
Job Optimizer for JAliEn
Haakon André Reme-Ness

ALICE Tier-1/Tier-2 Workshop, Budapest 26.09.2022



● New job optimizer and job splitter should not be different for users
○ Old JDL should work the same way
○ Some new arguments to the JDL added

● More focus on performance
○ Try balance loads better between central service machines
○ As little load as possible on the database
○ Hopefully faster splitting

Background

2



Workflow user submit

● User submit job with JDL
● JDL will be checked to ensure it 

is correct
● Check for user quota
● Prepare JDL and job to be 

inserted
● If job is not be split, insert into 

Queue database as Waiting
○ Together with 

corresponding jobagent 
to match with site

● If splitting, insert into database 
as Inserted

○ Split is defined in JDL

3



Workflow Job 
Optimizer

● Job optimizer is a continually 
running service on central 
service machines

● Local queue with max 5 threads
○ Each thread will try to 

pick a job to split
○ Does an update on 

oldest splitjob with status 
Inserted, setting status 
to Splitting

● Send the job to the job splitter

4



Workflow Job 
Optimizer

● Job id is needed, but update 
query returns no value

○ Want to do the operation 
in one query to alleviate 
db load

● Solution: Using user-defined 
variables

○ Can not get more than 
one job at a time

■ Returns latest 
value only

● Query for user defined variables 
without consulting table 
afterwards

5



Workflow Job 
Optimizer

● If a job is stuck in the Splitting 
status for too long without 
finishing or producing errors, an 
action must occur

● Try splitting again
○ Retain time for this action
○ When inserting this time 

can be matched to last 
updated in database to 
ensure it is not added 
twice

6



Workflow Job Splitter

● Prepare subjobs JDL before 
attempting to split

○ #alien#
■ Mention later

● Get input data (list or collection)
● Split into subjobs

7



Splitting into subjobs

● Split is based on the 
inputdata

○ Subjobs will have different 
input data

○ Some exceptions

8



Subjob JDL

● Subjob JDL contains redundant 
information

○ Already exist in the masterjob
○ Takes up more resources than needed

■ Whole JDL stored as a varchar in the 
database

○ Solution: Describe subjobs as only the changes 
from masterjob

■ Apply changes to get full JDL
○ Not reflected in the database as of now, so the 

changes are applied before inserting into 
database

9



Workflow Job Splitter
● After JDL for subjobs are ready, 

prepare jobagents for subjobs and 
try to insert into Queue database

○ Use masterjob to populate 
relevant fields in the same 
insert query

○ Set status as Waiting to be 
ready for match with site

○ Status for masterjob is set 
to Split

● Contrary to old AliEn, this is done 
as one transaction.

○ All subjobs are inserted or 
none

10



JDL Split Fields

● JDL field Split defines if it is a splitjob, and how to split
● Split strategies:

○ Production
○ File, directory, parent directory
○ SE (Storage Element)
○ Custom

● Other Split arguments in the JDL includes:
○ SplitMaxInputFileNumber —> Set a limit for number of inputdata files per subjob
○ SplitMinInputFileNumber —> Set a minimum threshold for number of inputdata files per subjob, relevant to 

SE splitting
○ SplitMaxInputFileSize —> Set a limit to filesizes for inputdata files per subjob
○ Argument related to which SE to use?

■ Not implemented, can be effective if it is know that all input datafiles is found on one SE, or close by
○ #alien#

11



Production strategy

● Not a true split
● Same job duplicated a number of times

○ Monte carlo simulations
● Inputdata remains the same 
● Split = production:1-100

○ Counter starts at lowest value

12



File, directory, parent directory strategy

● Inputdata files are split based on their LFN (Logical File Name)
○ Inputdata files under same directory might be grouped together
○ Splitting by file ensures that each subjobs have only one inputdata file

● Split = file/directory/parentdirectory

13



SE strategy

● Group inputdata based on locality 
○ Starting with groups that share all SE’s

● Getting the SE’s for a large number of files can be time and resource 
consuming

○ Find LFN -> find GUID -> find PFN -> find real PFN -> find SE
○ Multiple database queries each step
○ To make it more efficient each steps take advantage of catalogue database being partitioned 

into different tables
■ Split the list of input into the corresponding tables, and do whole operations 

● Repeat for each step until you have real PFN

14



SE strategy

● After grouping inputdata by SE, some groups might include a 1000 inputdata 
files, while others only 1

○ Old AliEn did nothing to try and balance the load of the subjobs
○ JAliEn tries to group smaller groups together, based on one shared SE

■ SplitMinInputNumberFiles argument can set the threshold all groups must go voer
○ If there are none shared SE’s, group together based on distance between SE

● Split = SE

15



Custom strategy

● The JDL for the subjobs must be defined in the JDL field SplitDefinitions
● Not been through real testing to ensure correctness as of now
● Split = custom
● SplitDefinitions = {JDL for subjob1, JDL for subjob2}

16



#alien# argument

● Replace #alien# in JDL with corresponding value
○ Based on what #alien# and subjob, counter most used

● In AliEn #alien# was limited to a few fields in JDL, Split Arguments, Outputdir, 
Output…

● JAliEn allows it to be defined anywhere in the JDL
○ Split Arguments is therefore redundant, but it still works as before
○ Doing a lot of matches to find and replace #alien# arguments in each subjob can be 

expensive
■ Solution: Do matching only on masterjob -> replace with lambda function
■ Run lambda function with correct input when building subjob JDL

17



#alien# argument

● #alien_counter_03i# —> 001, 002, 003…
○ #alien_counter# —> 1,2,3…

● #aliendir# —> /hremenes/input/inpudata = input
● #alienfulldir# —> /hremenes/input/inpudata = /hremenes/input/inputdata
● #alienfilename/inputdata.root(oldvalue)/inputdata(newvalue)/# —> 

/hremenes/input/inputdata.root = /hremenes/input/inputdata
● Use first, last or all in front to choose which inputdata file for the subjobs to 

use for the options above (Example: #alienfirstdir#)
○ “First” is default, uses first inputdata file, last the opposite
○ “All” uses all inputdata joined together with a “,” as delimiter

18



Going forward

● Running smoothly on a local setup that interacts with database that contains 
production data for grid and catalogue

○ Still needs more testing to see where it breaks in an environment closer to production
● Next step is trying to run the job optimizer and job splitter in parallel and see 

the outcome
○ Fix eventual problems that arise

19



Thank you
Email: haakon.andre.reme-ness@cern.ch

20


