Recent ATLAS and CMS results on top-quark physics

Mário José Sousa on behalf of the ATLAS and CMS Collaborations

University of Science and Technology of China

2022 LHC Days in Split

- Last LHC days conference happened at the end of Run 2 and many Top results were published since then...
- ... it is not possible to cover everything.
- Last month we had the **TOP quark 2022 conference**, where a significant number of new results were presented...
- ... focusing today on some of these "Hot off the press" results.
- Further analysis will be covered by <u>Jiri</u> and <u>Kerem</u>, particularly on BSM searches, which is not covered here.

$t\bar{t}$ production

$t\bar{t}$ production

"Newton's third law

The only way humans have ever figured out of getting somewhere is to leave something behind." Christopher J. Nolan, Interstellar: The Complete Screenplay With Selected Storyboards

ATLAS latest top quark mass measurement

- Analysis on di-lepton events in full Run-2 dataset.
- DNN for assignment for ℓb pair: the one with largest DNN score.
- $m_{\ell b}^{\rm High}$: DNN^{High} > 0.65 & $p_{\rm T}^{\ell b}$ > 160 GeV & *b* is leading b-jet.
- Unbinned maximum-likelihood fit to data for $m_{\ell b}^{\rm High}$.
- Uncertainty dominated by JES, matrix element matching, color reconnection and the recoil effect on top quark decay (new).

 $m_{\rm top} = 172.63 \pm 0.20({
m stat}) \pm 0.67({
m syst}) \pm 0.37({
m Recoil})$ GeV.

ATLAS-CONF-2022-058

CMS latest top quark mass measurement

- Analysis on ℓ +jets on 2016 data (36 fb⁻¹).
- Maximize goodness-of-fit probability, $P_{gof} = \exp(-\frac{1}{2}\chi^2)$, for jet-parton assignment in 2×2 permutations.
- Profile maximum-likelihood fit applied to up to 5 observables to extract top mass.
- Uncertainty dominated by b-jet energy calibration, final state radiation and color reconnection.
- $m_{\rm top} = 171.77 \pm 0.38$ GeV.

ATLAS + CMS combination $t\bar{t}$ cross-section for \sqrt{s} =7 and 8 TeV in $e\mu$ channel

$7 \, \text{TeV}$

ATLAS+CMS Preliminary LHC <i>top</i> /WG σ_{ii}	summary, f s = 7 TeV June 2022
NNLO+NNLL PRL 110 (2013) 252004 	
scale uncertainty	total stat
scale \oplus PDF $\oplus \alpha_s$ uncertainty	$\sigma + (stat) + (syst) + (lumi)$
	of a count a colory a count
ATLAS, I+jets	179 ± 4 ± 9 ± 7 pb L _{av} =0.7 m ⁻¹
ATLAS, dilepton (#)	173 ± 6 ⁺¹⁴ ₋₁₁ ⁺⁰ ₋₇ pb L _u =0.7 fb ⁻¹
ATLAS, all jets (#)	67 ± 18 ± 78 ± 6 pb L _{ev} =1.0 m ⁻¹
ATLAS combined	177 ± 3 ⁺⁰ ₋₇ ± 7 pb L _a =0.7-1.0 fb ⁺¹
CMS, I+jets (#)	164 ± 3 ± 12 ± 7 pb L _{2.1} =0.8-1.1 fb ⁻¹
CMS, dilepton (#)	170 ± 4 ± 16 ± 8 pb L _{ev} =1.1 m ⁻¹
CMS, τ _{had} +μ (#)	149 ± 24 ± 26 ± 9 pb L ₂ =1.1 fb ⁻¹
CMS, all jets (#)	136 ± 20 ± 40 ± 8 pb L _w =1.1 m ⁻¹
CMS combined	166 ± 2 ± 11 ± 8 pb L _{2,0} =0.8-1.1 fb ⁻¹
LHC combined (Sep 2012)(#) LHC top WG HHH	173 ± 2 ± 8 ± 6 pb L _{ul} =0.7-1.1 fb ⁻¹
ATLAS, I+jets, b→Xμv H	165 ± 2 ± 17 ± 3 pb L _{act} 4.7 m ⁻¹
ATLAS, dilepton eµ, b-tag	182.9 ± 3.1 ± 4.2 ± 3.6 pb L _{or} =4.6 m ⁻¹
ATLAS, dilepton eµ, NE ^{min}	181.2 ± 2.8 + 0.7 ± 3.3 pb L _w =4.6 fb ⁻¹
ATLAS, That+jets	194 ± 18 ± 46 pb L ₂ =1.7 fb ⁻¹
ATLAS, all jets	168 ± 12 ⁺⁶⁰ ₋₅₇ ± 7 pb L _{u0} =4.7 m ⁻¹
ATLAS, That H	183 ± 9 ± 23 ± 3 pb L ₁ =4.6 fb ⁻¹
CMS, I+jets	161.7 ± 6.0 ± 12.0 ± 3.6 pb L_st5.0 m ⁻¹
CMS, dilepton eµ	173.6 ± 2.1 ^{+4.5} ± 3.8 pb L _u =5.0 fb ⁻¹
CMS, that +I	143 ± 14 ± 22 ± 3 pb L ₁₀ =2.2 m ²
CMS, That+jets	152 ± 12 ± 32 ± 3 pb L ₂ =3.9 fb ⁻¹
CMS, all jets	139 ± 10 ± 26 ± 3 pb L ₄₀ 3.5 m ⁻¹
LHC combined (May 2022)(*) LHC top WG HH	178 ± 2 ± 3 ± 3 pb L _u =5 151
(#) Superseded by results shown below the line	NNPDF3.0 JHEP 04 (2015) 040
() Presidently	MMHT14 EPJ C75 (2015) 5
	CT14 PRD 93 (2016) 033006
	ABM12 PRD 89 (2015) 054028
$[\alpha_n(\mathbf{M}_n) = 0.113]$	
50 100 150 200	
g [pb]	

• Uncertainty after combining dominated by luminosity.

• The cross section ratio between the two years is compatible with SM.

$$R_{8/7} = 1.363 \pm 0.015 {
m (stat.)} \pm 0.028 {
m (syst.)}$$

ATLAS arXiv:2207.01354

- $\ell + jets + ee/\mu \mu/e\mu$
- $\sigma_{t\bar{t}}=67.5\pm2.7~{\rm pb}$
- Uncertainty dominated by V+jets modelling in ℓ +jets.

- $e\mu$ (2017) + $\mu\mu/e\mu$ + ℓ +jets (2015)
- $\sigma_{t\bar{t}}=63.0\pm5.1~{\rm pb}$
- Uncertainty dominated by jets energy scale and resolution.

Compatible with SM prediction: $\sigma_{t\bar{t}}=66.8\pm3.1~{\rm pb}$

Mário José Sousa (USTC)

Recent ATLAS and CMS results on top-quark physics

Measurement of differential cross section for the production of top guarks pairs and of additional jets

Jncertai

CMS-PAS-TOP-20-006

- Uncertainty dominated by JES.
- Combined di-lepton analysis: $ee, e\mu, \mu\mu$.
- Single-/Multi-differencial σ .
- At parton and particle level.
- Obtain for several variables:
 - number of jets.
 - \triangleright y_t and $y_{t\bar{t}}$.
 - ▶ η_t and $\eta_{t\bar{t}}$.
 - \triangleright $p_{T.t.}$, $p_{T.t.}$ and $p_{T.t.}$.
 - ▶ $p_{T,\ell\ell}$, $\eta_{\ell\ell}$ and $m_{\ell\ell}$.
 - $m_{b\bar{b}}$ and $m_{\ell\ell b\bar{b}}$.
 - See backup 3D differencial: $[N_{\text{iet}}^{0,1,2,3+} \times m(t\overline{t}) \times |y(t\overline{t})|].$

October 3rd-8th, 2022 8/19

W-bosons polarization in di-lepton events

ATLAS-CONF-2022-063

- Analysis combining $ee/\mu\mu/e\mu$ events.
- The Neutrino Weighting method used to reconstruct the top and anti-top quarks.
- Extraction from $\cos \theta^*$: angle between ℓ and respective b in $t \to b\ell\nu$ (W rest frame)

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) f_0 + \frac{3}{8} \left(1 - \cos\theta^*\right)^2 f_{\rm L} + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 f_{\rm R}$$

• Differential cross-section calculation:

 $\frac{d\sigma}{d\cos\theta^*} = \frac{1}{\mathfrak{L} \cdot \Delta X_j \cdot \epsilon_i^{\mathrm{sel}}} \sum_j R_{ij}^{-1} \cdot \left(N_j^{obs} - N_j^{bkg} \right)$

- *R_{ij}* is the migration matrix (backup) from reconstructed cos θ* to parton level.
- Uncertainty dominated by jet energy calibration and $t\bar{t}$ modelling.

Single top and t+X production

ATLAS

- Single top cross-section in the s-channel (link).
- Polarization measurements of single top in t-channel (<u>link</u>).
- Observation of tγ in t-channel (link).

• CMS

- Inclusive and differencial cross-section measurement in Wt-channel (<u>link</u>).
- Charge asymmetry measurement in single top boosted events. (link)

Single top and t+X production

"Newton's third law

Top Quark Production Cross Section Measurements

The only way humans have ever figured out of getting somewhere is to leave something behind." Christopher J. Nolan, Interstellar: The Complete Screenplay With Selected Storyboards

Mário José Sousa (USTC)

Observation of $tq\gamma$ production

- Analysis with 1 electron or muon, 1 b-jet and 1 photon
- $\sigma(pp \rightarrow tq\gamma) \times \mathfrak{B}(t \rightarrow \ell \nu q) = 580 \pm 19(stat) \pm 63(syst)$ fb.
- The observed (expected) significance of $tq\gamma$ is $9.1\sigma(6.7\sigma)$.
- Agreement with SM prediction: 406^{+25}_{-32} fb.
- About 40% higher cross-section consistent with CMS results.
 - arXiv:1808.02913

arXiv:2208.00924

Cross-section for single top tW channel

- Analysis uses events with $e^{\pm}\mu^{\mp}$ pair and 1 b-tagged jet.
- No strong discrimination between tW and $t\bar{t}$: BDT trained with 6 variables in 1j1b region.
- Uncertainty dominated by jet energy calibration and $t\bar{t}$ and tW modelling (μ_R , μ_F , FSR).
- Inclusive cross-section: $\sigma_{tW} = 79.2 \pm 0.9 (\text{stat})^{+7.7}_{-8.0} (\text{syst}) \pm 1.2 (\text{lumi})$ fb.
- Differential cross-section obtained for 6 physical observables including p_T (jet).
 - ► Leading lepton p_{T} , $\Delta \varphi(e^{\pm}, \mu^{\mp})$, $p_{\mathrm{z}}(e^{\pm}, \mu^{\mp}, j)$, $m(e^{\pm}, \mu^{\mp}, j)$, $m_{\mathrm{T}}(e^{\pm}, \mu^{\mp}, j)$, $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$).

$t\bar{t} + X$ and 4 tops production

• CMS

- Inclusive cross-section measurement in tt̄W (link).
- Inclusive and differencial cross-section measurement in tt
 τ
 τ
 γ
 (link).
- Four tops production (<u>link</u>).

ATLAS

- Charge asymmetry measurement in tt̄W. (link)
- Charge asymmetry measurement in tt
 τ
 τ
 γ. (link)

$t\overline{t} + X$ and 4 tops production

"Newton's third law

Top Quark Production Cross Section Measurements

The only way humans have ever figured out of getting somewhere is to leave something behind." Christopher J. Nolan, Interstellar: The Complete Screenplay With Selected Storyboards

CMS latest $t\bar{t}W$ measurement: cross-section

 $\bullet\,$ Analysis of 2ℓ and 3ℓ final state

Events / 0.083

Data / Pred

- In 2ℓ , DNN to discriminate signal from background.
- $\bullet~$ In $3\ell.$ sum of lepton charge required to be ± 1
- Uncertainty dominated by $t\bar{t}W$ modelling and ttH normalization.
- $\sigma_{t\bar{t}W} = 868 \pm 40 (\text{stat}) \pm 51 (\text{syst})$ fb
- $\frac{\sigma(t\bar{t}W^+)}{\sigma(t\bar{t}W^-)} = 1.61 \pm 0.15 (\text{stat})^{+0.07}_{-0.05} (\text{syst})$

ATLAS latest $t\bar{t}W$ measurement: Q asymmetry

CMS latest $t\bar{t}\gamma$ measurement: cross-section

CMS 138 fb⁻¹ (13 TeV CMS 138 fb⁻¹(13 TeV 0.04 0.035 (Ab^L(J)[J)(GeV) 0.035 0.02 1/ م 10 Stat +syst unc Measurement Observed MG5+PYTHIAE - MG5+PYTHIA8 Theory unc Theory und $r^2/dof = 5.2/5$ Combined NCE UNEDWICT 173.5 + 2.5 (stat) + 6.3 (syst) C17 e[±]u[∓] 173.9 + 3.1 (stat) + 6.3 (syst) e+e 0.01 177.6 + 6.3 (stat) + 9.7 (syst) 0.005 μ+μ 8 172.6 ± 5.6 (stat) ± 7.8 (svst) τi 120 140 180 80 100 160 $\sigma_{\text{fiducial}}^{\text{tfy}}$ [fb] $p_{\tau}(\gamma)$ [GeV]

• Analysis of $2\ell + 1\gamma + > 1b$ -jet final state.

- Same flavour leptons exclude m(Z).
- Profile likelihood fit on the distribution of the photon $p_{\rm T}$.
- Uncertainty dominated by $t\bar{t}\gamma$ modelling and efficiency of photon selection and b-tagging.
- $\sigma_{\rm fid}(pp \rightarrow t\bar{t}\gamma) = 175.2 \pm 2.5({\rm stat}) \pm 6.3({\rm syst})$ fb
- $\sigma_{\rm SM}(pp \rightarrow t\bar{t}\gamma) = 155 \pm 27$ fb.
- EFT interpretation made with best limit on Wilson coefficients, c_{tZ} and c_{tZ}^{I}

ATLAS-CONF-2022-049

ATLAS latest $t\bar{t}\gamma$ measurement: Q asymmetry

- Analysis of only $1\ell + 1\gamma + \ge 4$ jets, with ≥ 1 b-jet in the final state.
- Kinematic fit algorithm to reconstruct p_Z^{ν}
- NN to separate $t\bar{t}\gamma$ from backgrounds using 21 variables.
- Uncertainty dominated by b-tagging/jets, $\not\!\!{E}_{\rm T}$ and MC statistics.

•
$$A_C^t = \frac{N(\Delta_y^t > 0) - N(\Delta_y^t < 0)}{N(\Delta_y^t > 0) + N(\Delta_y^t < 0)}, \quad \Delta_y^t = |y_t| - |y_{\overline{t}}|.$$

• $A_C(t\bar{t}\gamma) = -0.006 \pm 0.024(\text{stat}) \pm 0.018(\text{syst})$

•
$$A_C^{MC}(t\bar{t}\gamma) = -0.014 \pm 0.001$$
 for
MadGraph5_aMC@NLO in same phase-space.

- ATLAS and CMS have an extensive and strong top quark sector program.
- All these measurements are discussed in great detail in the TOP QUARK conference last month.
- More to come still from Run 2 of LHC data taking in the near future.
- Also, coming up next: check out specific detector presentations for ATLAS and CMS.
- Meanwhile...

Meanwhile...

- After several years of break with several improvements to all detectors.
- The factory is back on producing top quarks for LHC Run 3 of data taking
- ... this time at a new record energy of $\sqrt{s} = 13.6$ TeV.

• And...

last

Summary and outlook

And. . .

• We are already starting to analyse Run 3 data and some of it is already public.

for your attention

© 2022 CERN, for the benefit of the CMS Collaboration

ATLAS Experiment © 2022 CERN

Thank you

Mário José Sousa (USTC)

Recent ATLAS and CMS results on top-quark physics

Backup: 3D differencial cross-section for CMS di-lepton measurement

Backup Migration matrix R_{ij} for ATLAS W-boson polarization

CMS high-jet multiplicity event © 2022 CERN, for the benefit of the CMS Collaboration

ATLAS $e\mu$ event with vertex separation atlas Experiment © 2022 CERN

