

b and c spectroscopy at LHCb

Mengzhen Wang (INFN di Milano) 2022/10/06

On behalf of the LHCb collaboration

LHC Days in Split

3-8 Oct 2022, Split, Croatia

2

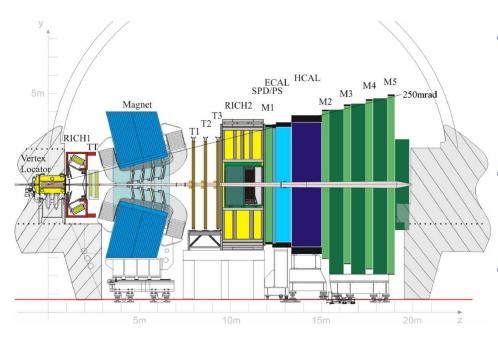
1000

τ decay (N³LO) ⊢ low Q² cont. (N³LO) ⊢⊶ DIS jets (NLO)

pp/pp (jets NLO)

pp (top, NNLO)

100

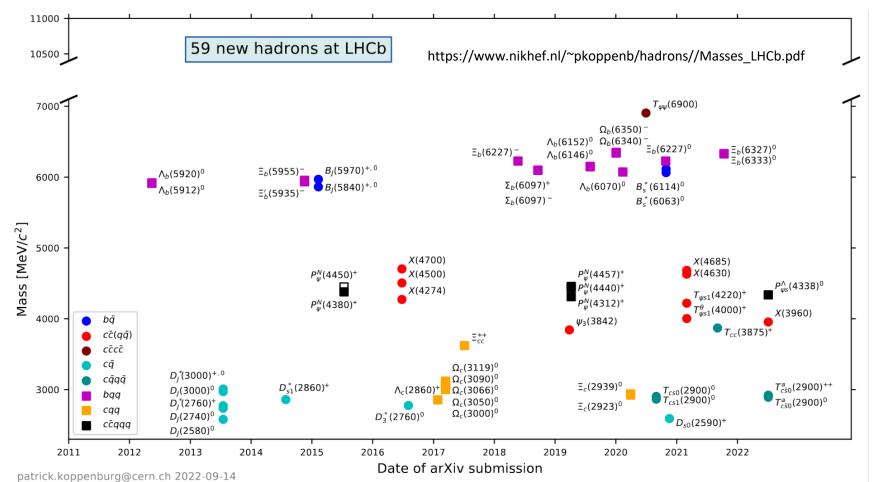

Confinement - Asymptotic free

Introduction 0.35 0.3 Two regimes of QCD Heavy Quarkonia (NLO) e⁺e⁻ jets/shapes (NNLO+res) 0.25 EW precision fit (N³LO) → Asymptotic free $\alpha_s(Q^2)$ 0.2 Confinement 0.15 Experimental probes @ LHCb 0.1 Hard scatterings $\equiv \alpha_{\rm s}({\rm M_7}^2) = 0.1179 \pm 0.0010$ Hadron spectroscopy 0.05 10 Q [GeV]

- Spectroscopy
 - Test QCD-motivated effective theories / lattice QCD results at low energies (QCD non-perturbative)
 - Conventional hadrons:
 - Conventional mesons $q\overline{q}$, baryons qqq
 - Exotic hadrons:
 - Tetraquarks $q\bar{q}q\bar{q}$, pentaquarks $qqqq\bar{q}$

The LHCb detector

- Optimized for heavy-flavor studies @ LHC
 - Single-arm and forward spectrometer, $\eta \in (2, 5)$

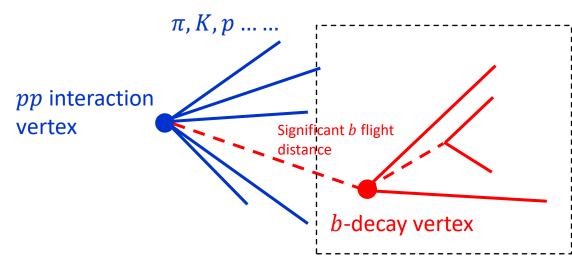

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

Powerful particle identification

 $\begin{array}{l} \epsilon(K \rightarrow K) \sim 95\% \quad \mbox{mis-ID} \ \epsilon(\pi \rightarrow K) \sim 5\% \\ \epsilon(\mu \rightarrow \mu) \sim 97\% \quad \mbox{mis-ID} \ \epsilon(\pi \rightarrow \mu) \sim 1-3\% \end{array}$

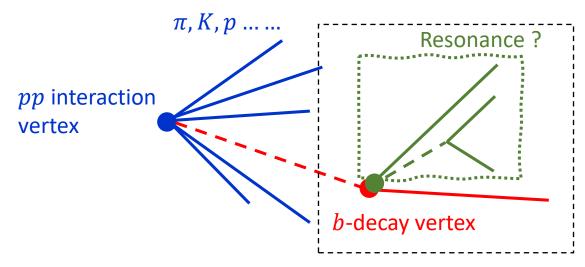
- Good momentum resolution
 - $\frac{\delta p}{p} \sim (0.5 1.2)\%$
- Precise vertex resolution
 - $\sigma_{\mathrm{IP}_x} < 100 \mu m$
 - *σ*_τ~50fs

Hadrons observed at LHCb


Following "Exotic hadron naming convention" proposed by LHCb recently arXiv: 2206.15233

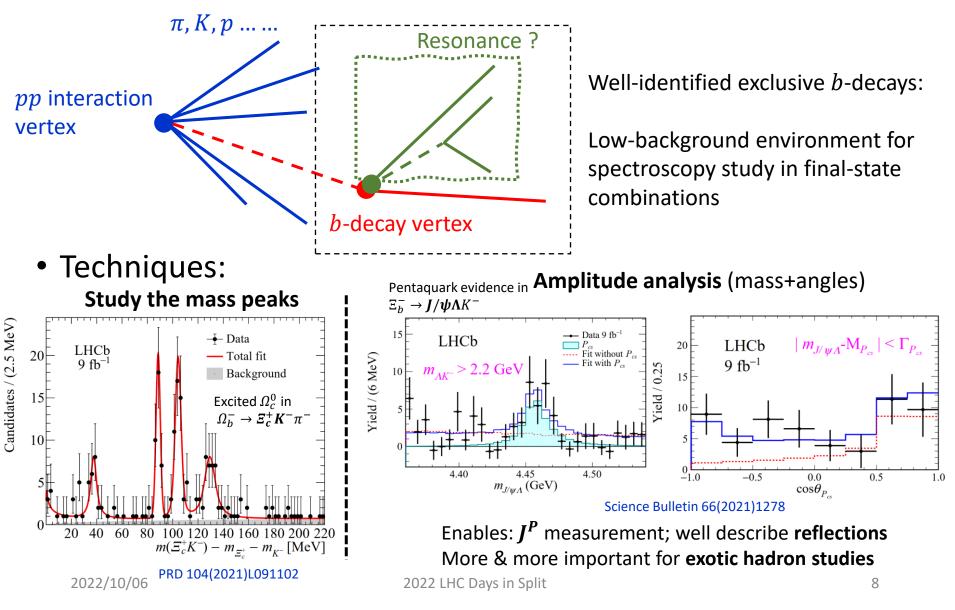
2022/10/06

Selected results from LHCb


- Study of intermediate states in *b* decays
 - Excited Ξ_c^0 in $B^- \to \overline{\Lambda}_c^- \Lambda_c^+ K^-$ LHCb-PAPER-2022-028, in preparation
 - Tetraquark candidates in $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \rightarrow D^- D_s^+ \pi^+$ decays LHCb-PAPER-2022-026, LHCb-PAPER-2022-027, in preparation
 - Pentaquark candidates in $B^- \to J/\psi \Lambda p$ LHCb-PAPER-2022-031, in preparation
- Study the amplitude of three-body *c* decays:
 - $D^+ \to \pi^- \pi^+ \pi^+$ arXiv:2208.03300
 - $D_{s}^{+} \rightarrow \pi^{-}\pi^{+}\pi^{+}$ arXiv:2209.09840
 - $\Lambda_c^+ \rightarrow p K^- \pi^+$ arXiv:2208.03262

Spectroscopy study in *b* decays

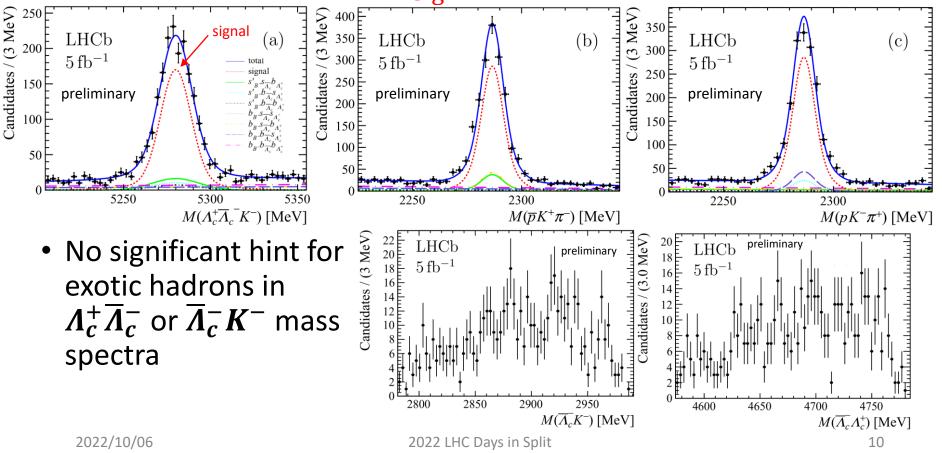
Well-identified exclusive *b*-decays


Spectroscopy study in *b* decays

Well-identified exclusive *b*-decays:

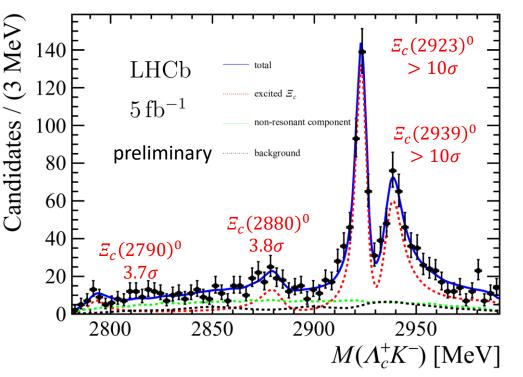
Low-background environment for spectroscopy study in final-state combinations

Spectroscopy study in *b* decays



LHCb-PAPER-2022-028, in preparation

Study of $B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-$


The $B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-$ decay

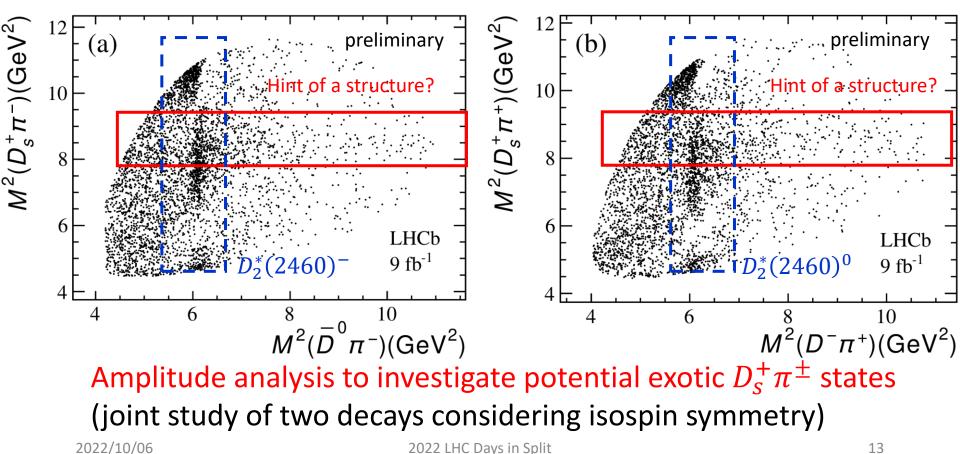
- Interesting for conventional & exotic studies
 - $\mathcal{Z}_c^{0^{**}} \to \Lambda_c^+ K^-$; exotic hadrons in $\Lambda_c^+ \overline{\Lambda}_c^-$ and $\overline{\Lambda}_c^- K^-$?
- High-purity sample, with $N_{sig} = 1365 \pm 42$

$\Lambda_c^+ K^-$ mass spectrum study

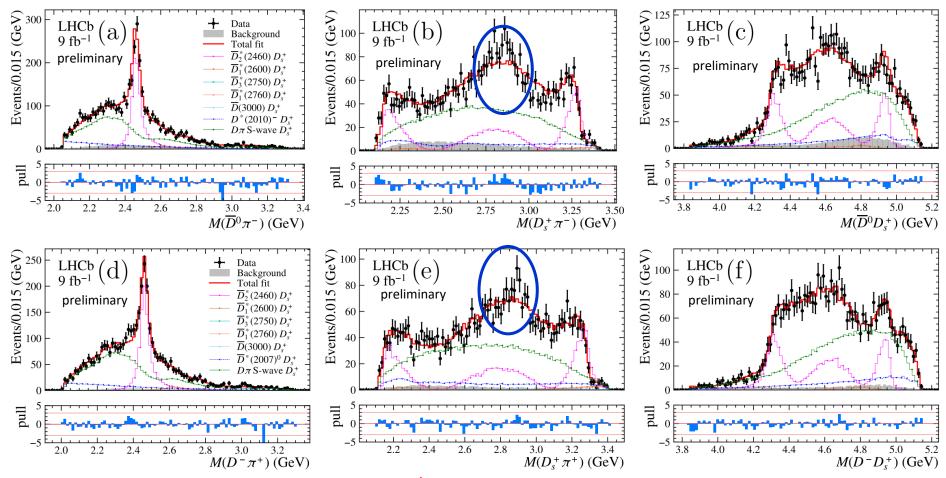
- Fit $m(\Lambda_c^+K^-)$ spectrum
 - 4 excited \mathcal{Z}_c^0 states
 - Relativistic Breit-Wigner amplitude; interference considered

PRL 124(2020)222001 $\Xi_c(2923)^0 \& \Xi_c(2939)^0$ were observed in prompt production, **confirm existence** in different production mechanism

Evidence of **new decay mode** for $\Xi_c(2790)^0$ Evidence of **new state** $\Xi_c(2880)^0$


State	Mass (MeV)	Width (MeV)
$\Xi_c(2880)^0$	$2881.8 \pm 3.1 \pm 8.5$	$12.4 \pm 5.2 \pm 5.8$
$\Xi_c(2923)^0$	$2924.5 \pm 0.4 \pm .1.1$	$4.8\pm0.9\pm1.5$
$\Xi_c(2939)^0$	$2938.5 \pm 0.9 \pm 2.3$	$11.0\pm1.9\pm7.5$

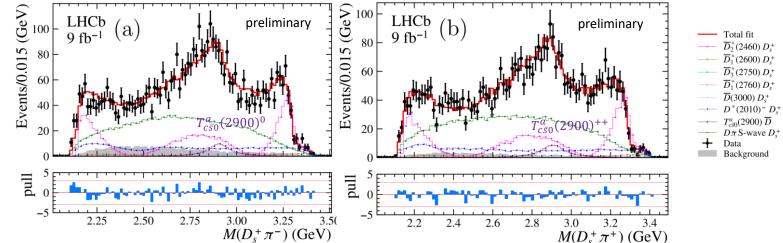
LHCb-PAPER-2022-026, LHCb-PAPER-2022-027, in preparation


Amplitude analysis of $B^0 \to \overline{D}{}^0 D_s^+ \pi^$ and $B^+ \to D^- D_s^+ \pi^+$ decays

Study of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

- Full Run1+2 LHCb data, $\mathcal{L} = 9 \text{ fb}^{-1}$
 - $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$: **4420** candidates, with purity of **90**. **7**%
 - $B^+ \rightarrow D^- D_s^+ \pi^+$: **3940** candidates, with purity of **95**. **2**%

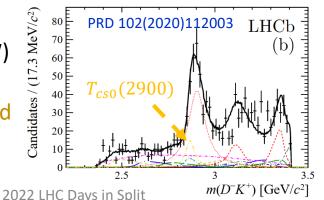
-only fit

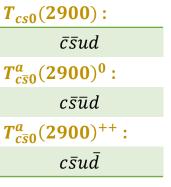


Cannot well describe $M(D_s^+\pi^{\pm})$ spectrum at 2.85GeV when only considering conventional $D^-\pi^+$ and $\overline{D}{}^0\pi^-$ structures

LHCb-PAPER-2022-026, LHCb-PAPER-2022-027, in preparation

Observation of $T^a_{c\bar{s}0}(2900)^{0/++}$

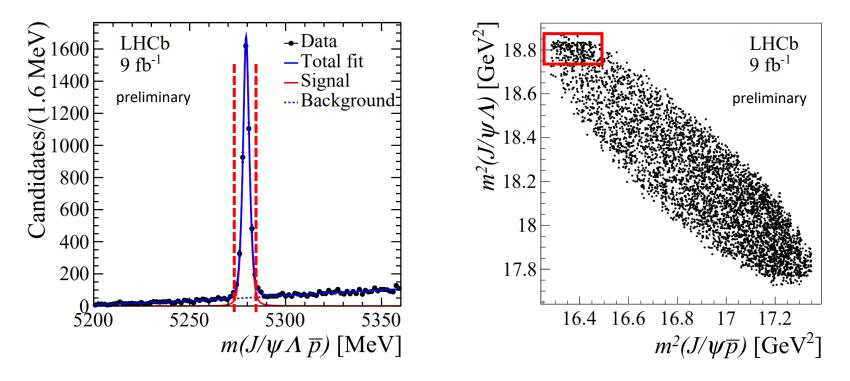

• Fit with two $D_s^+\pi$ states sharing resonance parameters



- $T^{a}_{c\bar{s}0}(2900)^{0} \rightarrow D^{+}_{s}\pi^{-} \& T^{a}_{c\bar{s}0}(2900)^{++} \rightarrow D^{+}_{s}\pi^{+}$ significance > 9σ
- $J^P = 0^+$ is preferred: 7. 5 σ over other hypotheses

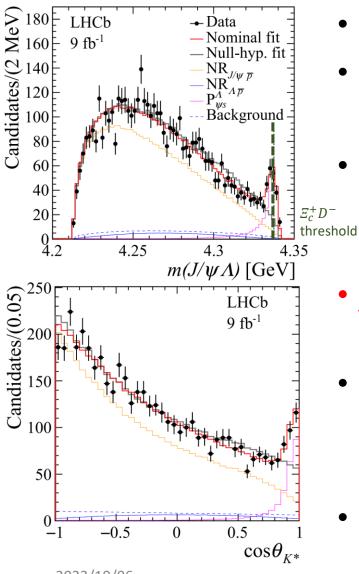
 $M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$ (RBW) $\Gamma = 0.136 \pm 0.023 \pm 0.011 \,\text{GeV}$

Flavor partner of $T_{cs0}(2900)$ observed in $B^+ \rightarrow D^+ D^- K^+$?



LHCb-PAPER-2022-031, in preparation

Amplitude analysis of $B^- \rightarrow J/\psi \Lambda \bar{p}$ decays


Study of $B^- \to J/\psi \Lambda \bar{p}$

- Search for pentaquark in $J/\psi p \& J/\psi \Lambda$
- Run1+Run2 LHCb data, $\mathcal{L} = 9 \text{ fb}^{-1}$

Horizontal band at $m^2(J/\psi\Lambda) \sim 18.8 \text{GeV}^2$ Further confirmed by amplitude analysis

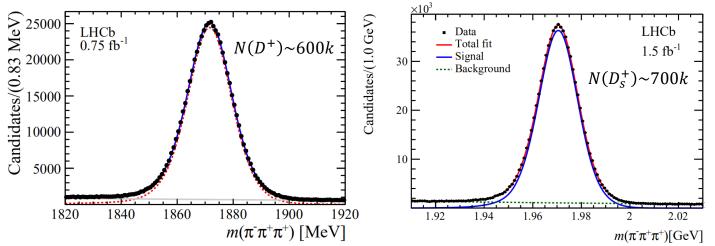
$\rightarrow J/\psi \Lambda \bar{p}$ amplitude analysis

- Helicity-based decay amplitude
- Components in nominal model:
 - Non-resonant $J/\psi p$, $p\Lambda + P_{\psi s}^{\Lambda}$ in $J/\psi \Lambda$
- $P_{\eta bs}^{\Lambda}$ significance > 10σ
 - 1st observation of pentaguark candidate with strangeness, *ccuds*
- $J^P = \frac{1}{2}^-$ preferred, $J^P = \frac{1}{2}^+$ rejected under 90% CL_s
- Mass, width (RBW) measured :

 $M(P_{\psi s}^{\Lambda}) = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$ $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$

• Near $\mathcal{Z}_c^+ D^-$ threshold (4.337 GeV), in Swave 2022 LHC Days in Split 18

Amplitude analysis of three-body *c* decays


LHC: good charm factory LHCb: good at reconstruction of charm decays Investigate charm-decay amplitudes with competitive precisions

$D^+(D^+_s) \to \pi^-\pi^+\pi^+$

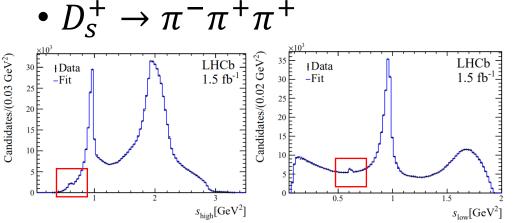
arXiv:2208.03300, arXiv:2209.09840

Amplitude analysis of $D^+(D_s^+) \rightarrow \pi^- \pi^+ \pi^+$

• 2012 data, $\mathcal{L} = 1.5 \text{ fb}^{-1}$. Promptly produced D mesons

- Large statistic & High purity
- Amplitude analysis to enlighten knowledge of their dynamics
- Similar methodology for amplitude construction
 - S-wave: Quasi-Model Independent approach (QMIPWA)
 - Generic complex function determined by fit to data
 - Isobar model for spin-1, spin-2 components

arXiv:2208.03300, arXiv:2209.09840


Amplitude analysis of $D^+(D_s^+) \rightarrow \pi^- \pi^+ \pi^+$

• $D^+ \rightarrow \pi^- \pi^+ \pi^+$

Candidates/(0.012 GeV²)

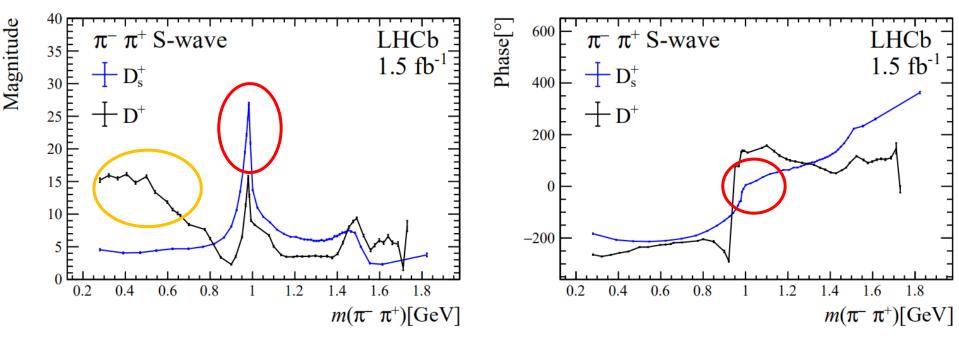
		Component	Magnitude	Phase [°]	Fit fraction [%]
	-	$\rho(770)^0\pi^+$	1 [fixed]	0 [fixed]	$26.0 \pm 0.3 \pm 1.6 \pm 0.3$
LHCb	-	$\omega(782)\pi^+$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	$0.103 \pm 0.008 \pm 0.014 \pm 0.002$
0.75 fb^{-1}	_	$ ho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	$5.4 \pm 0.4 \pm 1.3 \pm 0.8$
0.70 10	-	$ ho(1700)^0\pi^+$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	$5.7 \pm 0.5 \pm 1.0 \pm 1.0$
	-	$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	$13.8 \pm 0.2 \pm 0.4 \pm 0.2$
	-	S-wave			$61.8 \pm 0.5 \pm 0.6 \pm 0.5$
	-	$\sum_{i} FF_{i}$			112.8
	-	$\overline{\chi^2}$ /ndof (range)	[1.47 - 1.78]		$-2\log \mathcal{L} = 805622$
~	-				

Dominated by S-wave, followed by $\rho(770)^0\pi^+$ and $f_2(1270)^0\pi^+$ Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

 $s_{\pi^-\pi^+}$ [GeV²]

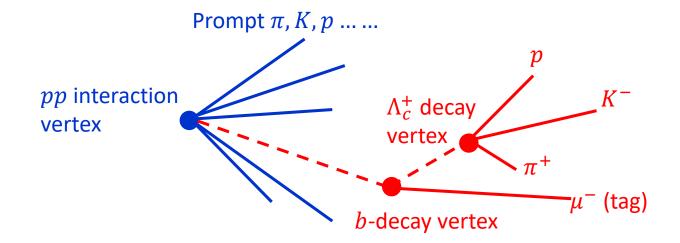
2

Resonance	Magnitude	Phase $[^{\circ}]$	Fit fraction (FF) $[\%]$
S-wave			84.97 ± 0.14
$ ho(770)^{0}$	0.1201 ± 0.0030	79.4 ± 1.8	1.038 ± 0.054
$\omega(782)$	0.04001 ± 0.00090	-109.9 ± 1.7	0.360 ± 0.016
$ ho(1450)^{0}$	1.277 ± 0.026	-115.2 ± 2.6	3.86 ± 0.15
$ ho(1700)^{0}$	0.873 ± 0.061	-60.9 ± 6.1	0.365 ± 0.050
combined	-	-	6.14 ± 0.27
$f_2(1270)$	1 (fixed)	0 (fixed)	13.69 ± 0.14
$f_2'(1525)$	0.1098 ± 0.0069	178.1 ± 4.2	0.0455 ± 0.0070
sum of fit fractions			104.3
$\chi^2/ndof (range)$	[1.45 - 1.57]		


Dominated by S-wave, followed by spin-2 resonances

Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

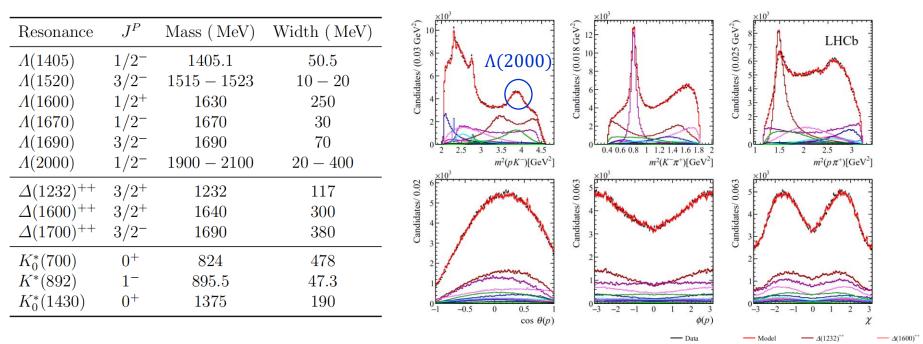
2022/10/06


2022 LHC Days in Split

Comparison of S-wave amplitudes

- $f_0(980)$ is most prominent contribution in D_s^+ , while $f_0(500)$ in D^+
 - $D_s^+ @ 1 \text{GeV}$: peak in magnitude; sharp variation in phase
 - D⁺ near threshold enhancement
- Indicate different $\pi^+\pi^-$ production process
 - Example: unitary chiral model, different intermediate rescattering channels Int. J. Mod. Phys. **25**(2016)1630001

 $\Lambda_b^0 \to (\Lambda_c^+ \to p K^- \pi^+) \mu^- \bar{\nu}_{\nu} X$


arXiv:2208.03262

 $\Delta(1700)^{+}$

4(1405)

$\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis

• 2016 data, $\mathcal{L} = 1.7 \text{ fb}^{-1}$; ~400k signals;

- All parameters of amplitude model reported
- Mass and width of $\Lambda(2000)$ determined

 $m = 1988 \pm 2 \pm 21 \,\text{MeV}$ $\Gamma = 179 \pm 4 \pm 16 \,\text{MeV}$

 $K_{0}^{*}(1430)$

A(1600)

- Background

 $-K_{0}^{*}(700)$

- A(1670)

K (892

A(1520

A(2000

Summary

- LHCb keeps making important contributions to spectroscopy study
- Achievement about physics:
 - Excited \mathcal{Z}_c^0 states in $B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-$
 - New exotic states: $T^a_{c\overline{s}0}(2900)^{0/++}$, $P^{\Lambda}_{\psi s}$
 - Improved knowledge to: $D^+(D_s^+) o \pi^-\pi^+\pi^+$, $\Lambda_c^+ o pK^-\pi^+$

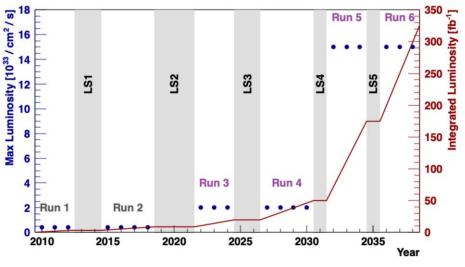
Summary

- LHCb keeps making important contributions to spectroscopy study
- Achievement about physics:
 - Excited \mathcal{Z}_c^0 states in $B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-$
 - New exotic states: $T^a_{c\overline{s}0}(2900)^{0/++}$, $P^{\Lambda}_{\psi s}$
 - Improved knowledge to: $D^+(D^+_s) o \pi^-\pi^+\pi^+$, $\Lambda^+_c o pK^-\pi^+$

A lot of new results from amplitude analysis

Making use of generalized & advanced analysis tools

https://tf-pwa.readthedocs.io/en/latest/ by Yi Jiang et. al.


& with improved knowledge about general formalism of decay amplitudes

PRD 101(2020)034033, Adv.High Energy Phys. 2020(2020)6674595, Chinese Phys. C 45(2021)063103

Prospects

- Upcoming Run3 data
 - Improved integrated Luminosity
 - New detector, fully software-based trigger

A huge wave of highquality data is coming !

More exciting results are to come!

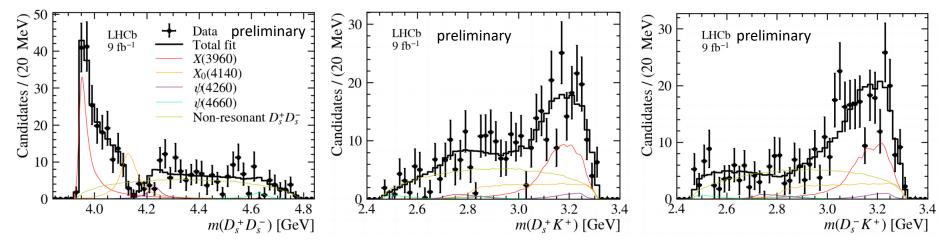
 Run3 data + improvement of analysis skills, boosting LHCb spectroscopy studies to a new level

Thank you for your attention ! Any questions or comment ?

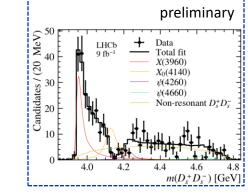
Back up

Study of $B^+ \to D_s^+ D_s^- K^+$

• Run1+Run2 LHCb data, $\mathcal{L} = 9 \text{ fb}^{-1}$



 $N_{\text{sig}} = 360 \pm 22$ (1st observation of $B^+ \rightarrow D_s^+ D_s^- K^+$) Purity in signal region : 84% Hint of near-threshold structure in $D_s^+D_s^-$ mass spectrum


Amplitude analysis to investigate its properties

Observation of $X(3960) \rightarrow D_s^+ D_s^-$

Base-line model with several $D_s^+ D_s^-$ structures well describes data

- 0⁺⁺: *X*(3960) (> 10σ), *X*₀(4140) (3.9σ), Non-resonant
- 1^{--} : $\psi(4260), \psi(4660)$
- X(3960): threshold enhancement
 - $J^{PC} = 0^{++}$ preferred by > 9σ
 - 1st observation, with J^P determined
- $X_0(4140)$: for dip at 4.14GeV (interference)
 - $I^{PC} = 0^{++}$ preferred by 3.5σ

32

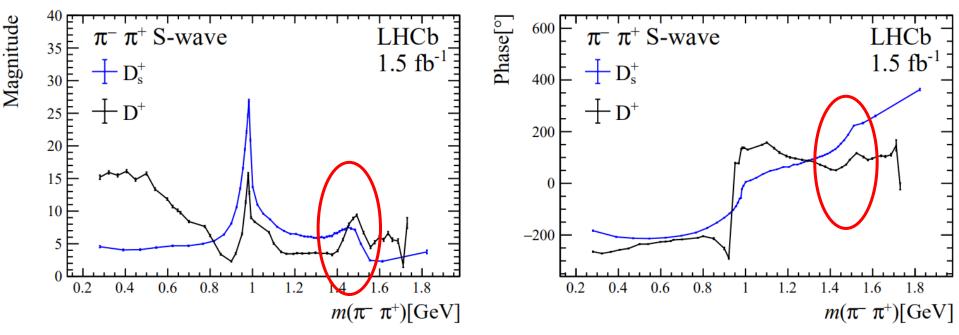
Alternative way to model the dip: $J/\psi \phi \rightarrow D_s^+ D_s^-$ rescattering

2022/10/06

2022 LHC Days in Split

X(3960) and $\chi_{c0}(3930)$

	M [MeV]	Γ [MeV]	J ^{PC}
$X(3960)^{\text{preliminary}} 3955 \pm 6 \pm 12$		$48 \pm 17 \pm 10$	0++
$\chi_{c0}(3930)$	3924 <u>+</u> 2	17 <u>+</u> 5	


PR**D 102**(2020)112003

- No obvious candidate within conventional charmonium multiple for X(3960) and $\chi_{c0}(3930)$: **exotic nature; same particle ?**
- If they are the same particle

 $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$

- Enhancement of $D_s^+ D_s^-$ partial width indicate a intrinsic $s\bar{s}$ content
 - Generation of $s\bar{s}$ from vacuum more difficult than $u\bar{u}$, $d\bar{d}$
 - Smaller phase-space in $D_s^+ D_s^-$ mode
- An exotic nature of the *X* state: **Candidate for** *ccss*

S-wave amplitudes: Similarity

- Hint of scalar resonance at 1.5GeV for both modes
 - Sharp variation in both magnitude and phase

$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$ from BESIII • BESIII

arXiv: 2108.10050, submitted in 2021

TABLE II. Fit fractions, magnitudes and phases from our baseline fit. The uncertainties are statistical and systematic, respectively.

	Fit fraction (%)	<u> </u>	Phase (radians)
	$10.5 \pm 0.8 \pm 1.2$	1. (Fixed)	0. (Fixed)
$ ho(770)\pi^+$	$0.9\pm0.4\pm0.5$	$0.13 \pm 0.03 \pm 0.04$	$5.44 \pm 0.25 \pm 0.62$
$ ho(1450)\pi^+$	$1.3\pm0.4\pm0.5$	$0.91 \pm 0.16 \pm 0.22$	$1.03 \pm 0.32 \pm 0.51$
${\cal S}$ wave	$84.2 \pm 0.8 \pm 1.3$	Table III	Table III
Total	$96.8\pm2.4\pm3.5$		

• LHCb

Resonance	Magnitude	Phase [°]	Fit fraction (FF) $[\%]$
S-wave			84.97 ± 0.14
$ ho(770)^{0}$	0.1201 ± 0.0030	79.4 ± 1.8	1.038 ± 0.054
$\omega(782)$	0.04001 ± 0.00090	-109.9 ± 1.7	0.360 ± 0.016
$ ho(1450)^{0}$	1.277 ± 0.026	-115.2 ± 2.6	3.86 ± 0.15
$ ho(1700)^{0}$	0.873 ± 0.061	-60.9 ± 6.1	0.365 ± 0.050
combined	-	-	6.14 ± 0.27
$f_2(1270)$	1 (fixed)	0 (fixed)	13.69 ± 0.14
$f_2'(1525)$	0.1098 ± 0.0069	178.1 ± 4.2	0.0455 ± 0.0070
sum of fit fractions			104.3
$\chi^2/ndof (range)$	[1.45 - 1.57]		

arXiv:2209.09840, submitted in 2022

$D^+ \rightarrow \pi^+ \pi^- \pi^+$ previous results

• Other experiments: (tables taken from Phys.Rev.D 76 (2007) 012001)

PRL. 8	6(2001)770	PLB 585(2004)200
Mode	E791 [<u>3</u>]	FOCUS [4]
$\sigma \pi^+$	46.3 ± 9.2	
$f_0(980)\pi^+$	6.2 ± 1.4	
$f_0(1370)\pi^+$	2.3 ± 1.7	
S wave π^+	54.8 ± 9.5	56.0 ± 3.9
$ ho^0(770)\pi^+$	33.6 ± 3.9	30.8 ± 3.9
$f_2(1270)\pi^+$	19.4 ± 2.5	11.7 ± 1.9

TABLE II: Results of the isobar model analysis of the $D^+ \to \pi^- \pi^+ \pi^+$ Dalitz plot. For each contribution the relative amplitude, phase, and fit fraction is given. The errors are statistical and systematic, respectively.

	Mode	Amplitude (a.u.)	Phase $(^{\circ})$	Fit fraction (%)
	$(770)\pi^+$	1(fixed)	0(fixed)	$20.0{\pm}2.3{\pm}0.9$
	$(980)\pi^+$	$1.4{\pm}0.2{\pm}0.2$	$12\pm10\pm5$	$4.1 {\pm} 0.9 {\pm} 0.3$
f_2	$(1270)\pi^+$	$2.1{\pm}0.2{\pm}0.1$	$-123{\pm}6{\pm}3$	$18.2 {\pm} 2.6 {\pm} 0.7$
f_0	$(1370)\pi^+$	$1.3{\pm}0.4{\pm}0.2$	$-21{\pm}15{\pm}14$	$2.6{\pm}1.8{\pm}0.6$
f_0	$(1500)\pi^+$	$1.1 {\pm} 0.3 {\pm} 0.2$	$-44{\pm}13{\pm}16$	$3.4{\pm}1.0{\pm}0.8$
	σ pole	$3.7{\pm}0.3{\pm}0.2$	$-3\pm4\pm2$	$41.8 \pm 1.4 \pm 2.5$

Phys.Rev.D 76 (2007) 012001

LHCb

arXiv:2208.03300

Component	Magnitude	Phase $[\circ]$	Fit fraction [%]			6]
$\rho(770)^0\pi^+$	1 [fixed]	0 [fixed]	26.0	± 0.3	± 1.6	± 0.3
$\omega(782)\pi^+$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	0.10	3 ± 0.00	8 ± 0.01	4 ± 0.002
$\rho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	5.4	± 0.4	± 1.3	± 0.8
$\rho(1700)^0\pi^+$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	5.7	± 0.5	± 1.0	± 1.0
$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	13.8	± 0.2	± 0.4	± 0.2
S-wave			61.8	± 0.5	± 0.6	± 0.5
$\sum_{i} FF_{i}$			112.8			
χ^2/ndof (range)	[1.47 - 1.78]		$-2\log \mathcal{L} = 805622$			622