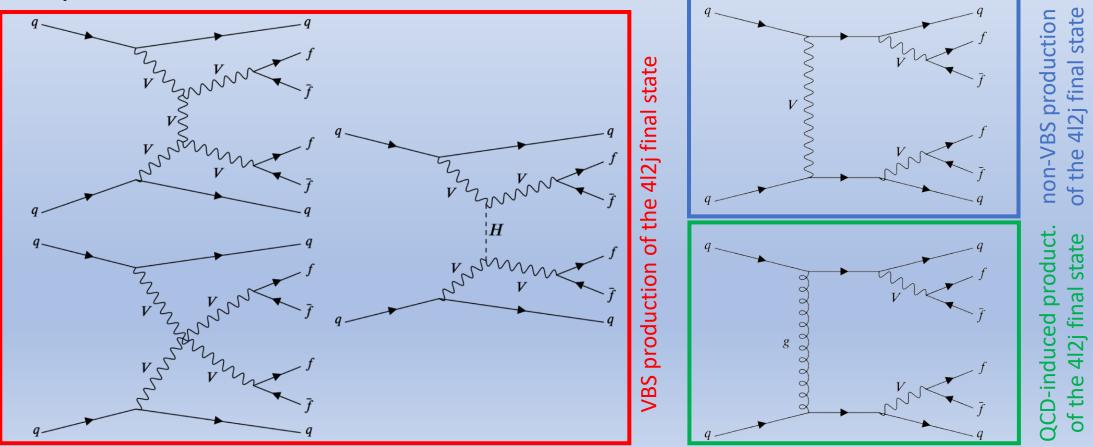


Vector Boson Scattering in CMS

Duje Giljanović 2022 LHC Days in Split

Outline

- 1. What is VBS?
- 2. Why study VBS?
- 3. BSM physics in the EFT approach
- 4. Summary of recent VBS measurements at CMS
- 5. Zγ*jj* channel
- 6. OS WWjj channel
- 7. Fully leptonic ZZjj channel
- 8. Same-sign $W_L W_L j j$ production
- 9. Prospective studies for the $Z_L Z_L jj$ production


10. Conclusion

introduction

What is VBS?

 subset of EW processes in which VV pair is radiated from two initial quark lines

Why study VBS?

- massless gauge fields in the EW sector gain longitudinal degrees of freedom due to EWSB
- Iongitudinal VVs exhibit interesting high-energy behaviour
 - at high energies scattering amplitude becomes constant
 - the cross-section decreases linearly scattering of longitudinal VVs = scattering of Goldstone bosons of the EWSB
- if there is no Higgs boson or even if its coupling to the VV differ from SM values --> cross-section diverges
- VBS enables
 - precise study of Higgs couplings
 - studying the non-Abelian structure of EW sector by probing the quartic vertices (WWZZ, WWZγ, WW γ γ and WWWW)

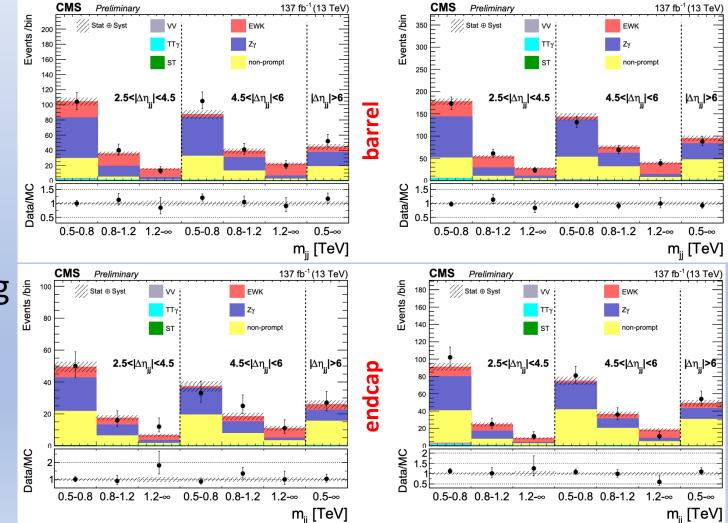
BSM physics in the EFT approach

- some BSM phenomena can be described in the EFT approach
- EFT Lagrangian $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{f_i \mathcal{O}_i^u}{\Lambda^{d-4}}$
- dim-8 operators lead to anomalous quartic gauge couplings (aQGCs)
 - VBS is sensitive to aQGCs!
- effect of aQGC is to enhance production xs for large boson scattering energies

<u></u>									
		C	lass				Definition		
Class Scalar involve only the scalar field Tensor involve only the field strength tensor				calar _.	field		$\mathcal{O}_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi] \\ \mathcal{O}_{S,1} = [(D_{\mu}\Phi)^{\dagger}D_{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi] \\ \mathcal{O}_{S,2} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi] $		
				treng	th ter	$\mathcal{O}_{T,\delta} = \Pi[\mathcal{W}_{\alpha\nu}, \mathcal{W}^{\mu}] \times \widehat{B}_{\mu\beta}B$ $\mathcal{O}_{T,7} = \operatorname{Tr}[\widehat{W}_{\alpha\mu}, \widehat{W}^{\mu\beta}] \times \widehat{B}_{\beta\nu}\widehat{B}^{\nu\alpha}$ $\mathcal{O}_{T,8} = \widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu} \times \widehat{B}_{\alpha\beta}\widehat{B}^{\alpha\beta}$ $\mathcal{O}_{T,9} = \widehat{B}_{\alpha\mu}\widehat{B}^{\mu\beta} \times \widehat{B}_{\beta\nu}\widehat{B}^{\nu\alpha}$			
	Mixed involve the field strength tensor and the scalar field				!		$ \frac{\mathcal{O}_{I,9} = \mathcal{D}_{\mathcal{R}\mu}\mathcal{D} \times \mathcal{D}_{\beta\nu}\mathcal{D}}{\mathcal{O}_{M,0} = \operatorname{Tr}[\widehat{W}_{\mu\nu}, \widehat{W}^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi]} \\ \mathcal{O}_{M,1} = \operatorname{Tr}[\widehat{W}_{\mu\nu}, \widehat{W}^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi] \\ \mathcal{O}_{M,2} = \widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu} \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi] \\ \mathcal{O}_{M,3} = \widehat{B}_{\mu\nu}\widehat{B}^{\nu\beta} \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi] \\ \mathcal{O}_{M,4} = (D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}D^{\mu}\Phi \times \widehat{B}^{\beta\mu} \\ \mathcal{O}_{M,5} = (D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi $		
	$egin{array}{llllllllllllllllllllllllllllllllllll$	${\mathcal O}_{M,0}, \ {\mathcal O}_{M,1}, \ {\mathcal O}_{M,7}$	$\mathcal{O}_{M,2},\ \mathcal{O}_{M,3},\ \mathcal{O}_{M,4},\ \mathcal{O}_{M,5}$	$\mathcal{O}_{T,0}, \ \mathcal{O}_{T,1}, \ \mathcal{O}_{T,2}$	$\mathcal{O}_{T,5}, \ \mathcal{O}_{T,6}, \ \mathcal{O}_{T,7}$	$\mathcal{O}_{T,8},$ $\mathcal{O}_{T,9}$	operator		
wwww	х	x		х			be e		
WWZZ	х	x	x	x	x				
ZZZZ	x	x	x	x	x	x			
$WWZ\gamma$		X	X	X	X		S a D D D		
$WW\gamma\gamma$		x	X	X	X	V	vertices l by aQGC		
ZZZY		x x	x x	x x	x x	x x	a ti		
$ZZ_{\gamma\gamma} Z_{\gamma\gamma\gamma}$		Λ	Λ	x	X	x	er Z		
2777				x	X	x	<u>مَ <</u>		
1111				-	-	- L			

Summary of recent VBS measurements at CMS

YEAR	CHANNEL	$\sqrt{s} [TeV]$	$L\left[fb^{-1} ight]$	COMMENT	PAPER
2017	same-sign WWjj	13	35.9	1 st observation (5.5 σ observed; 5.7 σ expected)	10.1103/PhysRevLett.12 0.081801
2017	fully leptonic ZZjj	13	35.9	observed significance 2.7 σ (1.6 σ expected)	10.1016/j.physletb.2017 .10.020
2018	$Z_L Z_L j j$	14/27	3000/15000	projections for HL-LHC and HE-LHC conditions	CMS-PAS-FTR-18-014
2019	WWjj and WZjj	13	137	1 st observation (6.8 σ observed; 5.3 σ expected) of EW WZ production with 2 jets	10.1016/j.physletb.2020 .135710
2020	Wγjj	13	138	1 st measurements with the full Run2 data	10.1103/PhysRevD.105. 052003
2020	fully leptonic ZZjj	13	137	1 st evidence (4 σ observed; 3.5 σ expected)	10.1016/j.physletb.2020 .135992
2020	same-sign W _L W _L jj	13	137	first measurement of the polarized WW production	10.1016/j.physletb.2020 .136018
2021	Ζγϳϳ	13	137	1 st observation (9.4 σ observed; 8.5 σ expected)	cds.cern.ch/record/275 9297
2021	opposite-sign WW	13	138	1 st observation (5.6 σ observed; 5.2 σ expected)	arXiv:2205.05711

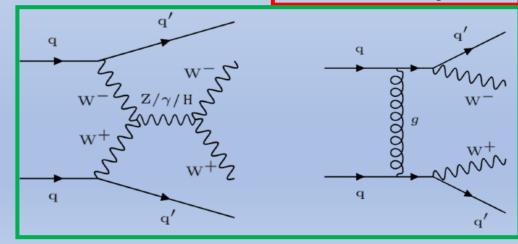

Zγjj channel

- signal: EW production of Zγjj
- backgrounds: QCD-induced production of $Z\gamma$, $W\gamma$ and $\overline{t}t\gamma$, diboson processes (WW/WZ/ZZ) and single t quark production $p_T^{\ell_1,\ell_2} > 25 \text{ GeV}, |\eta^{\ell_1,\ell_2}| < 2.5 \text{ for } p_T^{\ell_1,\ell_2} > 20 \text{ GeV}, |\eta^{\ell_1,\ell_2}| < 2.4 \text{ for } p_T^{\ell_1,\ell_2} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.444 \text{ or } 1.50 \text{ or } p_T^{\gamma} > 20 \text{ or$
- signal significance and fiducial cross-section calculated using the ML fit on the 2D $(m_{jj}, \Delta \eta_{jj})$ distribution
- unfolded differential cross-section also measured

1 / 1	1 '
Common selection	$ \begin{array}{l} p_{\rm T}^{\ell 1,\ell 2} > 25 {\rm GeV}, \eta^{\ell 1,\ell 2} < 2.5 \ {\rm for \ electron \ channel} \\ p_{\rm T}^{\ell 1,\ell 2} > 20 {\rm GeV}, \eta^{\ell 1,\ell 2} < 2.4 \ {\rm for \ muon \ channel} \\ p_{\rm T}^{\gamma} > 20 {\rm GeV}, \eta^{\gamma} < 1.444 \ {\rm or \ } 1.566 < \eta^{\gamma} < 2.500 \\ p_{\rm T}^{j 1,j 2} > 30 {\rm GeV}, \eta^{j 1,j 2} < 4.7 \\ 70 < m_{\ell \ell} < 110 {\rm GeV}, m_{Z \gamma} > 100 {\rm GeV} \\ \Delta R_{jj}, \Delta R_{j \gamma}, \Delta R_{j \ell} > 0.5, \Delta R_{\ell \gamma} > 0.7 \end{array} $
Control region	Common selection, $150 < m_{jj} < 500 \text{GeV}$
EW signal region	Common selection, $m_{ m jj} > 500 { m GeV}, \Delta\eta_{ m jj} > 2.5,$ $\eta^* < 2.4, \Delta\phi_{Z\gamma, m jj} > 1.9$
Fiducial volume	Common selection, $m_{ m jj} > 500 { m GeV}, \Delta \eta_{ m jj} > 2.5$
aQGC search region	Common selection, $m_{ m jj} > 500 { m GeV}, \Delta \eta_{ m jj} > 2.5,$ $p_{ m T}^{\gamma} > 120 { m GeV}$

Zγjj channel (cont'd)

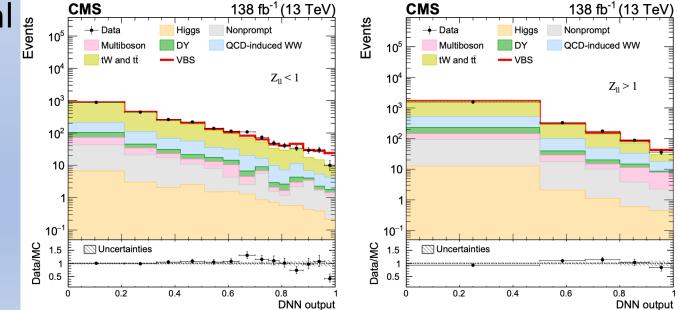
- observed significance 9.4σ reported (8.5σ expected)
- $\sigma_{EW}^{fid} = 5.21 \pm 0.76 \, fb$
- $\sigma^{fid}_{EW+QCD} = 14.7 \pm 1.53 \, fb$
- signal strength and unfolded xs measured in bins of leading photon, lepton and jet p_T and in bins of two variables $m_{jj} - \Delta \eta_{jj}$


Zγjj channel (cont'd)

- limits imposed on aQGCs in the EFT approach
- most stringent limits on the neutral-current operator T9

	ovelusion limi	its for E	and E par	amotors		MS /	Prelimina	ary	1	37 fb ⁻¹ (13 TeV)
		its for $F_{M_{0-7}}$		ameters	bin			Data	a l	non-pron	npt -
Operator coefficients	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]	Freeze all syst. [TeV $^{-4}$]	Unitarity bound [TeV]						Other bkg	· 1
F_{M0}/Λ^4	-12.5 , 12.8	-15.8 , 16.0	-15.2 , 15.4	1.1	10 ²			VBS	•		• –
F_{M1}/Λ^4	-28.1 , 27.0	-35.0 , 34.7	-33.8 , 33.3	1.2	U –		·····	QC	ΟΖγ -	— F _{т,8} =0.47	′TeV ⁻ 4 ∃
F_{M2}/Λ^4	-5.21 , 5.12	-6.55 , 6.49	-6.32 , 6.23	1.4	ŇЕ		Y		-	— F _{т,9} =0.91	TeV ⁻⁴
F_{M3}/Λ^4	-10.2 , 10.3	-13.0 , 13.0	-12.4 , 12.5	1.6					(1,0	
F_{M4}/Λ^4	-10.2 , 10.2	-13.0 , 12.7	-12.5 , 12.3	1.4	10						
F_{M5}/Λ^4	-17.6 , 16.8	-22.2 , 21.3	-21.4 , 20.4	1.8	=				/////	•	, I
F_{M6}/Λ^4	-25.0, 25.6	-31.7 , 32.0	-30.4 , 30.8	1.1						1//////////////////////////////////////	
F_{M7}/Λ^4	-44.7,45.0	-56.6, 55.9	-54.3 , 53.8	1.3	1_						5557777777777
F_{T0}/Λ^4	-0.52, 0.44	-0.64, 0.57	-0.62, 0.55	1.4	Ė						
F_{T1}/Λ^4	-0.65, 0.63	-0.81, 0.90	-0.78, 0.77	1.5	-						
F_{T2}/Λ^4	-1.36 , 1.21	-1.68, 1.54	-1.63 , 1.48	1.4	-						//////////////////////////////////////
F_{T5}/Λ^4	-0.45, 0.52	-0.58, 0.64	-0.55, 0.62	1.8	10 ⁻¹						
F_{T6}/Λ^4	-1.02, 1.07	-1.30 , 1.33	-1.25 , 1.29	1.7							=
F_{T7}/Λ^4	-1.67, 1.97	-2.15, 2.43	-2.06, 2.36	1.8	0	15-0.4	0.4-0.6	0.6-0.8	0.8-1.0	1.0-1.2	1.2-∞
F_{T8}/Λ^4	-0.36, 0.36	-0.47, 0.47	-0.46, 0.46	1.5	0.	10 0.1	011 010	0.0 0.0	0.0		
F_{T9}^{10}/Λ^4	-0.72, 0.72	-0.91, 0.91	-0.88, 0.88	1.6						m _z ,	_γ [TeV]

Opposite-sign WWjj channel


- signal: EW production of 2 OS, leptonically decaying Ws
- background: QCD-induced production of the W^+W^- jj, reducible bkg. from t \overline{t} production, DY+j and W+j production
- more challenging than $W^{\pm}W^{\pm}$ because of OS bkg from t \bar{t} prod.
- only recently first NLO calculation fpr the EW production of W^+W^- become available
- selection: 2 OS leptons with $m_{ll} > 50 \text{ GeV}$, $p_T^{ll} > 30 \text{ GeV}$, $p_T^{l_1(l_2)} > 25(13)\text{GeV}$, $p_T^{miss} > 20 \text{ GeV}$, at least 2j with $p_T > 30 \text{ GeV}$ $m_{jj} > 300 \text{ GeV}$ and $\Delta \eta_{jj} > 2.5$

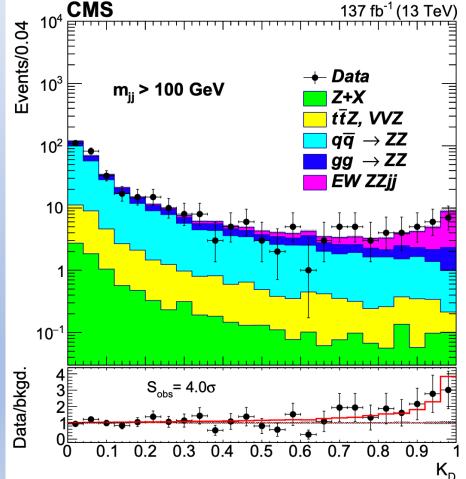
 \mathbf{q}

Opposite-sign WWjj channel (cont'd)

- deep neural network (DNN) used to separate VBS signal from QCDinduced and $t\bar{t}$ backgrounds
 - for optimization, 2 models built: for the region with low ($Z_{ll} < 1$) and high ($Z_{ll} > 1$)values of the Zeppenfeld variable
- observed (expected) signal significance 5.6 σ (5.2 σ)
- fid. xs $10.2 \pm 2.0 fb$ in agreement with the SM prediction $9.1 \pm 0.6 fb$

Fully leptonic ZZjj channel

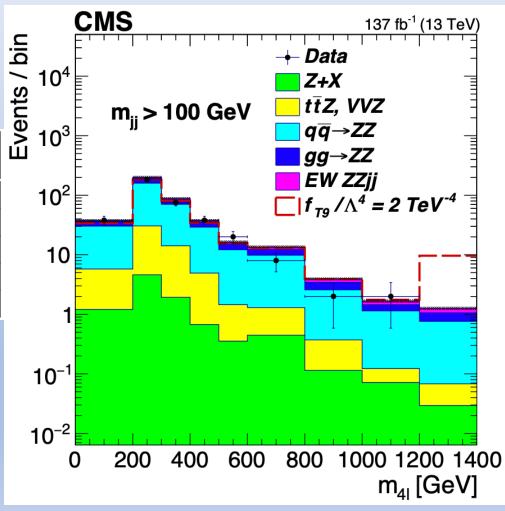
- signal extraction based on the MELA discriminant (K_D)
- performance checked against the BDT
- ZZ selection used to measure signal significance, total fid. xs and aQGC search
- 1st evidence for the EW production of the fully leptonic ZZ channel
- measured EW signal significance 4σ (3.5 σ expected)
- measured EW and EW+QCD sig. strength agree with SM expectation


	$p_T^e > 7 GeV \qquad p_T^\mu > 5 GeV$				
	$ \eta ^e < 2.5$ $ \eta ^\mu < 2.4$				
	$ d_{xy} < 0.5 \ cm$				
lepton candidates	$ d_z < 1 \ cm$				
	$ SIP_{3D} < 4$				
	ID passed				
	iso. in ID $R^{\mu}_{iso} < 0.35$				
	$p_T > 30~GeV$ $ \eta < 4.7$				
jet candidates	$\Delta R(j,l/\gamma) > 0.4$				
,	ID passed				
	L1 prefiring correction				
Z candidate	tight lepton pair (e^+e^- or $\mu^+\mu^-$)				
E oundiduito	$60~GeV < m_{ll} < 120~GeV$				
	require pair of non-overlapping Z bosons				
	$\Delta R(\eta,\phi)>0.02$ between each of the four leptons				
	$p_T(l_1) > 20 \; GeV \qquad p_T(l_2) > 10 \; GeV$				
ZZ selection	$m_{Z1} > 60 \; GeV \qquad m_{Z2} > 60 \; GeV$				
	$m_{4l} > 180 \; GeV$				
	QCD suppression cut				
	"smart" cut				
Inclusive ZZjj selection	ZZ selection + $m_{jj} > 100 GeV$				
loose VBS selection	ZZ selection + $m_{jj} > 400 GeV + \Delta \eta_{jj} > 2.4$				
tight VBS selection	ZZ selection + $m_{jj} > 1 TeV + \Delta \eta_{jj} > 2.4$				

Fully leptonic ZZjj channel (cont'd)

• cross-section measured in 3 fiducial regions

	$SM \ \sigma \ [fb]$		μ_{exp}	μ_{obs}				
		ZZjj inclusive						
EWK	LO: $0.275 \pm 0.021_{th.}$ NLO QCD: $0.278 \pm 0.017_{th.}$ NLO EWK: $0.242^{+0.015_{th.}}_{-0.013_{th.}}$	$0.33^{+0.11\ (+0.04)}_{-0.10\ (-0.03)}$	$1.00^{+0.43}_{-0.36} {}^{(+0.39)}_{(-0.34)}$	$1.21\substack{+0.47\\-0.40}$				
EWK+QCD $5.35 \pm 0.51_{th.}$		$5.29_{-0.30\ (-0.46)}^{+0.31\ (+0.46)} 1.00_{-0.12\ (-0.06)}^{+0.13\ (+0.06)}$		$0.99\substack{+0.13\\-0.12}$				
VBS signal-enriched (loose)								
EWK	LO: $0.186 \pm 0.015_{th.}$ NLO QCD: $0.197 \pm 0.013_{th.}$	$0.200_{-0.067\ (-0.013)}^{+0.078\ (+0.023)}$	$1.00^{+0.45}_{-0.38} {}^{(+0.40)}_{(-0.35)}$	$1.08\substack{+0.47\\-0.38}$				
EWK+QCD	EWK+QCD $1.21 \pm 0.09_{th.}$		$1.00^{+0.16}_{-0.15}~^{(+0.13)}_{(-0.12)}$	$0.83\substack{+0.15\\-0.13}$				
VBS signal-enriched (tight)								
EWK	LO: $0.104 \pm 0.008_{th.}$ NLO QCD: $0.108 \pm 0.007_{th.}$	$0.09\substack{+0.04 \ (+0.02)\\-0.03 \ (-0.02)}$	$1.00^{+0.52}_{-0.44} \ (-0.41)^{+0.50}_{(-0.41)}$	$0.87^{+0.48}_{-0.39}$				
EWK+QCD	$0.221 \pm 0.014_{th.}$	$0.20^{+0.05\ (+0.02)}_{-0.04\ (-0.02)}$	$1.00_{-0.34\ (-0.32)}^{+0.42\ (+0.40)}$	$0.92\substack{+0.39 \\ -0.32}$				


- SM predictions extracted from generated events in MC samples
- for EWK, theory predictions at NLO included

Fully leptonic ZZjj channel (cont'd)

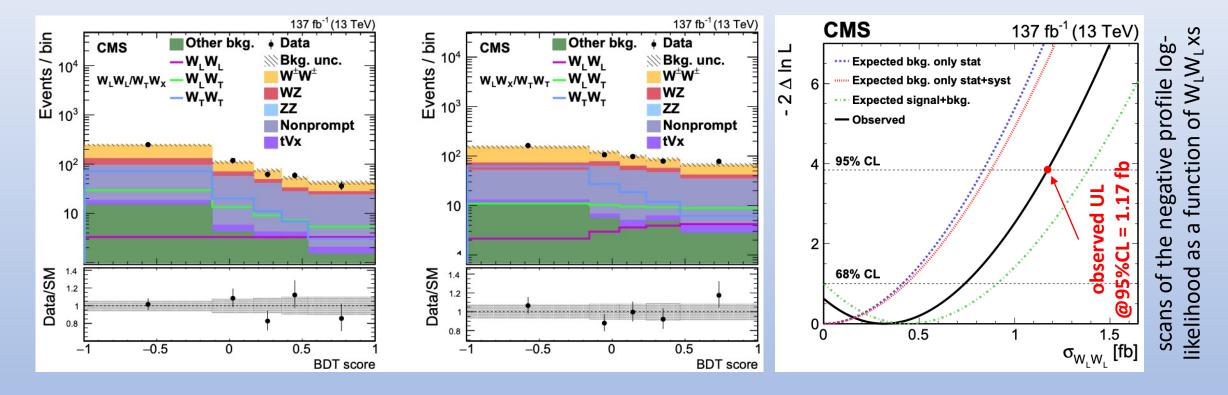
95% CL limits on couplings of operators $T_{0,1,2,8,9}$ imposed in the EFT framework

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unit. limit (VBFNLO)	Unit. limit (Eboli)
f_{T_0}/Λ^4	-0.37	0.35	-0.24	0.22	2.9	2.4
f_{T_1}/Λ^4	-0.49	0.49	-0.31	0.31	2.7	2.6
f_{T_2}/Λ^4	-0.98	0.95	-0.63	0.59	2.8	2.5
f_{T_8}/Λ^4	-0.68	0.68	-0.43	0.43	1.8	1.8
f_{T_9}/Λ^4	-1.46	1.46	-0.92	0.92	1.8	1.8

Same-sign W_LW_Ljj channel

- signal: EW production of $W_L^{\pm}W_L^{\pm}$, $W_L^{\pm}W_T^{\pm}$ and $W_T^{\pm}W_T^{\pm}$ (+ 2j)
- background: EW production of WZ, QCD-induced production of WZ, $t\bar{t}$, tW (and other VV), $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}\gamma$, VVV and tZq processes
- signal extracted using BDT
- 2 BDTs trained to separate either
 - $W_L^{\pm}W_L^{\pm}$ and $W_X^{\pm}W_T^{\pm}$ processes
 - $W_L^{\pm}W_X^{\pm}$ and $W_T^{\pm}W_T^{\pm}$ processes
- 2 ML fits performed to calculate signal significance

Variable	Requirement
Leptons	Exactly 2 same-sign leptons, $p_{\rm T} > 25/20 {\rm GeV}$
$p_{\mathrm{T}}^{\mathrm{j}}$	>50 GeV
$ m_{\ell\ell} - m_Z $	>15 GeV (ee)
$m_{\ell\ell}$	>20 GeV
$p_{\mathrm{T}}^{\mathrm{miss}}$	>30 GeV
b quark veto	Required
$Max(z_{\ell}^{*})$	<0.75
m _{ij}	>500 GeV
$ ilde{\Delta \eta}_{jj} $	>2.5

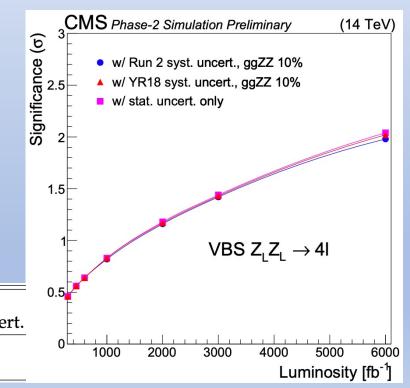

requirements defining $W^{\pm}W^{\pm}$ SR

Same-sign $W_L W_L j j$ channel (cont'd)

- first, BDT trained to separate WW from SM backgrounds
 - variables in table + m_{jj} and $\Delta \eta_{jj}$
- next, BDT trained to separate different
 polarizations (many variables studied
 for BDT training, those in the table used)
- 2 set of results obtained:
 - for helicity states defined in the WW c.o.m. frame
 - for helicity states defined in the initial-state parton-parton frame

Variables	Definitions
$\Delta \phi_{ m jj}$	Difference in azimuthal angle between the leading and subleading jets
$p_{\mathrm{T}}^{\mathrm{j1}}$	$p_{ m T}$ of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	$p_{\rm T}$ of the subleading jet
$p_{\mathrm{T}}^{\ell_1} onumber \ p_{\mathrm{T}}^{\ell_2}$	Leading lepton $p_{\rm T}$
$p_{\mathrm{T}}^{\ell_2}$	Subleading lepton $p_{\rm T}$
$\Delta \phi_{\ell\ell}$	Difference in azimuthal angle between the two leptons
$m_{\ell\ell}$	Dilepton mass
$p_{\mathrm{T}}^{\ell\ell}$ $m_{\mathrm{T}}^{\mathrm{WW}}$	Dilepton $p_{\rm T}$
m _T ^{WW}	Transverse WW diboson mass
$z^*_{\ell_1}$	Zeppenfeld variable of the leading lepton
$z_{\ell_2}^*$	Zeppenfeld variable of the subleading lepton
$\Delta R_{\mathrm{j1,}\ell\ell}$ $\Delta R_{\mathrm{j2,}\ell\ell}$	ΔR between the leading jet and the dilepton system
$\Delta R_{j2,\ell\ell}$	ΔR between the subleading jet and the dilepton system
$(p_{\rm T}^{\ell_1} p_{\rm T}^{\ell_2}) / (p_{\rm T}^{\rm j1} p_{\rm T}^{\rm j2})$	Ratio of $p_{\rm T}$ products between leptons and jets
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum

Same-sign W_LW_Ljj channel (cont'd)


<u>.</u>	Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)	•	Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)	EW prod. of S-S WW with
с. Т.	$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05	art J.	$W_L^{\pm}W_L^{\pm}$	$\begin{array}{r} 0.24\substack{+0.40\\-0.37}\\ 3.25\substack{+0.50\\-0.48}\end{array}$	0.28 ± 0.03	at least 1 W _L (in WW com
С. С	$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$	$3.06\substack{+0.51 \\ -0.48}$	3.13 ± 0.35		$W_X^{\pm}W_T^{\pm}$	$3.25\substack{+0.50 \\ -0.48}$	3.32 ± 0.37	frame) measured with
$\mathbb{N}^{\mathbb{N}}$	$W^{\pm}_L W^{\pm}_X$	$1.20\substack{+0.56\\-0.53}$	1.63 ± 0.18	art c.($\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$	$1.40\substack{+0.60\\-0.57}$	1.71 ± 0.19	2.3 σ (3.1 σ expected)
5	$W_T^{\pm}W_T^{\pm}$	$2.11\substack{+0.49 \\ -0.47}$	1.94 ± 0.21	0	$W_T^{\pm}W_T^{\pm}$	$2.03\substack{+0.51\\-0.50}$	1.89 ± 0.21	

fiduc. xs.

Prospective studies for the $Z_L Z_L jj$ production

- starting point: 2016 analysis in the ZZjj channel using $36 f b^{-1}$ of data
- projected sensitivity for the HL-LHC (14 TeV c. o. m. energy, $3000 fb^{-1}$) and HE-LHC conditions 27 TeV c. o. m. energy, $15000 fb^{-1}$) $\int_{2} \frac{\text{CMS Phase-2 Simulation Preliminary}}{2} \int_{2} \frac{14 \text{ TeV}}{2} \int_{2} \frac{1$
 - luminosity scaling
 - energy scaling
 - increased acceptance
- Delphes simulation used to assess the sensitivity to $Z_L Z_L$ at 14 TeV
- at HE-LHC condition, first observation of the $Z_L Z_L$ scattering expected!

	signi	0.5					
	w/ syst. uncert.	w/o syst. uncert.	-				
HL-LHC	1.4σ	1.4σ	0[2000	3000	4000	500
HE-LHC	5.2σ	5.7σ				Lu	minos

Conclusion

- Full CMS Run2 data analyses brought significant new results:
 - first observation of WZjj
 - first evidence of ZZjj
 - first observation of OS WWjj
 - first measurements of longitudinal scattering in the SS WWjj channel
 - important test of the EWSB mechanism
 - more stringent limits on the aQGC parameters
- ToDo: extraction of the polarisation components in the VVjj channels, further constraints on the aQGC
- at the HE-LHC conditions the first observation of the longitudinal scattering in the ZZjj channel expected significant benefit of further energy increase for further understanding EW sector of the SM