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In 2012 last d.o.f predicted  

within SM - Higgs boson  

was discovered at LHC. 

What’s next for particle physics?

CERN
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SM immensely successful 
✔ predictive up to very large energy scales  

✔ all key predictions confirmed 

✔ in excellent agreement with precision measurements in particle 
physics experiments over past 40+ years 

What’s next for particle physics?
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SM immensely successful 
✔ predictive up to very large energy scales  

✔ all key predictions confirmed 

✔ in excellent agreement with precision measurements in particle 
physics experiments over past 40+ years 

Several outstanding theoretical puzzles 
✘ unification of fundamental forces (with gravity) 

✘ observed patterns of parameters describing particle flavors 

✘ observed hierarchies of mass scales in nature 

What’s next for particle physics?

image source: J. A. Romeu

image source: A. de Gouvea

image source: J. Bondi
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Particle physics vs. Cosmology 

?  Origin of most of gravitational mass and energy in Universe 

?  Origin of matter-antimatter asymmetry in Universe 

?  Origin of Big Bang 

What’s next for particle physics?
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Theory 

Multitude of theoretical 
proposals addressing SM 
shortcomings 

Few unambiguous predictions 
experimentally accessible with 
current technology 

Most prospective directions 
possibly not yet conceived 

Searching for unknown physics BSM

image source: H. Murayama
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Experiment 

LHC produced abundance of 
data (experiments so far recorded 
~200PB of most interesting events) 

Expected to increase by order 
of magnitude in next decade 

Challenge to discern interesting 
events from mundane 
backgrounds 

Which events are interesting?                         

Searching for unknown physics BSM
image source: CERN

proton

proton
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Searching for unknown physics BSM

Discovering the Higgs boson was like searching for a 
needle in a haystack… 

…at least we knew how the needle looked like.                         

image source: J. Hill
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ML (subset of AI) uses statistical learning algorithms to build 
models based on data  

ML has been used in HEP, particularly in experimental 
applications since late 20th century 

In past 10-15 years, exploration of ‘deep learning’ 
approaches in HEP closely follows advances in algorithms & 
available computing power

Machine Learning in Particle Physics

The Use of Neural Networks in High-Energy Physics
Bruce Denby
Neural Computation (1993) 5 (4): 505–549.

Track finding with neural networks
Carsten Peterson
Nuclear Instruments and Methods in Physics Research Section A
(1989) 279 (3): 537-5459.

javascript:;
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ML plays increasingly important role in HEP including in 

⇒ Data reconstruction and analysis                          
(particle flow, object reconstruction & classification)  

⇒ First-principles theory calculations & detector simulations 
(MC event generation, Lattice simulations,…) 

⇒ Detector and Accelerator design and operation 
(Differentiable detectors, ML triggers, Defect detection)  

⇒ Anomaly Detection for BSM physics searches           
(rest of this talk…) 

Machine Learning in (Particle) Physics

see e.g. Boyda et al., 2202.05838 
Butter et al., 2203.07460

Albergo et al., 2101.08176 
…

see e.g. Pata et al., 2101.08578
Kasieczka et al., 1902.09914

Brehmer et al., 1907.10621 
…

see e.g. Dorigo, 2203.13818
Govorkova et al.,2108.03986 

Akchurin et al., 2203.08969
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⇒ Common goal: to classify among different (un)known 
physical processes ⟺ to learn/approximate likelihoods 

Crucial to understand physics learned by the machine 

⇒ Helps to understand systematics & validate assumptions 
(i.e. MC, control region dependence) 

Challenge of uncovering and characterizing possible 
unexpected signals in (LHC) data.  

⇒ Need to identify signal regions, construct null-hypothesis 
tests, mitigate potentially large look elsewhere effects… 

Anomaly detection in (Particle) Physics

see e.g. Faucett, Thaler & Whiteson, 2010.11998

see e.g. Kasieczka et al., 2101.08320
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Input: representation of model p(x), finite number of 
examples {xi} sampled/computed/generated from p 

Output: mapping f (x → z) minimizing a loss function 

Common example: model of two distributions                  
with loss function  

⇒ f  will approximate 

Typical implementation in terms of                                     
(deep) neural networks 

Supervised ML                                                
a.k.a. Universal Function Approximation

(cross-entropy)

(likelihood ratio)

see e.g. B. Nachman, 1909.03081

L = �[si log(zi) + (1� si) log(1� zi)]

<latexit sha1_base64="KQTGLpZoZjJdi9FeYXXACuBcKSU=">AAACHXicbVDLSsNAFJ34rPUVdelmsAgVaUmk4AOEghsXLirYByQhTKaTdujkwcxEqKE/4sZfceNCERduxL9xkmahrQcGDufcy51zvJhRIQ3jW1tYXFpeWS2tldc3Nre29Z3djogSjkkbRyziPQ8JwmhI2pJKRnoxJyjwGOl6o6vM794TLmgU3slxTJwADULqU4ykkly9YQdIDjFi8AZewhq0hEuhzaJB9cGlR/AYVs2ayFiumbVMdVy9YtSNHHCemAWpgAItV/+0+xFOAhJKzJAQlmnE0kkRlxQzMinbiSAxwiM0IJaiIQqIcNI83QQeKqUP/YirF0qYq783UhQIMQ48NZllEbNeJv7nWYn0z5yUhnEiSYinh/yEQRnBrCrYp5xgycaKIMyp+ivEQ8QRlqrQsirBnI08TzondbNRP79tVJoXRR0lsA8OQBWY4BQ0wTVogTbA4BE8g1fwpj1pL9q79jEdXdCKnT3wB9rXD3mjnms=</latexit>

f(x) ⇠ p0(x)/p1(x)

1 + p0(x)/p1(x)

<latexit sha1_base64="iAJIrPrXfi0J+8fh1ullWgNVbCU=">AAACGHicbZDLSgMxFIYz9VbrbdSlm2ARKkI7IwUvq4IblxXsBTplyKSZNjTJDElGLEMfw42v4saFIm67821M21nY1gMhP99/Dsn5g5hRpR3nx8qtrW9sbuW3Czu7e/sH9uFRU0WJxKSBIxbJdoAUYVSQhqaakXYsCeIBI61geDf1W09EKhqJRz2KSZejvqAhxUgb5NuVsPR8Dj1FOfRCiXAa+44hldh3zTVO3YtF4NtFp+zMCq4KNxNFkFXdtydeL8IJJ0JjhpTquE6suymSmmJGxgUvUSRGeIj6pGOkQJyobjpbbAzPDOnBMJLmCA1n9O9EirhSIx6YTo70QC17U/if10l0eN1NqYgTTQSePxQmDOoITlOCPSoJ1mxkBMKSmr9CPEAmH22yLJgQ3OWVV0XzsuxWyzcP1WLtNosjD07AKSgBF1yBGrgHddAAGLyAN/ABPq1X6936sr7nrTkrmzkGC2VNfgE0wZ1d</latexit>

ps(x) , s = 0 , 1
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L(f, {xi})
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Example: distinguishing boosted massive 
resonances from QCD jets 

Input (x): detector readings            
(particle tracks, calorimeter clusters)  

Method: DeepNN trained on artificial (MC) 
or pre-tagged (labelled) samples {xi} 

Output: parametric classifier ( f ) with 
some (ROC) performance curve 

Supervised ML                                                
a.k.a. Universal Function Approximation

CWoLa Hunting
3

Are we missing something?

1) Ever-more sensitive 

dedicated searches for the 

standard culprits:

 – Minimal Supersymmetry

 – Top Partners

 – diboson / ttbar resonances

2) General-purpose 

‘model-independent’ 

searches for 

unexpected new 

physics

CWoLa Hunting
2

Are we missing something?

1) Ever-more sensitive 

dedicated searches for the 
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 – Minimal Supersymmetry
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 – diboson / ttbar resonances

figure by J. Collins
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residual dependence on simulation; indeed, one could even combine adversarial approaches

with CWoLa in this case to mitigate simulation dependence [31]. Finally, the CWoLa approach

presented here only applies to mixtures of two categories, and further developments would be

needed to disentangle multicategory samples.

The remainder of this paper is organized as follows. In Sec. 2, we explain the theoretical

foundations of the CWoLa paradigm and contrast it with LLP-style weak supervision and full

supervision. We illustrate the power of CWoLa with a toy example of two gaussian random

variables in Sec. 3. We then apply CWoLa to the challenge of quark versus gluon jet tagging

in Sec. 4, using a dense network of five standard quark/gluon discriminants to highlight the

performance of CWoLa on mixed samples. The paper concludes in Sec. 5 with a summary

and future outlook.

2 Machine learning with and without labels

The goal of classification is to distinguish two processes from each other: signal S and back-

ground B. Let ~x be a list of observables that are useful for distinguishing signal from back-

ground, and define pS(~x) and pB(~x) to be the probability distributions of ~x for the signal and

background, respectively. A classifier h : ~x 7! R is designed such that higher values of h are

more signal-like and lower values are more background-like. A classifier operating point is

defined by a threshold cut h > c; the signal e�ciency is then ✏S =
R
d~x pS(~x)⇥(h(~x)� c) and

the background e�ciency (i.e. mistag rate) is ✏B =
R
d~x pB(~x)⇥(h(~x)� c), for the Heaviside

step function ⇥. The performance of a classifier h can be described by its receiver operating

characteristic (ROC) curve which is the function 1�✏
h

B
(✏S). A classifier h is optimal if for any

other classifier h
0, ✏h

0
B
(✏S) � ✏

h

B
(✏S) for all possible ✏S . By the Neyman-Pearson lemma [39],

an optimal classifier is the likelihood ratio: hoptimal(~x) = pS(~x)/pB(~x). Therefore, the goal of

classification is to learn hoptimal or any classifier that is monotonically related to it.

In practice, one learns to approximate hoptimal(~x) from a set of signal and background ~x

examples (training data). When the dimensionality of ~x is small and the number of examples

large, it is often possible to approximate pS(~x) and pB(~x) directly by using histograms.

When the dimensionality is large, an explicit construction is often not possible. In this

case, one constructs a loss function that is minimized using a machine learning algorithm

like a boosted decision tree or (deep) neural network. The following section describes three

paradigms for learning hoptimal(~x) with di↵erent amounts of information available at training

time: full supervision, LLP, and CWoLa. The ideas presented here apply to any procedure

for constructing hoptimal(~x).

2.1 Full supervision

Fully supervised learning is the standard classification paradigm. Each example ~xi comes

with a label ui 2 {S,B}. For models trained to minimize loss functions, typical loss functions

– 3 –

SciPost Physics Submission

Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
median of multiple trainings.

similar information should be included in the ROC curve. For the background rejection we
see a sizeable variation from around 1/600 to better than 1/1000. Again, the cutting edge
ResNeXt50 and ParticleNet approaches lead to the best results, corresponding to an improve-
ment of the signal-to-background ratio by a factor ✏S/✏B > 300, and vastly exceeding the
current top tagging performance in ATLAS and CMS.

On the other hand, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups
remain competitive with the technically much more advanced ResNeXt50 and ParticleNet
networks. This suggests that even for a straightforward task like top tagging in fat jets we
can develop competitive and e�cient physics-specific tools. While their performance does not
quite match the state of the art standard networks, it is close enough to test both approaches
on key requirements in particle physics, like treatment of uncertainties, stability with respect
to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. As a starting point we can test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. The two strongest individual classifier outputs — ResNeXt50 and ParticleNet — are
not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we can

14

Example: QCD vs. t-quark (top-tagging)

Be
tte

r

Non-ML state of the art

arXiv:1902.09914
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Signal model pS(x) may not be known, unknown number of 
unlabelled examples {xi} sampled from pS may be present 
somewhere in data. 

Background model pB(x) (SM) known imperfectly, cannot be 
relied upon to subtract from data. 

However, often reasonable to                                       
assume signal is quasi-localized                                 
(unevenly distributed) in given                                       
dataset (e.g. resonant). 

⇒ “Weakly- & Unsupervised” ML 

Challenges of ML Applications to BSM



18

Classification from mixed samples: pure (signal, 
background) samples not available in real data 

1.) Assume f1, f2 known (e.g. from MC), then simply 

2.) Assume only f1 > f2 then use monotonicity of 

Train (NN) classifier only to distinguish two mixed samples!

Weakly-Supervised ML example                                              

are the mean squared error:

`MSE =
1

N

NX

i=1

⇣
h(~xi)� I(ui = S)

⌘2
, (2.1)

for the indicator function I, or the cross-entropy:

`CE = � 1

N

NX

i=1

⇣
I(ui = S) log h(~xi) +

�
1� I(ui = S)

�
log

�
1� h(~xi)

�⌘
, (2.2)

where N is the size of the subset (batch) of the available training data. With large enough

training samples, flexible enough model parameterization, and suitable minimization proce-

dure, the learned h should approach the performance of hoptimal.

2.2 Learning from label proportions

For weak supervision, one does not have complete and/or accurate label information. Here,

we consider the case of accurate labels, but in the context of mixed samples. Consider two

processes M1 and M2 that are mixtures of the original signal and background processes:

pM1(~x) = f1 pS(~x) + (1� f1) pB(~x), (2.3)

pM2(~x) = f2 pS(~x) + (1� f2) pB(~x), (2.4)

with the signal fractions satisfying 0  f2 < f1  1.

Instead of having training data labeled as being from pS or pB, we are now only given

examples drawn from pM1 and pM2 with the correspondingM1 andM2 labels. We are however

told f1 and f2 ahead of time. The resulting optimization problems are much less constrained

than those in Sec. 2.1, but learning is still possible. The key is to use several di↵erent mixed

samples with su�ciently di↵erent fractions in order to avoid trivial failure modes, as discussed

in Ref. [34]. One possible loss function is given by:

`LLP =

������

NM1X

i=1

h(~xi)

NM1

� f1

������
+

������

NM2X

j=1

h(~xj)

NM2

� f2

������
, (2.5)

where NM1 and NM2 are the number of M1 and M2 examples in the batch. One could extend

(and improve) this paradigm by adding in more samples with di↵erent fractions, but we

consider only two here for simplicity.

2.3 Classification without labels

CWoLa is an alternative strategy for weak supervision in the context of mixed samples. Rather

than modifying the loss function to accommodate the limited information as in Sec. 2.2, the

CWoLa approach is to simply train the model to discriminate the mixed samples M1 and M2

from one another. The classifier h trained to distinguish M1 from M2 (using full supervision)

is then directly applied to distinguish S from B. An illustration of this technique is shown in

Fig. 1. Remarkably, this procedure results in an optimal classifier (as defined in the beginning

of Sec. 2) for the S versus B classification problem:

– 4 –

hM1/M2

optimal(~x) = pM1(~x)/pM2(~x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Metodiev, Nachman & Thaler, 1708.02949

see also Nachman & Shih, 2001.04990
…
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Classification from mixed samples: pure (signal, 
background) samples not available in real data 

1.) Assume f1, f2 known (e.g. from MC), then simply 

2.) Assume only f1 > f2 then use monotonicity of 

Train (NN) classifier only to distinguish two mixed samples!
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signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Example: Model agnostic BSM search in di-jet events
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Figure 2: A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed
lines, and for (a,c) ✏ = 0.1 and (b,d) ✏ = 0.01. Dashed histograms represent the fit uncertainty. The lower panel is
the Gaussian-equivalent significance of the deviation between the fit and data. The fits are performed including the
sidebands, but only the signal region predictions and observations in each region are shown. As the NN is di�erent
for each signal region, the presented spectrum is not necessarily smooth. The top plots (a,b) show the result without
injected signal, and the bottom plots (c,d) present the same results but with signals injected only for the NN training
at mA = 3 TeV (Signal 1) and mA = 5 TeV (Signal 2), each with mB = mC = 200 GeV. The injected cross section for
each signal is just below the limit from the inclusive dijet search [101].
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Classification from mixed samples: pure (signal, 
background) samples not available in real data 

1.) Assume f1, f2 known (e.g. from MC), then simply 

2.) Assume only f1 > f2 then use monotonicity of 

Train (NN) classifier only to distinguish two mixed samples!
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Example: Model agnostic BSM search in di-jet events
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Figure 2: A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed
lines, and for (a,c) ✏ = 0.1 and (b,d) ✏ = 0.01. Dashed histograms represent the fit uncertainty. The lower panel is
the Gaussian-equivalent significance of the deviation between the fit and data. The fits are performed including the
sidebands, but only the signal region predictions and observations in each region are shown. As the NN is di�erent
for each signal region, the presented spectrum is not necessarily smooth. The top plots (a,b) show the result without
injected signal, and the bottom plots (c,d) present the same results but with signals injected only for the NN training
at mA = 3 TeV (Signal 1) and mA = 5 TeV (Signal 2), each with mB = mC = 200 GeV. The injected cross section for
each signal is just below the limit from the inclusive dijet search [101].
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Classification from mixed samples: pure (signal, 
background) samples not available in real data 

1.) Assume f1, f2 known (e.g. from MC), then simply 

2.) Assume only f1 > f2 then use monotonicity of 

Train (NN) classifier only to distinguish two mixed samples!

are the mean squared error:

`MSE =
1

N

NX

i=1

⇣
h(~xi)� I(ui = S)

⌘2
, (2.1)

for the indicator function I, or the cross-entropy:

`CE = � 1

N

NX

i=1

⇣
I(ui = S) log h(~xi) +

�
1� I(ui = S)

�
log

�
1� h(~xi)

�⌘
, (2.2)

where N is the size of the subset (batch) of the available training data. With large enough

training samples, flexible enough model parameterization, and suitable minimization proce-

dure, the learned h should approach the performance of hoptimal.

2.2 Learning from label proportions

For weak supervision, one does not have complete and/or accurate label information. Here,

we consider the case of accurate labels, but in the context of mixed samples. Consider two

processes M1 and M2 that are mixtures of the original signal and background processes:

pM1(~x) = f1 pS(~x) + (1� f1) pB(~x), (2.3)

pM2(~x) = f2 pS(~x) + (1� f2) pB(~x), (2.4)

with the signal fractions satisfying 0  f2 < f1  1.

Instead of having training data labeled as being from pS or pB, we are now only given

examples drawn from pM1 and pM2 with the correspondingM1 andM2 labels. We are however

told f1 and f2 ahead of time. The resulting optimization problems are much less constrained

than those in Sec. 2.1, but learning is still possible. The key is to use several di↵erent mixed

samples with su�ciently di↵erent fractions in order to avoid trivial failure modes, as discussed

in Ref. [34]. One possible loss function is given by:

`LLP =

������

NM1X

i=1

h(~xi)

NM1

� f1

������
+

������

NM2X

j=1

h(~xj)

NM2

� f2

������
, (2.5)

where NM1 and NM2 are the number of M1 and M2 examples in the batch. One could extend

(and improve) this paradigm by adding in more samples with di↵erent fractions, but we

consider only two here for simplicity.

2.3 Classification without labels

CWoLa is an alternative strategy for weak supervision in the context of mixed samples. Rather

than modifying the loss function to accommodate the limited information as in Sec. 2.2, the

CWoLa approach is to simply train the model to discriminate the mixed samples M1 and M2

from one another. The classifier h trained to distinguish M1 from M2 (using full supervision)

is then directly applied to distinguish S from B. An illustration of this technique is shown in

Fig. 1. Remarkably, this procedure results in an optimal classifier (as defined in the beginning

of Sec. 2) for the S versus B classification problem:
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Example: Model agnostic BSM search in di-jet events

(a) (b)

(c) (d)

Figure 3: 95% confidence level upper limits on the cross section for a variety of signal models, labeled by (mB,mC),
in GeV. The limits are shown for signal models with (a,b) mA = 3000 GeV and NN trained on signal region 2; and
(c,d) mA = 5000 GeV and NN trained on signal region 5. The limits are broken down between the analyses with
(a,c) ✏ = 0.1 and (b,d) ✏ = 0.01. Also shown are the limits from the ATLAS dijet search [101] and the ATLAS
all-hadronic diboson search [111]. The inclusive dijet limits are calculated using the W

0 signals from this paper and
the full analysis pipeline of Ref. [101]; the diboson search limits are computed using the Heavy Vector Triplet [112]
W

0 signal from Ref. [111]. The acceptance for the W
0 in this paper, compared to the W

0 acceptance in Ref. [111], is
86% and 54% for mW 0 = 3 and 5 TeV, respectively. Missing observed markers are higher than the plotted range.
Poor limits occur when the NN fails to tag the signal.
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Example BSM models
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Scanning over possible signal-rich regions (M1) can 
accumulate large trails factors (look-elsewhere effect). 

Crucial de-correlation of features {xi} and scanning variable 
(e.g. di-jet invariant mass Mjj)  

Assuming weakly supervised classifier s uncovers localized 
excess in data… 

What is the physics contained in s(x)?  

How is it sensitive to biases & systematics of {xi}? 

How to quantify the significance of (lack of) detection ? 

Challenges of (weakly supervised) ML for BSM

see e.g. Nachman, 1909.03081
Gosh & Nachman, 2109.08159

see e.g. Bortolato et al., 2103.06595
Dillon et al., 1904.04200, 2005.12319 

see e.g. Benkendorfer, Le Pottier & Nachman, 2009.02205

J. F. K. & Szewc, 2210.02226

see e.g. Bayer, Seljak & Robnik, 2108.06333 



23

In essence classification from mixed samples  

defines a mixture model assuming conditional 
independence: 

⇒ Null-hypothesis test = statistical independence of s & y  

⇒ Clear statement on the presence of signal (p-value) 

⇒ No fixed anomaly score cuts or B extrapolations!

Null-hypothesis test for Anomaly detection

are the mean squared error:

`MSE =
1

N

NX

i=1

⇣
h(~xi)� I(ui = S)

⌘2
, (2.1)

for the indicator function I, or the cross-entropy:

`CE = � 1

N

NX

i=1

⇣
I(ui = S) log h(~xi) +

�
1� I(ui = S)

�
log

�
1� h(~xi)

�⌘
, (2.2)

where N is the size of the subset (batch) of the available training data. With large enough

training samples, flexible enough model parameterization, and suitable minimization proce-

dure, the learned h should approach the performance of hoptimal.

2.2 Learning from label proportions

For weak supervision, one does not have complete and/or accurate label information. Here,

we consider the case of accurate labels, but in the context of mixed samples. Consider two

processes M1 and M2 that are mixtures of the original signal and background processes:

pM1(~x) = f1 pS(~x) + (1� f1) pB(~x), (2.3)

pM2(~x) = f2 pS(~x) + (1� f2) pB(~x), (2.4)

with the signal fractions satisfying 0  f2 < f1  1.

Instead of having training data labeled as being from pS or pB, we are now only given

examples drawn from pM1 and pM2 with the correspondingM1 andM2 labels. We are however

told f1 and f2 ahead of time. The resulting optimization problems are much less constrained

than those in Sec. 2.1, but learning is still possible. The key is to use several di↵erent mixed

samples with su�ciently di↵erent fractions in order to avoid trivial failure modes, as discussed

in Ref. [34]. One possible loss function is given by:

`LLP =

������

NM1X

i=1

h(~xi)

NM1

� f1

������
+

������

NM2X

j=1

h(~xj)

NM2

� f2

������
, (2.5)

where NM1 and NM2 are the number of M1 and M2 examples in the batch. One could extend

(and improve) this paradigm by adding in more samples with di↵erent fractions, but we

consider only two here for simplicity.

2.3 Classification without labels

CWoLa is an alternative strategy for weak supervision in the context of mixed samples. Rather

than modifying the loss function to accommodate the limited information as in Sec. 2.2, the

CWoLa approach is to simply train the model to discriminate the mixed samples M1 and M2

from one another. The classifier h trained to distinguish M1 from M2 (using full supervision)

is then directly applied to distinguish S from B. An illustration of this technique is shown in

Fig. 1. Remarkably, this procedure results in an optimal classifier (as defined in the beginning

of Sec. 2) for the S versus B classification problem:

– 4 –

2

interest ~x, LS/B(~x) = p(~x|S)/p(~x|B), with the help of an additional feature y uncorrelated with ~x. The latter variable,
often but not necessarily the invariant mass of the event, can be used to define two regions of interest: the signal
region M1 and the control (or side-band) region M2, where the signal-to-background ratio is assumed to be higher in
M1 than in M2. A weakly-supervised algorithm, CWoLa trains a classifier to distinguish between M1 and M2. The
obtained output function s(~x) can then be mapped to LM1/M2

(~x) through the likelihood ratio trick. The orthogonality
of y and ~x guarantees that LM1/M2

(~x) is a monotonous function of LS/B(~x) and thus possesses in principle optimal
statistical power.

Usual applications of CWoLa use the learned optimal classifier s(~x) to select events of interest and assign a certain
significance to the di↵erence in selected events in M1 and M2. The di↵erence in the resulting selection e�ciencies
✏M1,2 is a smoking-gun for the presence of signal in M1 (and also M2). However, this is only true in the limit of infinite
statistics. In a realistic setting where the dataset is finite, quantifying the degree to which the di↵erence in e�ciencies
relates to the presence of signal is non-trivial. One common strategy is to assume that there is no signal in M2 and
assess the agreement between the selected events in M1 and a background extrapolation from M2.

Our method constitutes an alternative to assess how the learned output s(~x) encodes di↵erences between M1 and
M2 caused by the presence of a signal. To introduce it, we focus on the density estimation framing of CWoLa, which
clearly defines a background-only or null hypothesis. At its heart, CWoLa is a mixture model where ~x and y are
assumed to be conditionally independent given the process label z = {S, B}. After defining M1 and M2 using y, the
trained classifier output is a function s(~x) that inherits the conditional independence with respect to y. The statistical
model can be explicitly written as

p(s(~x), y|⇡) = (1 � ⇡) p(s(~x)|B)p(y|B) + ⇡ p(s(~x)|S)p(y|S) , (1)

where ⇡ is the signal probability. The background-only hypothesis is explicitly written as p(s(~x), y|⇡ = 0) and cor-
responds to the case where the observed data shows independence between s(~x) and y. This is the key observation
for our strategy. For a given measured dataset of pairs {s(~xi), yi}, one can assess whether they are statistically inde-
pendent. If statistical independence is ruled out, the background-only hypothesis is ruled out, provided conditional
independence holds. Conversely, if statistical independence cannot be ruled out, one has a clear statement about the
incapability of CWoLa to discern whether any di↵erence between M1 and M2 originates from the presence of a signal
or is due to statistical fluctuations in the data.

Several tests of statistical independence exist for both discrete and continuous distributions, including mutual
information [7], Hoe↵ding’s D independence test [8] and distance correlation [9]. For simplicity, in the present work
we focus on the use of the estimated Mutual Information (MI) I of the measured probability distribution. MI encodes
the exact property we want to test as it measures the di↵erence between the joint distribution and the marginals:

I(s, y) = DKL(p(s, y)||p(s)p(y)) (2)
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On the other hand, for the full dataset the possible mixture between the two processes encoded in ⇡ 2 [0, 1] results in
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with the equality achieved when there is only one process or the two processes have the same probability distributions.
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residual dependence on simulation; indeed, one could even combine adversarial approaches

with CWoLa in this case to mitigate simulation dependence [31]. Finally, the CWoLa approach

presented here only applies to mixtures of two categories, and further developments would be

needed to disentangle multicategory samples.

The remainder of this paper is organized as follows. In Sec. 2, we explain the theoretical

foundations of the CWoLa paradigm and contrast it with LLP-style weak supervision and full

supervision. We illustrate the power of CWoLa with a toy example of two gaussian random

variables in Sec. 3. We then apply CWoLa to the challenge of quark versus gluon jet tagging

in Sec. 4, using a dense network of five standard quark/gluon discriminants to highlight the

performance of CWoLa on mixed samples. The paper concludes in Sec. 5 with a summary

and future outlook.

2 Machine learning with and without labels

The goal of classification is to distinguish two processes from each other: signal S and back-

ground B. Let ~x be a list of observables that are useful for distinguishing signal from back-

ground, and define pS(~x) and pB(~x) to be the probability distributions of ~x for the signal and

background, respectively. A classifier h : ~x 7! R is designed such that higher values of h are

more signal-like and lower values are more background-like. A classifier operating point is

defined by a threshold cut h > c; the signal e�ciency is then ✏S =
R
d~x pS(~x)⇥(h(~x)� c) and

the background e�ciency (i.e. mistag rate) is ✏B =
R
d~x pB(~x)⇥(h(~x)� c), for the Heaviside

step function ⇥. The performance of a classifier h can be described by its receiver operating

characteristic (ROC) curve which is the function 1�✏
h

B
(✏S). A classifier h is optimal if for any

other classifier h
0, ✏h

0
B
(✏S) � ✏

h

B
(✏S) for all possible ✏S . By the Neyman-Pearson lemma [39],

an optimal classifier is the likelihood ratio: hoptimal(~x) = pS(~x)/pB(~x). Therefore, the goal of

classification is to learn hoptimal or any classifier that is monotonically related to it.

In practice, one learns to approximate hoptimal(~x) from a set of signal and background ~x

examples (training data). When the dimensionality of ~x is small and the number of examples

large, it is often possible to approximate pS(~x) and pB(~x) directly by using histograms.

When the dimensionality is large, an explicit construction is often not possible. In this

case, one constructs a loss function that is minimized using a machine learning algorithm

like a boosted decision tree or (deep) neural network. The following section describes three

paradigms for learning hoptimal(~x) with di↵erent amounts of information available at training

time: full supervision, LLP, and CWoLa. The ideas presented here apply to any procedure

for constructing hoptimal(~x).

2.1 Full supervision

Fully supervised learning is the standard classification paradigm. Each example ~xi comes

with a label ui 2 {S,B}. For models trained to minimize loss functions, typical loss functions
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
median of multiple trainings.

similar information should be included in the ROC curve. For the background rejection we
see a sizeable variation from around 1/600 to better than 1/1000. Again, the cutting edge
ResNeXt50 and ParticleNet approaches lead to the best results, corresponding to an improve-
ment of the signal-to-background ratio by a factor ✏S/✏B > 300, and vastly exceeding the
current top tagging performance in ATLAS and CMS.

On the other hand, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups
remain competitive with the technically much more advanced ResNeXt50 and ParticleNet
networks. This suggests that even for a straightforward task like top tagging in fat jets we
can develop competitive and e�cient physics-specific tools. While their performance does not
quite match the state of the art standard networks, it is close enough to test both approaches
on key requirements in particle physics, like treatment of uncertainties, stability with respect
to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. As a starting point we can test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. The two strongest individual classifier outputs — ResNeXt50 and ParticleNet — are
not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we can
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Classification from mixed samples: pure samples not 
available in real data 

1.) Assume f1, f2 known (e.g. from MC), then simply 

2.) Assume only f1 > f2 then use monotonicity of 

Jet classification: mixed samples

are the mean squared error:

`MSE =
1

N

NX

i=1

⇣
h(~xi)� I(ui = S)

⌘2
, (2.1)

for the indicator function I, or the cross-entropy:

`CE = � 1

N

NX

i=1

⇣
I(ui = S) log h(~xi) +

�
1� I(ui = S)

�
log

�
1� h(~xi)

�⌘
, (2.2)

where N is the size of the subset (batch) of the available training data. With large enough

training samples, flexible enough model parameterization, and suitable minimization proce-

dure, the learned h should approach the performance of hoptimal.

2.2 Learning from label proportions

For weak supervision, one does not have complete and/or accurate label information. Here,

we consider the case of accurate labels, but in the context of mixed samples. Consider two

processes M1 and M2 that are mixtures of the original signal and background processes:

pM1(~x) = f1 pS(~x) + (1� f1) pB(~x), (2.3)

pM2(~x) = f2 pS(~x) + (1� f2) pB(~x), (2.4)

with the signal fractions satisfying 0  f2 < f1  1.

Instead of having training data labeled as being from pS or pB, we are now only given

examples drawn from pM1 and pM2 with the correspondingM1 andM2 labels. We are however

told f1 and f2 ahead of time. The resulting optimization problems are much less constrained

than those in Sec. 2.1, but learning is still possible. The key is to use several di↵erent mixed

samples with su�ciently di↵erent fractions in order to avoid trivial failure modes, as discussed

in Ref. [34]. One possible loss function is given by:

`LLP =

������

NM1X

i=1

h(~xi)

NM1

� f1

������
+

������

NM2X

j=1

h(~xj)

NM2

� f2

������
, (2.5)

where NM1 and NM2 are the number of M1 and M2 examples in the batch. One could extend

(and improve) this paradigm by adding in more samples with di↵erent fractions, but we

consider only two here for simplicity.

2.3 Classification without labels

CWoLa is an alternative strategy for weak supervision in the context of mixed samples. Rather

than modifying the loss function to accommodate the limited information as in Sec. 2.2, the

CWoLa approach is to simply train the model to discriminate the mixed samples M1 and M2

from one another. The classifier h trained to distinguish M1 from M2 (using full supervision)

is then directly applied to distinguish S from B. An illustration of this technique is shown in

Fig. 1. Remarkably, this procedure results in an optimal classifier (as defined in the beginning

of Sec. 2) for the S versus B classification problem:
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Key Challenge:  Mixed Samples are Mixtures

Mixed Classifier?

hmixed(!x) =
pA(!x)

pA(!x) + pB(!x)

hpure(!x) =
pq(!x)

pq(!x) + pg(!x)

≠

Classifier

1 0

Mixed A Mixed B

pmixed(!x) = fq pquark(!x) + (1− fq) pgluon(!x)

but…
∂hmixed("x)

∂hpure("x)
> 0

[Metodiev, Nachman, JDT, 1708.02949; see also Cranmer, Pavez, Louppe, 1506.02169;	
Blanchard, Flaska, Handy, Pozzi, Scott, 2016; Dery, Nachman, Rubbo, Schwartzman, 1702.00414; Cohen, Freytsis, Ostdiek, 1706.09451]


