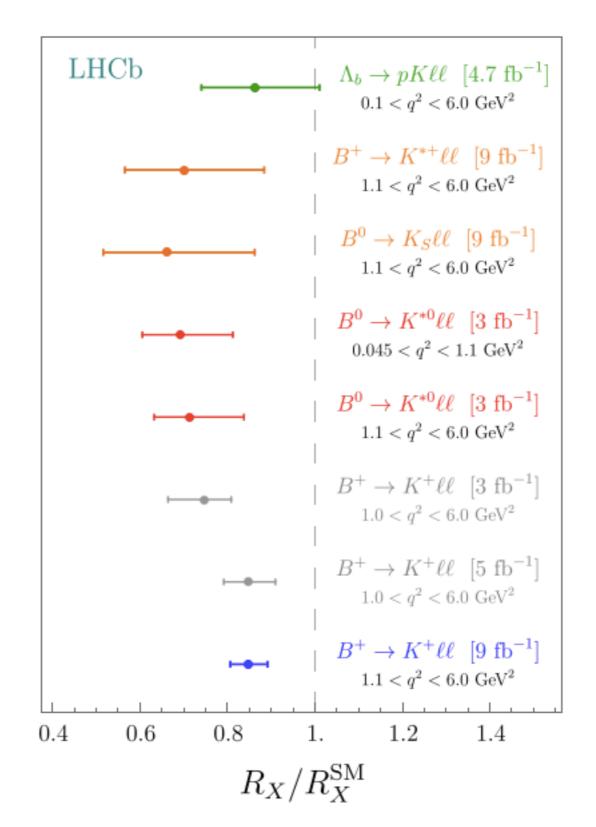
2103.12504

$g_{V_L}(m_b)$	0.07 ± 0.02	0.02/1	~
$g_{S_R}(m_b)$	-0.31 ± 0.05	5.3/1	×
$g_{S_L}(m_b)$	0.12 ± 0.06	8.8/1	×
$g_T(m_b)$	-0.03 ± 0.01	3.1/1	~
$g_{S_L} = +4g_T \in \mathbb{R}$	-0.03 ± 0.07	12.5/1	×
$g_{S_L} = -4g_T \in \mathbb{R}$	0.16 ± 0.05	2.0/1	~
$g_{S_L} = \pm 4g_T \in i \mathbb{R}$	0.48 ± 0.08	2.4/1	~

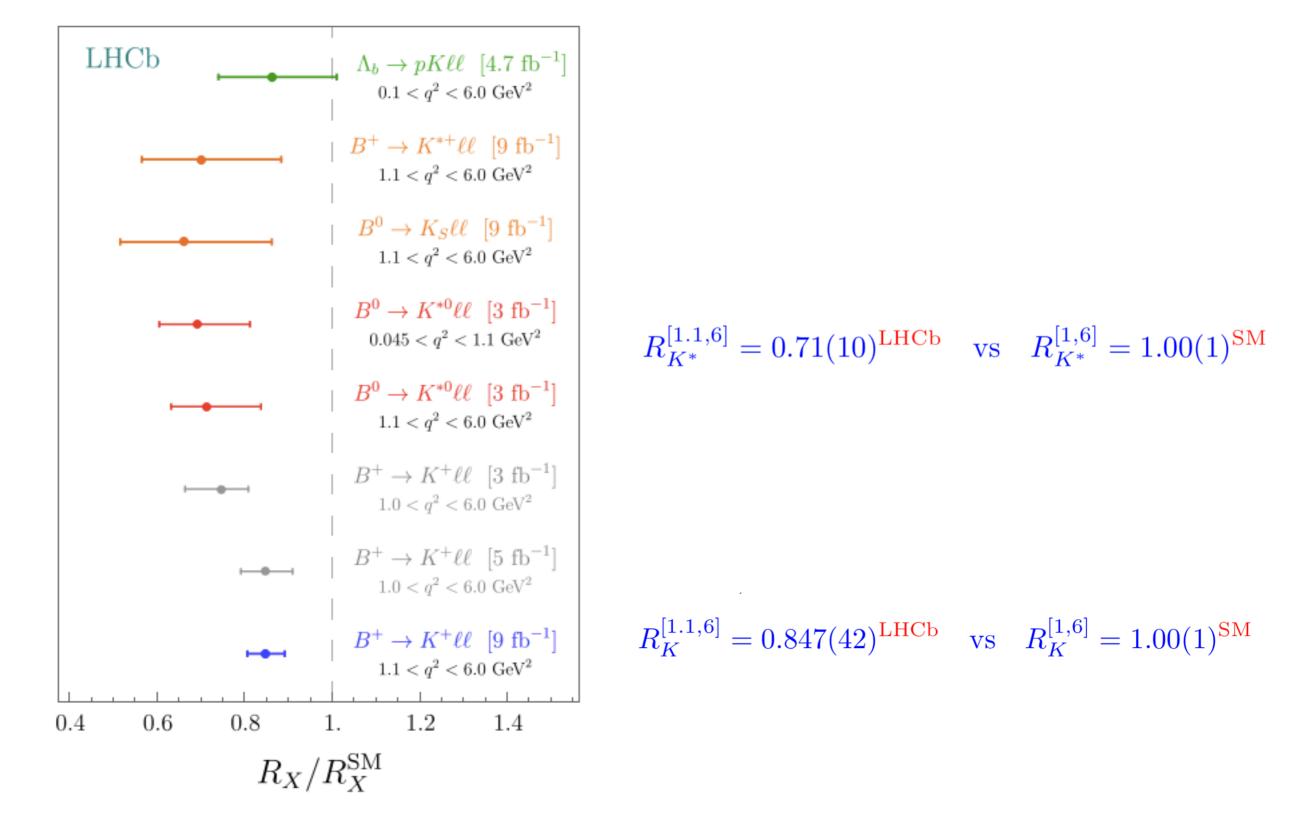
	$g_{V_L}(m_b)$	0.0	07 ± 0.02	0.02/1	~
Model	$g_{\rm eff}^{b \to c\tau\bar{\nu}}(\mu = m_{\Delta})$	$R_{D^{(*)}}$	± 0.05	5.3/1	×
$S_1 = (\bar{3}, 1, 1/3)$ $R_2 = (3, 2, 7/6)$ $S_3 = (\bar{3}, 3, 1/3)$	$g_{V_L}, g_{S_L} = -4 g_T$ $g_{S_L} = 4 g_T$ g_{V_L}	✓ ✓ ✗	± 0.06	8.8/1	×
			3 ± 0.01	3.1/1	~
$U_1 = (3, 1, 2/3)$ $U_3 = (3, 3, 2/3)$ \dots	g_{V_L}, g_{S_R} g_{V_L} \dots	✓ × 	3 ± 0.07	12.5/1	×
g_{S_L}	$= -4g_T \in \mathbb{R}$	2 0.1	16 ± 0.05	2.0/1	~
g_{S_L} :	$=\pm 4g_T\in i$ [$\left 0.4 \right $	48 ± 0.08	2.4/1	~

Main worry remain the hadronic uncertainties in the D^* case: No clear LQCD info regarding the shapes of FFs Keep also in mind the SD part of the soft photon problem is missing

MORE LFUV need studying NP effects



MORE LFUV need studying NP effects



EFT - exclusive $b \rightarrow s\ell\ell$

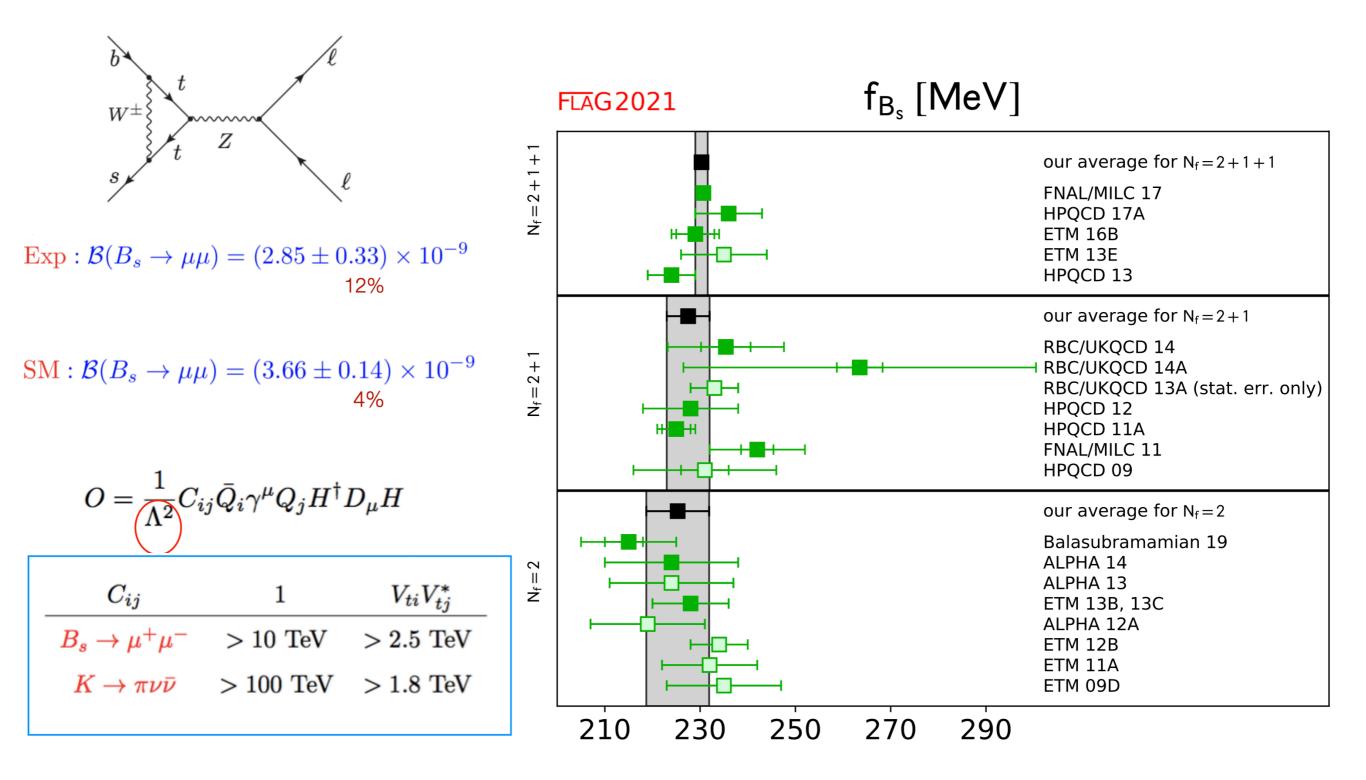
$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,\dots} \left(C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right] + \text{h.c.}$$

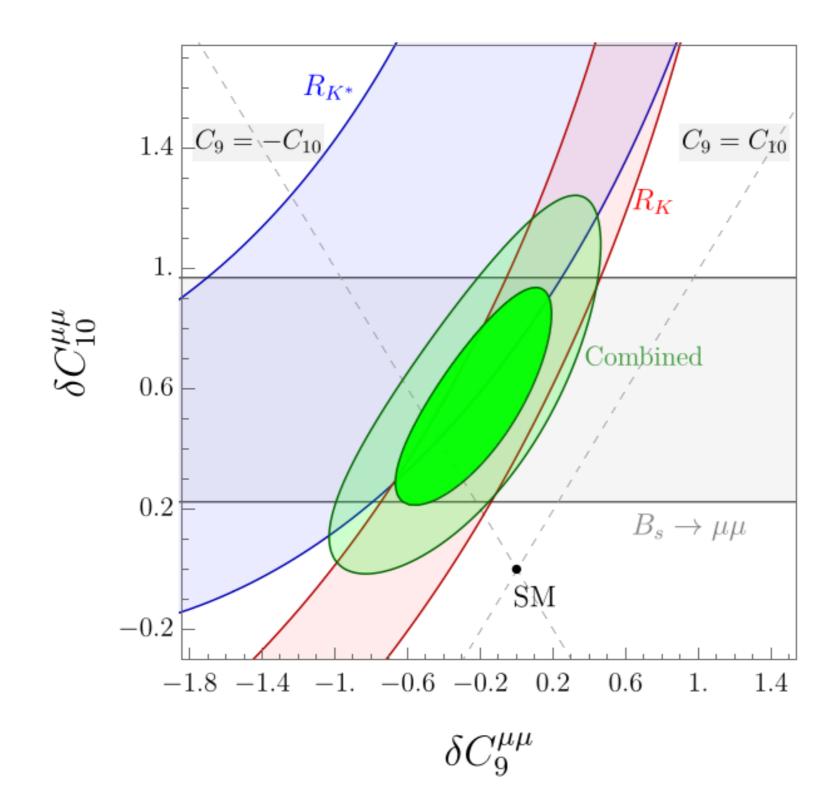
$$\mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma^{5}\ell) \mathcal{O}_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell) \qquad \mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell) \mathcal{O}_{7}^{(\prime)} = m_{b}(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}$$

Exp :
$$\mathcal{B}(B_s \to \mu\mu) = (2.85 \pm 0.33) \times 10^{-9}$$

SM : $\mathcal{B}(B_s \to \mu\mu) = (3.66 \pm 0.14) \times 10^{-9}$

 $\langle 0|\bar{s}\gamma^{\mu}\gamma_{5}b|B_{s}(p)\rangle = if_{B_{s}}p^{\mu}$





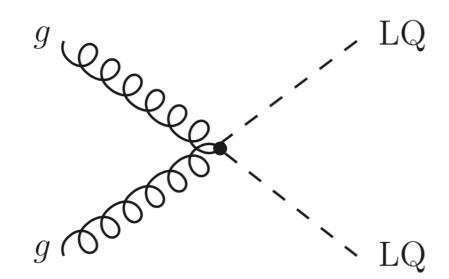
What LQ scenario?

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \ \& \ R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	\checkmark	×	×
$R_2 = (3, 2, 7/6)$	\checkmark	✓*	×
$S_3 = (\bar{3}, 3, 1/3)$	×	\checkmark	×
$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark	\checkmark
$U_3 = (3, 3, 2/3)$	×	\checkmark	×

N.B. U₁ is the only one to accommodate both!

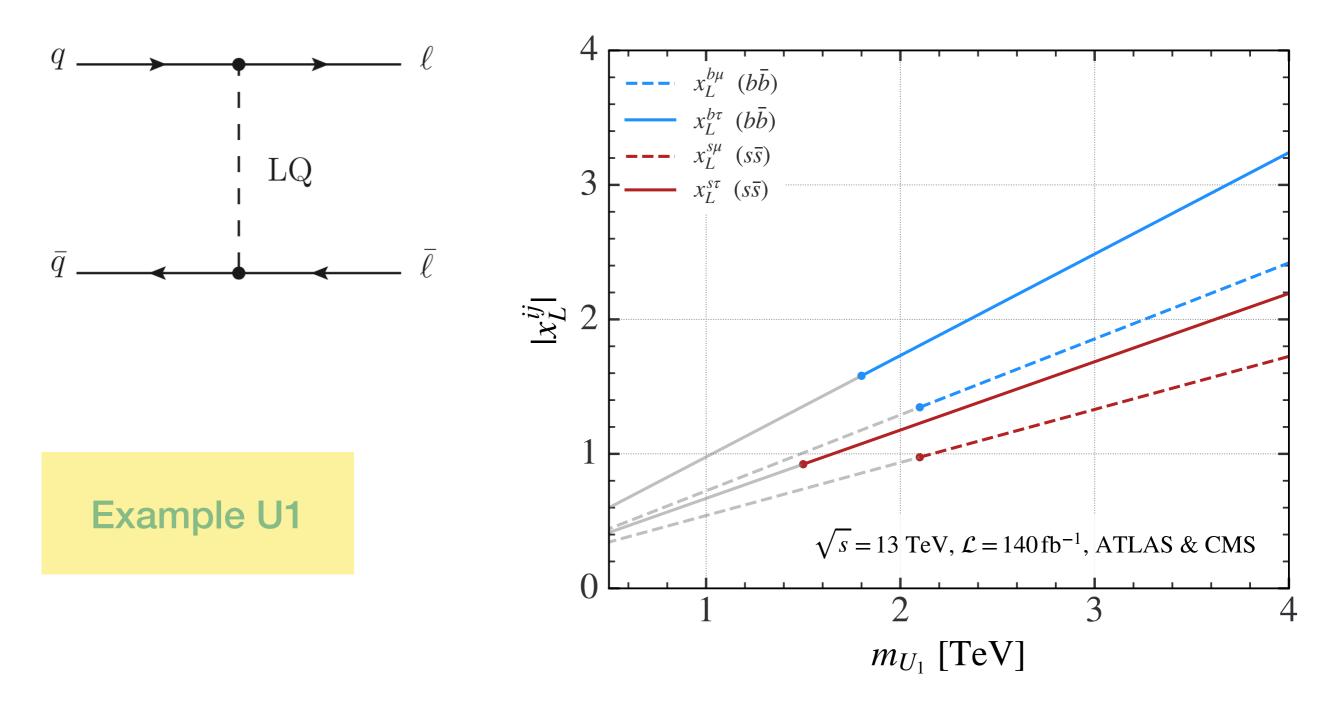
 $\begin{array}{l} \text{Observable} \\ b \rightarrow s \mu \mu \\ b \rightarrow c \tau \nu \\ \mathcal{B}(\tau \rightarrow \mu \phi) \\ \mathcal{B}(B \rightarrow \tau \nu) \\ \mathcal{B}(D_s \rightarrow \tau \nu) \\ \mathcal{B}(D_s \rightarrow \tau \nu) \\ r_K^{e/\mu} \\ r_K^{\tau/\mu} \\ R_D^{\mu/e} \end{array}$

From direct searches Atlas and CMS 2018-2021



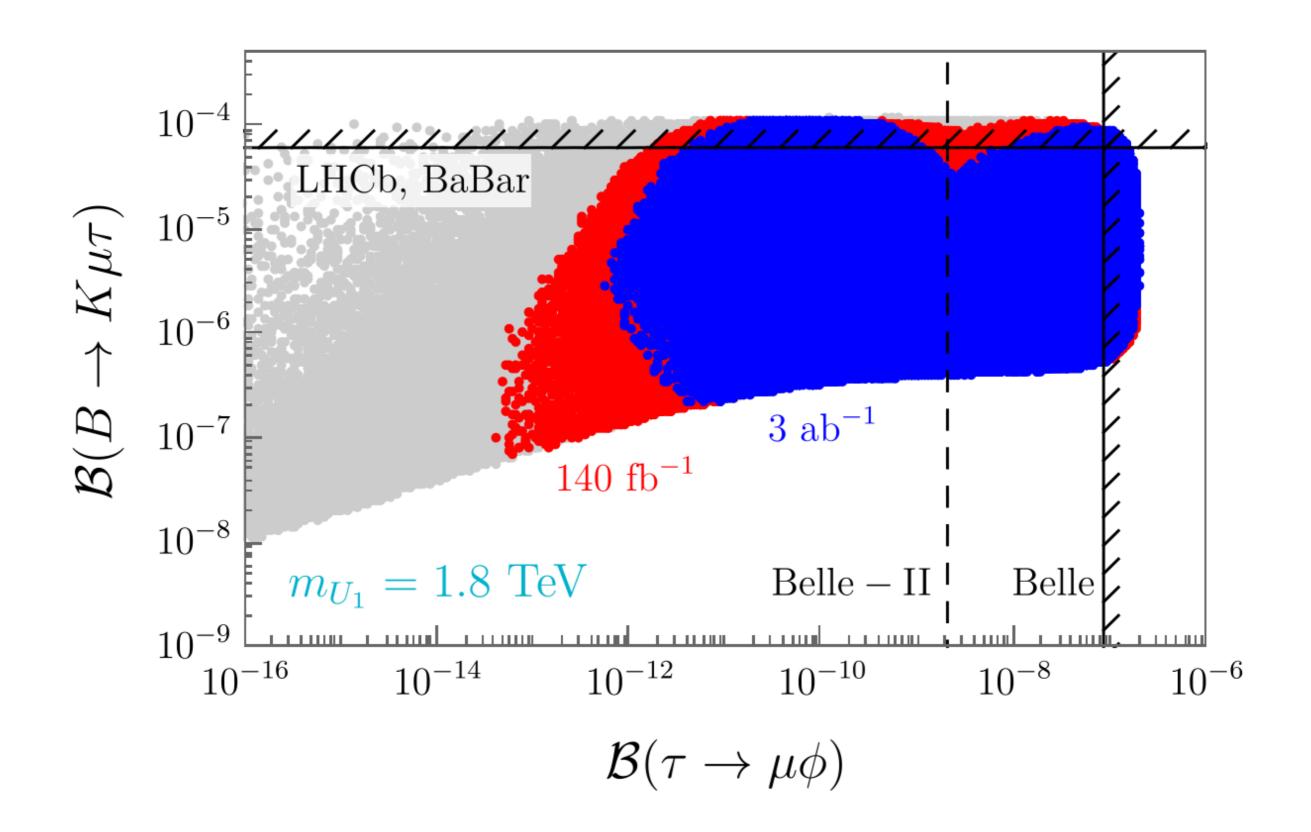
Decays	Scalar LQ limits	Vector LQ limits	$\mathcal{L}_{ ext{int}}$
$jj auar{ au}$	_	_	_
$b\bar{b}\tau\bar{\tau}$	$1.0 \ (0.8) \ {\rm TeV}$	$1.5 (1.3) { m TeV}$	$36 \ {\rm fb}^{-1}$
$t\bar{t}\tau\bar{\tau}$	1.4 (1.2) TeV	2.0 (1.8) TeV	$140 {\rm ~fb}^{-1}$
$jj\muar\mu$	$1.7 (1.4) { m TeV}$	2.3 (2.1) TeV	$140 {\rm ~fb^{-1}}$
$b \overline{b} \mu \overline{\mu}$	$1.7 (1.5) { m TeV}$	2.3 (2.1) TeV	$140 {\rm ~fb^{-1}}$
$t \bar{t} \mu \bar{\mu}$	$1.5 (1.3) { m TeV}$	2.0 (1.8) TeV	$140 {\rm ~fb^{-1}}$
$jj u ar{ u}$	1.0 (0.6) TeV	1.8 (1.5) TeV	36 fb^{-1}
$b\bar{b}\nu\bar{ u}$	$1.1 \ (0.8) \ {\rm TeV}$	$1.8 (1.5) { m TeV}$	36 fb^{-1}
$t\bar{t}\nu\bar{ u}$	$1.2 \ (0.9) \ {\rm TeV}$	$1.8 (1.6) { m TeV}$	$140 {\rm ~fb^{-1}}$

From dilepton spectra at high p_T Atlas and CMS 2018-2021

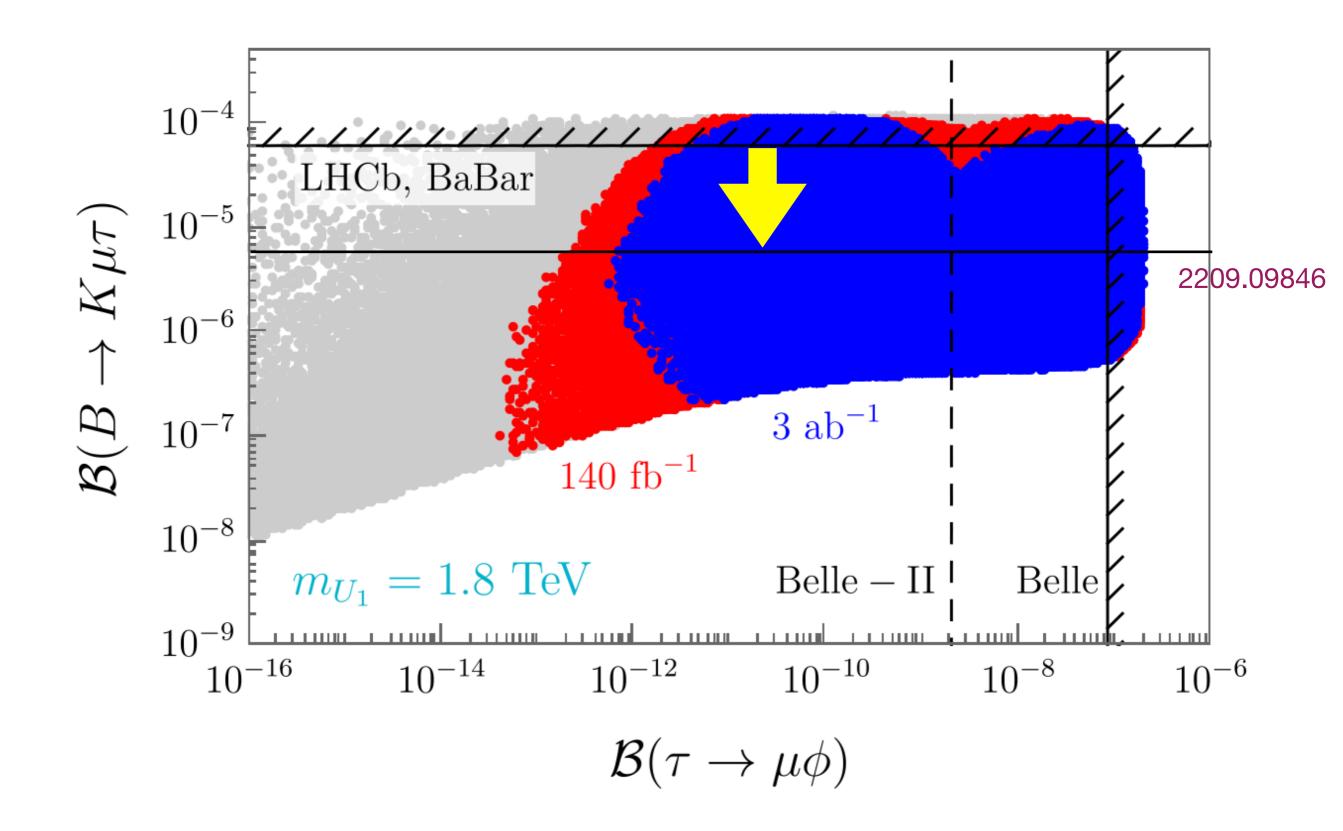


 $\mathcal{L}_{U_1} = x_L^{ij} \,\overline{Q}_i \gamma_\mu L_j \, U_1^\mu + x_R^{ij} \,\overline{d}_{R_i} \gamma_\mu \ell_{Rj} U_1^\mu + \text{h.c.}$

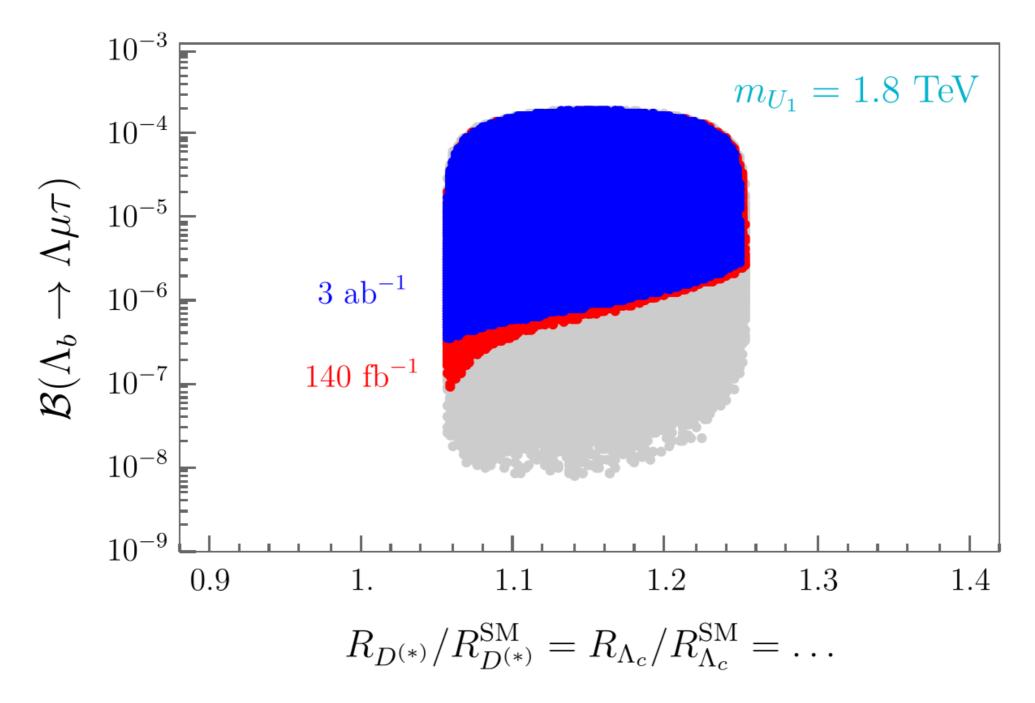
LFV predictions



LFV predictions



LFV predictions

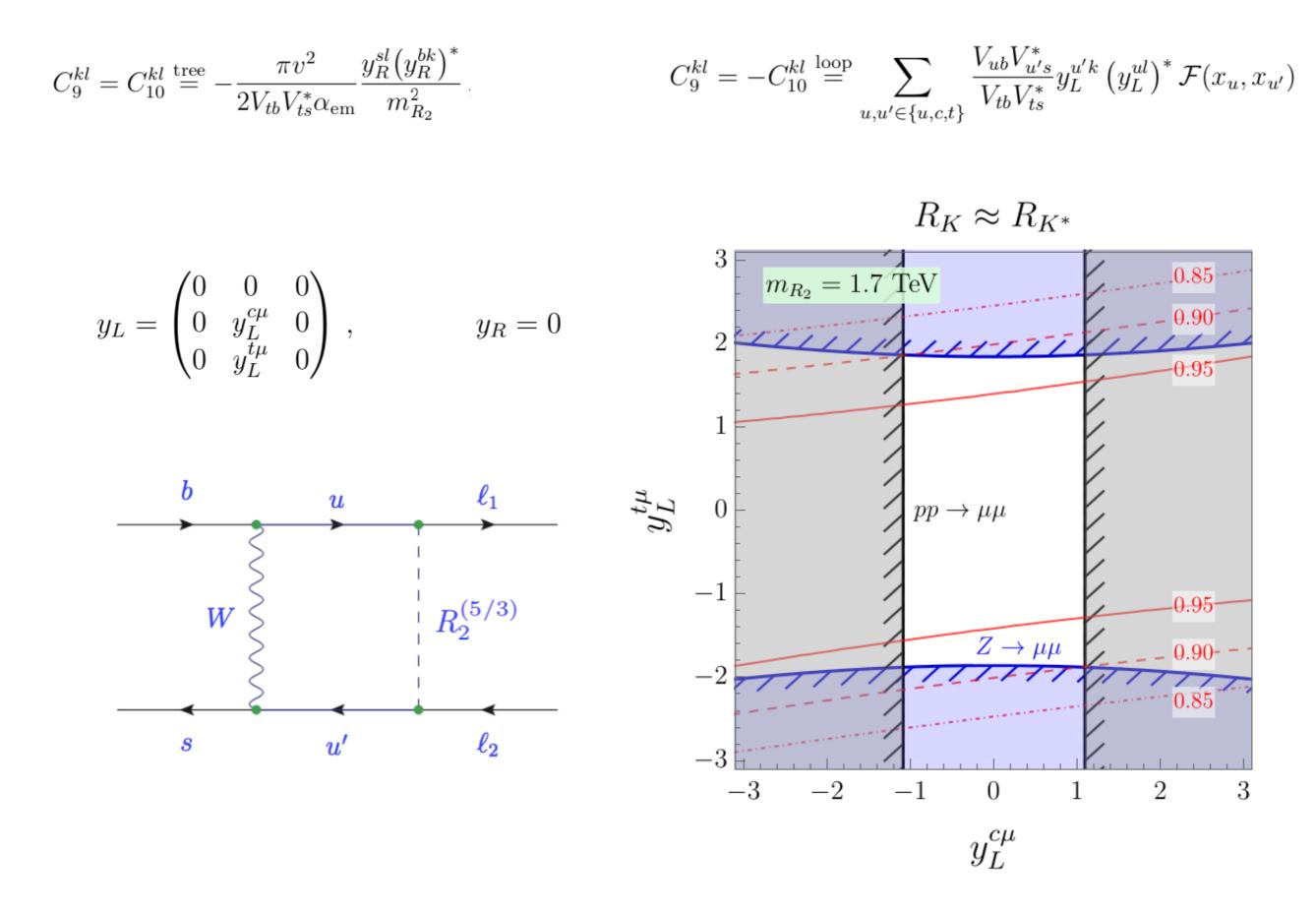


- Way to go 1: Combine two scalar LQs $[S_1 \text{ with } S_3, \text{ or } R_2 \text{ with } S_3]$
- Way to go 2: Vector LQ (U₁) Non-renormalizable and thus requires UV-completion which can be an opportunity to tackle the hierarchy problem!

Concerning R2

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	\checkmark	×	×
$R_2 = (3, 2, 7/6)$	\checkmark	✓*	×
$S_3 = (\bar{3}, 3, 1/3)$	×	\checkmark	×
$U_1 = (3, 1, 2/3)$	\checkmark	✓	\checkmark
$U_3 = (3, 3, 2/3)$	×	✓	×

$$\mathcal{L}_{R_2} = y_R^{ij} \overline{Q}_i \ell_{Rj} R_2 - y_L^{ij} \overline{u}_{Ri} R_2 i \tau_2 L_j + \text{h.c.}$$



S₁ & S₃ Model(s)

• In flavor basis

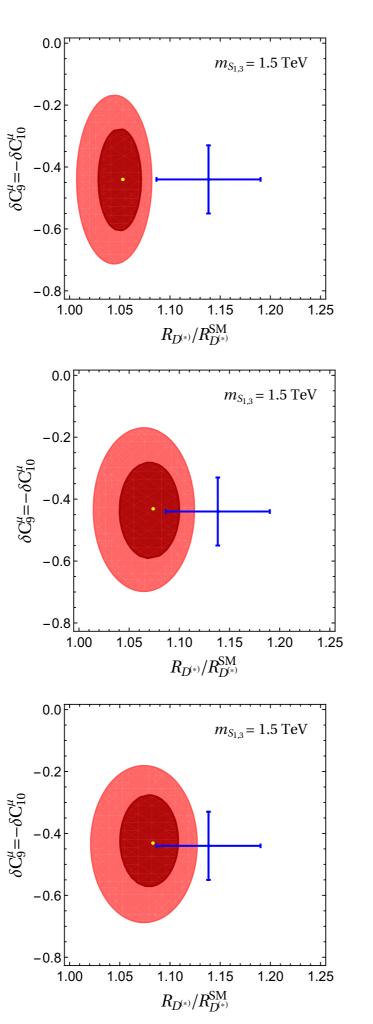
$$\mathcal{L}_{\text{Yuk}} \supset \left(y_{S_1}^L\right)_{ij} \bar{Q}_i^C i\tau_2 L_j S_1 + \left(y_{S_3}^L\right)_{ij} \bar{Q}_i^C i\tau_2 L_j (\vec{\tau} \cdot \vec{S}_3) + \text{h.c.}$$
$$S_1 = (\bar{3}, 1, 1/3), \quad S_3 = (\bar{3}, 3, 1/3)$$

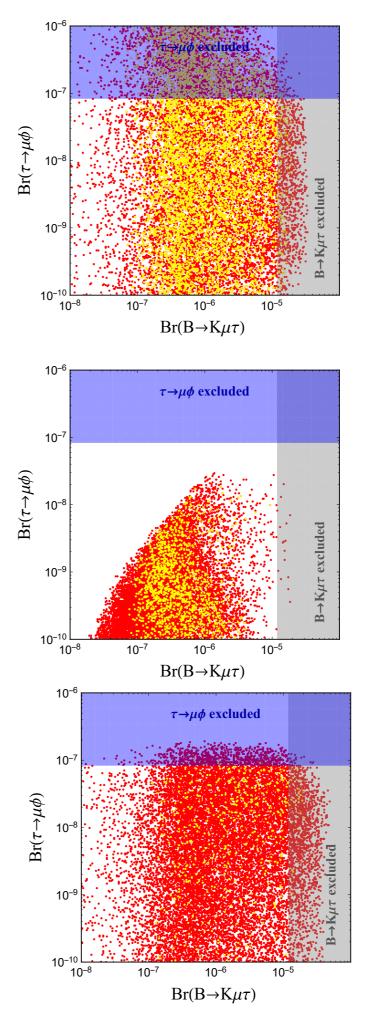
• Specifying models

M1:
$$y_{S_1}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_{s\mu} & \lambda_{s\tau} \\ 0 & \lambda_{b\mu} & \lambda_{b\tau} \end{pmatrix}, \qquad y_{S_3}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_{s\mu} & \lambda_{s\tau} \\ 0 & -\lambda_{b\mu} & -\lambda_{b\tau} \end{pmatrix}$$
1703.09226

M2:
$$y_{S_1}^L = g_{S_1} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_{s\mu} & \beta_{s\tau}^{S_1} \\ 0 & \beta_{b\mu} & 1 \end{pmatrix}, \qquad y_{S_3}^L = g_{S_3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_{s\mu} & \beta_{s\tau}^{S_3} \\ 0 & \beta_{b\mu} & 1 \end{pmatrix}$$
1706.07808

M3:
$$y_{S_1}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_{s\tau}^{S_1} \\ 0 & 0 & y_{b\tau}^{S_1} \end{pmatrix}, \qquad y_{S_3}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s\mu}^{S_3} & y_{s\tau}^{S_3} \\ 0 & y_{b\mu}^{S_3} & y_{b\tau}^{S_3} \end{pmatrix}$$
2008.09548





M1:

M2:

M3:

S₃ & R₂ Model

1806.05689

• In flavor basis

$$\mathcal{L} \supset y_R^{ij} \ ar{Q}_i \ell_{Rj} R_2 + y_L^{ij} \ ar{u}_{Ri} L_j \widetilde{R}_2^{\dagger} + y^{ij} \ ar{Q}_i^C i au_2(au_k S_3^k) L_j + ext{h.c.}$$

 $R_2 = (3, 2, 7/6), \ S_3 = (ar{3}, 3, 1/3)$

• In mass-eigenstates basis

$$\mathcal{L} \supset (V_{\text{CKM}} y_R E_R^{\dagger})^{ij} \bar{u}'_{Li} \ell'_{Rj} R_2^{(5/3)} + (y_R E_R^{\dagger})^{ij} \bar{d}'_{Li} \ell'_{Rj} R_2^{(2/3)} + (U_R y_L U_{\text{PMNS}})^{ij} \bar{u}'_{Ri} \nu'_{Lj} R_2^{(2/3)} - (U_R y_L)^{ij} \bar{u}'_{Ri} \ell'_{Lj} R_2^{(5/3)} - (y U_{\text{PMNS}})^{ij} \bar{d}'_{Li} \nu'_{Lj} S_3^{(1/3)} - \sqrt{2} y^{ij} \bar{d}'_{Li} \ell'_{Lj} S_3^{(4/3)} + \sqrt{2} (V_{\text{CKM}}^* y U_{\text{PMNS}})_{ij} \bar{u}'_{Li} \nu'_{Lj} S_3^{(-2/3)} - (V_{\text{CKM}}^* y)_{ij} \bar{u}'_{Li} \ell'_{Lj} S_3^{(1/3)} + \text{h.c.}$$

and assume

$$y_R = y_R^T \qquad y = -y_L$$

$$y_R E_R^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \ U_R y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}, \ U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

Parameters: m_{R_2} , m_{S_3} , $y_R^{b au}$, $y_L^{c\mu}$, $y_L^{c au}$ and heta

Effective Lagrangian at $\mu \approx m_{LQ}$:

• $b \to c \tau \bar{\nu}$:

NB. $\Lambda_{\rm NP}/g_{\rm NP} \approx 1 \text{ TeV}$

$$\propto \frac{y_L^{c\tau} y_R^{b\tau*}}{m_{R_2}^2} \left[(\bar{c}_R b_L) (\bar{\tau}_R \nu_L) + \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \right] + \dots$$

• $b \rightarrow s \mu \mu$:

NB. $\Lambda_{\rm NP}/g_{\rm NP} \approx 30 \text{ TeV}$

$$\propto \sin 2 heta \, rac{|y_L^{c\mu}|^2}{m_{S_3}^2} \, (ar{s}_L \gamma^\mu b_L) (ar{\mu}_L \gamma_\mu \mu_L)$$

•
$$\Delta m_{B_s}$$
:

$$\propto \sin^2 2\theta \, \frac{\left[\left(y_L^{c\mu} \right)^2 + \left(y_L^{c\tau} \right)^2 \right]^2}{m_{S_3}^2} (\bar{s}_L \gamma^\mu b_L)^2$$

 \Rightarrow Suppression mechanism of $b \rightarrow s\mu\mu$ wrt $b \rightarrow c\tau\bar{\nu}$ for small $\sin 2\theta$.

 \Rightarrow Phenomenology suggests $heta pprox \pi/2$ and $y_R^{b au}$ complex

Effective Lagrangian at $\mu \approx m_{LQ}$:

• $b \to c \tau \bar{\nu}$:

NB. $\Lambda_{\rm NP}/g_{\rm NP} \approx 1 \text{ TeV}$

$$\propto \frac{y_L^{c\tau} y_R^{b\tau *}}{m_{R_2}^2} \left[(\bar{c}_R b_L) (\bar{\tau}_R \nu_L) + \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \right] + \dots$$

• $b \rightarrow s \mu \mu$:

NB. $\Lambda_{\rm NP}/g_{\rm NP} \approx 30 \text{ TeV}$

$$\propto \sin 2 heta \, rac{|y_L^{c\mu}|^2}{m_{S_3}^2} \, (ar{s}_L \gamma^\mu b_L) (ar{\mu}_L \gamma_\mu \mu_L)$$

•
$$\Delta m_{B_s}$$
:

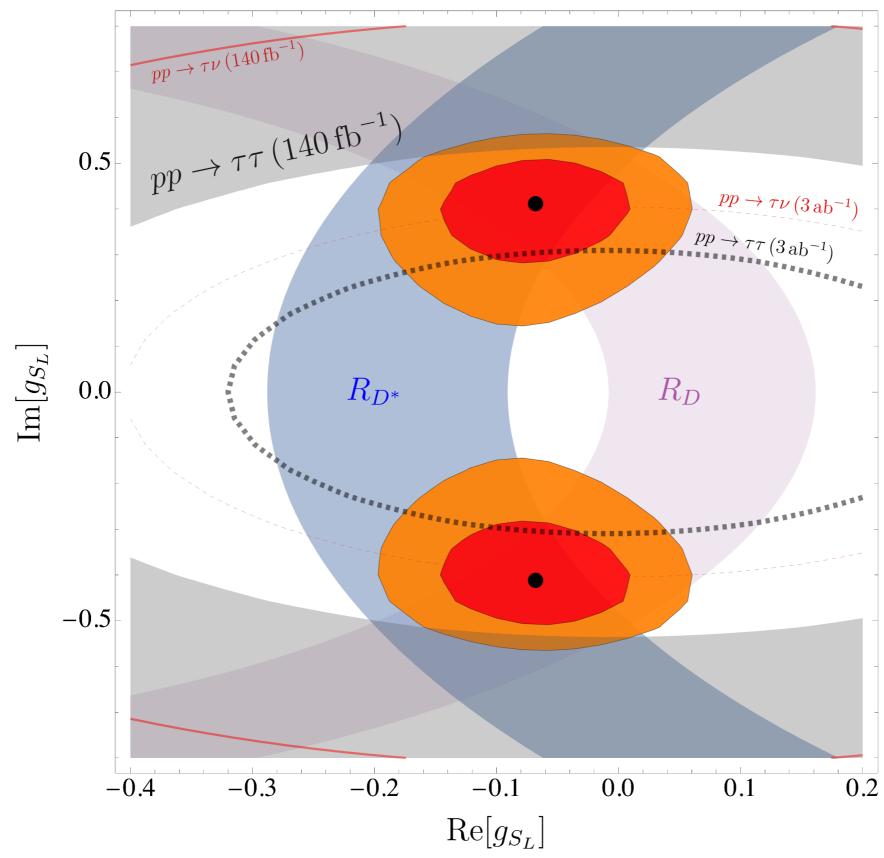
$$\propto \sin^2 2\theta \, \frac{\left[\left(y_L^{c\mu} \right)^2 + \left(y_L^{c\tau} \right)^2 \right]^2}{m_{S_3}^2} (\bar{s}_L \gamma^\mu b_L)^2$$

 \Rightarrow Suppression mechanism of $b \rightarrow s\mu\mu$ wrt $b \rightarrow c\tau\bar{\nu}$ for small $\sin 2\theta$.

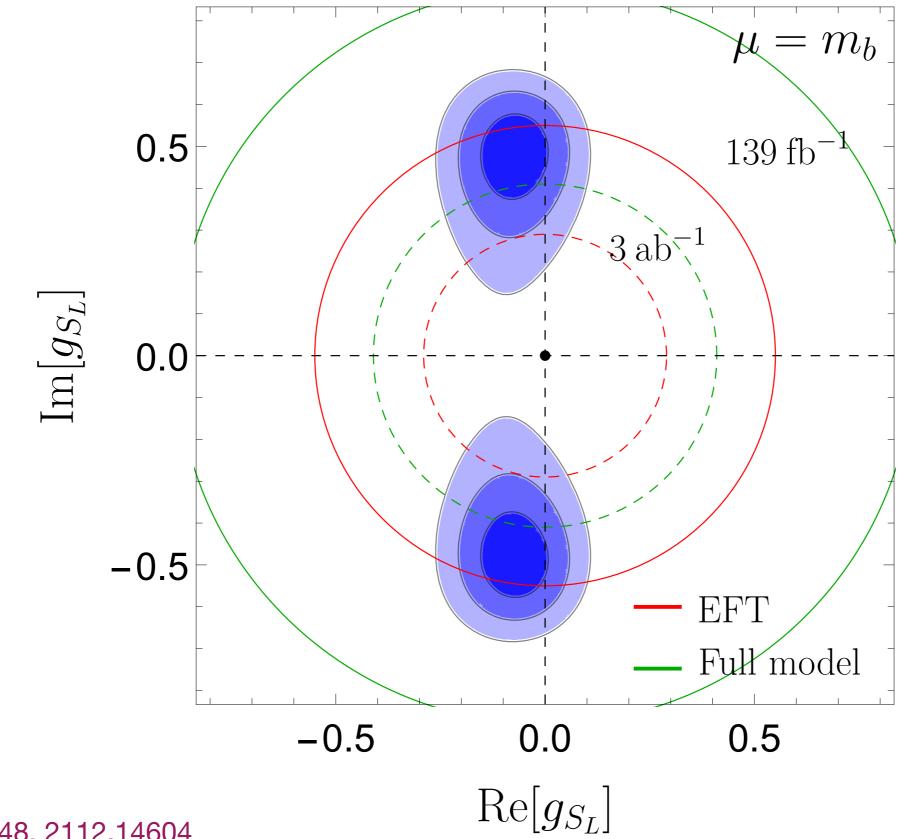
 \Rightarrow Phenomenology suggests $heta pprox \pi/2$ and $y_R^{b au}$ complex

2206.09717

$m_{R_2} = 1.3 \text{ TeV}, \ m_{S_3} = 2.0 \text{ TeV}$

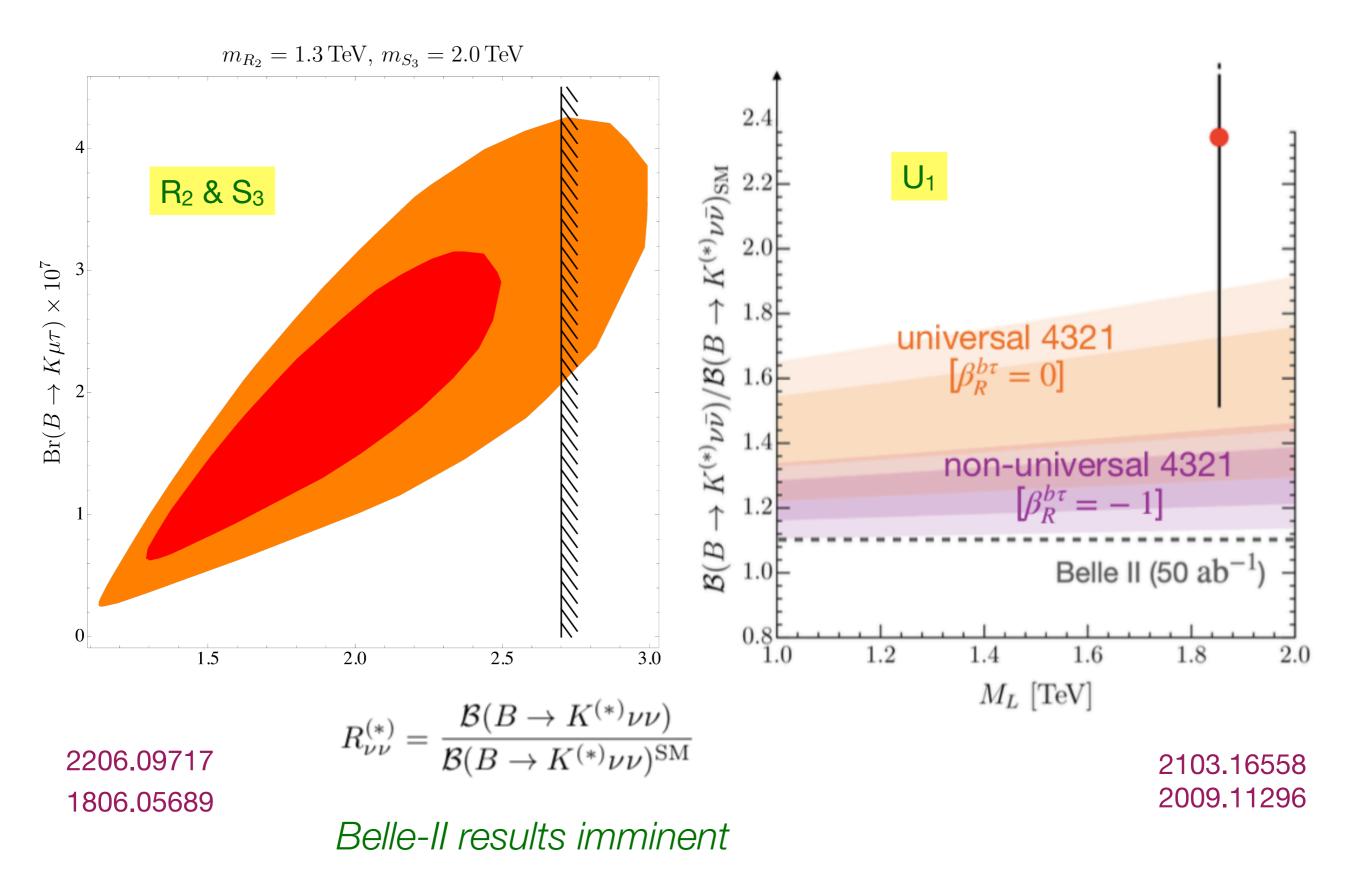


Bounds derived from $pp \to \tau \nu$ at high p_T not useful



2111.04748, 2112.14604

Interesting pheno, ex.



Angular observables can help disentangling among various NP scenarios

Many works with mesons: $\mathbf{B} o \mathbf{D} \ell \bar{
u}$ $\mathbf{B} o \mathbf{D}^* \ell \bar{
u}$

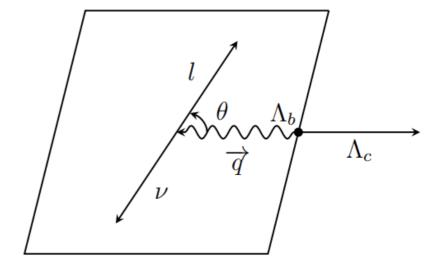
Let us now play with baryons:

$$\frac{d^2\Gamma}{dq^2d\cos\theta} = \frac{\sqrt{\lambda_{\Lambda_b\Lambda_c}\left(q^2\right)}}{1024\pi^3 M_{\Lambda_b}^3} \left(1 - \frac{m_l^2}{q^2}\right) \sum_{\lambda_l\lambda_b\lambda_c} \left|\mathcal{M}_{\lambda_c}^{(3)\lambda_b\lambda_l}\right|^2$$

$$\frac{\mathrm{d}^2\Gamma(\Lambda_b \to \Lambda_c^{\lambda_c} \ell^{\lambda_l} \nu)}{\mathrm{d}q^2 \mathrm{d}\cos\theta} = \frac{a_{\lambda_c}^{\lambda_l}(q^2) + b_{\lambda_c}^{\lambda_l}(q^2) \cos\theta + c_{\lambda_c}^{\lambda_l}(q^2) \cos^2\theta}{\mathrm{d}q^2 \mathrm{d}\cos\theta}$$

Each $a_{\lambda_c}^{\lambda_l}(q^2)$, $b_{\lambda_c}^{\lambda_l}(q^2)$, $c_{\lambda_c}^{\lambda_l}(q^2)$ is a function of kinematics, form factors and the NP couplings g_{V_L} , g_{S_L} , g_{S_R} , g_T .

12-2=10 observables



Angular observables $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

1907.12554 1908.02328 1909.10769 1702.02243 1502.04864

2209.13409

Three powerful observables:

$$\circ \quad \mathcal{A}_{\rm fb}(q^2) = \frac{1}{\Gamma} \left[\int_0^1 - \int_{-1}^0 \right] \frac{d\Gamma}{d\cos\theta} d\cos\theta$$

$$\circ \quad \mathcal{A}_{\pi/3}(q^2) = \frac{1}{\Gamma} \left[\int_0^{\pi/3} + \int_{2\pi/3}^{\pi} - \int_{\pi/3}^{2\pi/3} \right] \frac{d\Gamma}{d\cos\theta} \sin\theta \, d\theta$$

$$\circ \quad \mathcal{A}_{\lambda}(q^{2}) = \frac{1}{\Gamma} \left[\frac{d\Gamma^{+}}{dq^{2}} - \frac{d\Gamma^{-}}{dq^{2}} \right]$$

Examples:

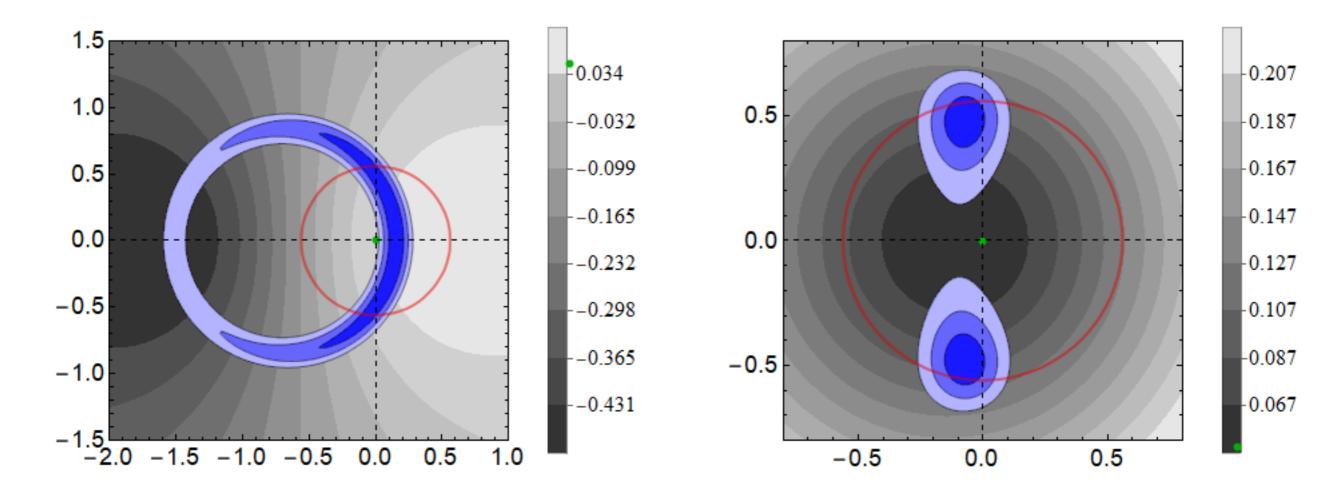
 $U_1: g_{V_L}$ $R_2: g_{S_L} = 4 g_T$ $S_1: g_{S_L} = -4 g_T$

Angular observables $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

2209.13409

Three powerful observables:

 $\langle \mathcal{A}_{\mathrm{fb}}^{ au}
angle$



 S_1

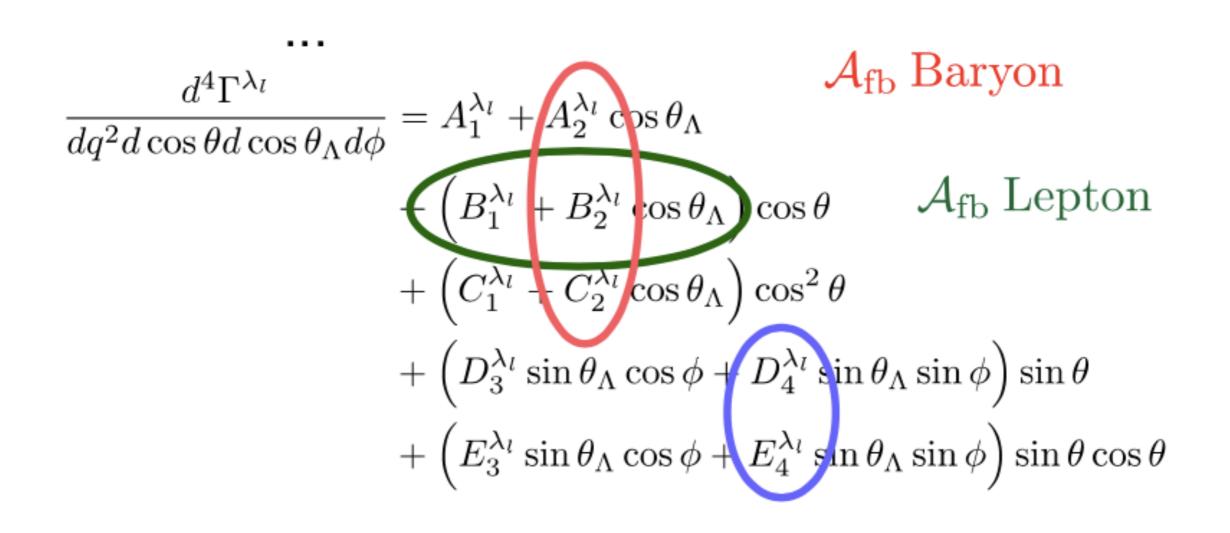
 R_2

 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

2209.13409

NB: $\mathcal{B}(\Lambda_c \to \Lambda \pi) = 1.30(7)\%$ or $\mathcal{B}(\Lambda_c \to pK_S) = 1.59(8)\%$

Many more angular observables and checking on $Im[g_x] \neq 0$



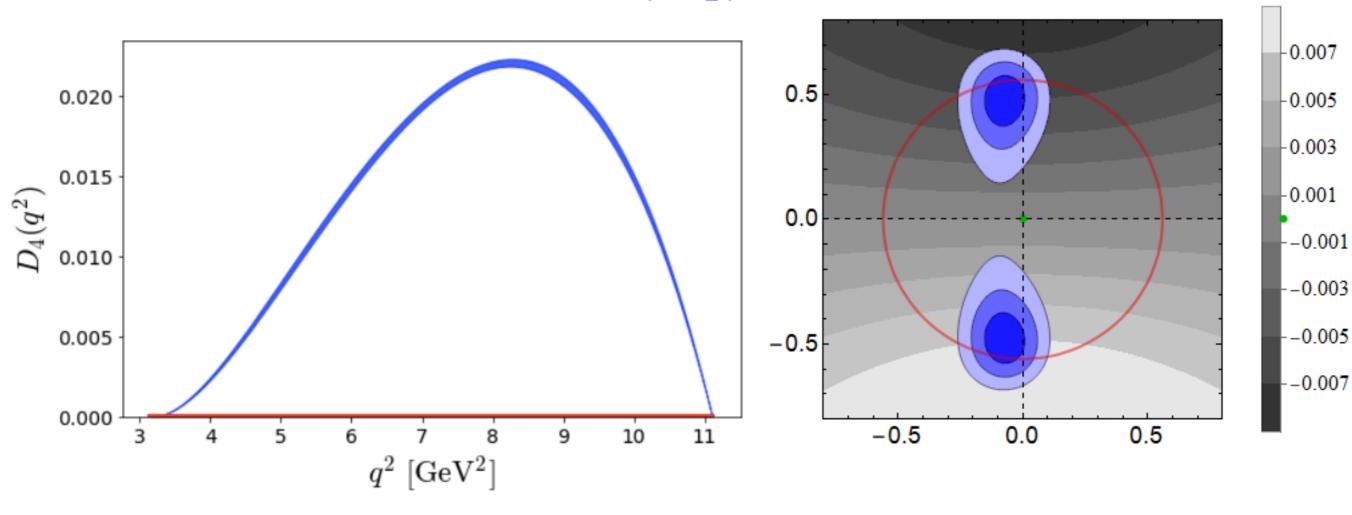
2209.13409

 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

NB: $\mathcal{B}(\Lambda_c \to \Lambda \pi) = 1.30(7)\%$ or $\mathcal{B}(\Lambda_c \to pK_S) = 1.59(8)\%$

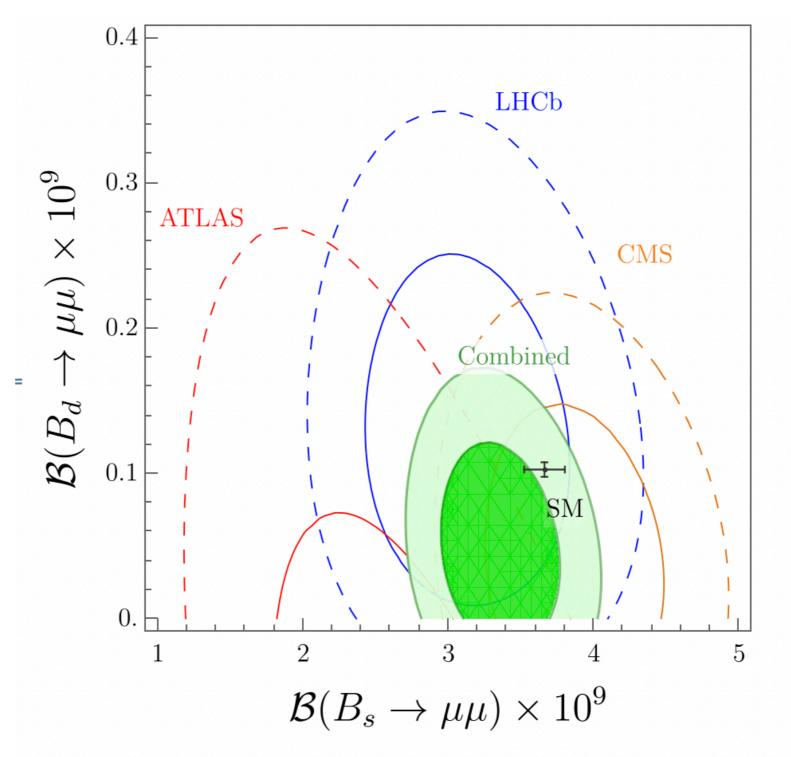
Many more angular observables and checking on $Im[g_x] \neq 0$

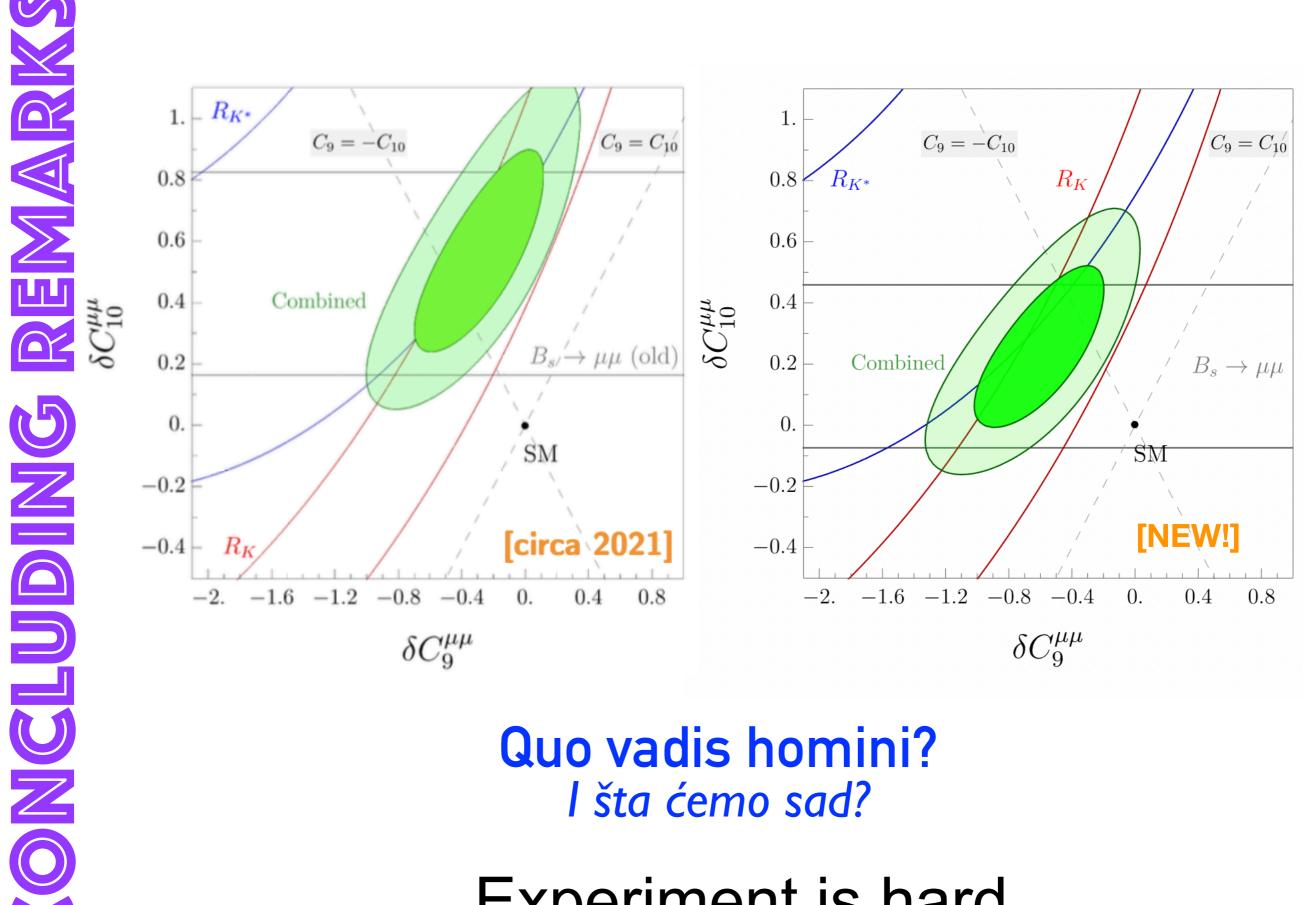
 $\langle D_4^{\tau} \rangle$



- To tackle the flavor issues need more and better data: NP effects through high p_T tails of pp scattering are to be combined with constraints obtained from low energy observables.
- EFT treatment is a modern tool to describe deviations wrt SM.
- Current data, and LFUV in particular, favor leptoquark scenarios: U₁, S₁ & S₃, R₂ & S₃.
- R_D and R_{D^*} are too few observables to understand the source of LFUV. Too many NP solutions exist and could be filtered through angular $B \rightarrow D^{(*)} \tau v$ and $\Lambda_b \rightarrow \Lambda_c \tau v$ observables.
- Even if R_D and R_{D*} were SM-like, angular observables can help unveiling a presence of BSM physics.
- What about R_K and R_{K*} ? [From rumors to actual results. Please help!]
- $B(B_s \rightarrow \mu \mu)$ this summer...

- New LHCb determination of fs/fd shifted their $B(B_s \rightarrow \mu \mu)$ upwards
- New CMS washed out the deficit of $B(B_s \rightarrow \mu \mu)$ wrt SM CMS-PAS-BPH-21-006





Quo vadis homini? I šta ćemo sad?

Experiment is hard...