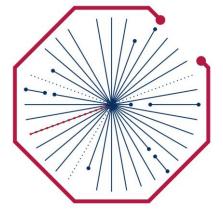
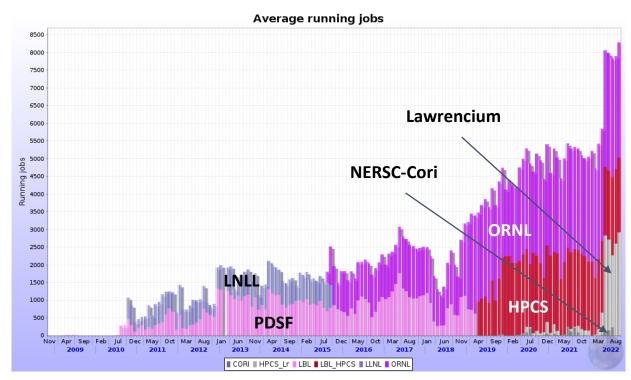


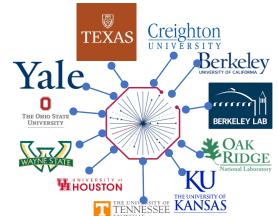
Office of Science


US sites - operations and resources planning

ALICE T1/T2 Workshop

September 28, 2022


Irakli Chakaberia



US Department of Energy Supported ALICE-USA Group

- ALICE-USA Computing project provides and maintains compute and storage resources for ALICE
- Fulfills DOE funded MoU-based ALICE USA obligations for compute and storage resources to ALICE
- Operates ALICE grid facilities at 2 DOE labs
- Project was proposed in 2009
- Operational changes 2017-2021
 - ORNL T2 relocated within ORNL, personnel retained
 - New LBNL/ITD cluster HPCS, PDSF retired in 2019
 - Report all resources to the WLCG under the US_LBNL_ALICE federation
 - Funded R&D use of HPC resources
 - Opportunistic use of Lawrencium supercomputer at LBNL

US-ALICE Review Meetings

- External project review in July 2021
- Received favorable report

• US Operations review in May 2022

<section-header><section-header><section-header><section-header><section-header><section-header>

After two years we get back together at the Lawrence Berkeley National Laboratory for the annual ALICE USA Grid Operations overview meeting.

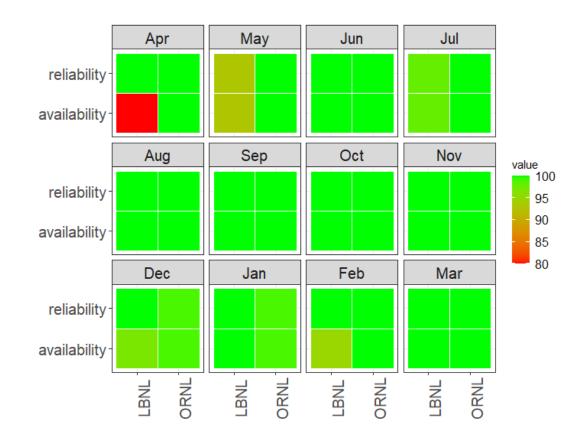
Starts 4 May 2022, 07:00 Ends 6 May 2022, 19:00 America/Los_Angeles Cawrence Berkeley National Laboratory 70-191 LBNL. BLDG 70 Go to map

2021 RRB CPU Delivery vs. Obligations

- For the accounting reasons obligations are evenly split between sites, in reality during the reporting period ORNL had slightly less CPU
- ORNL only reported, to OSG, 4 hours of downtime during RRB | 2021 year
- LBNL has reported about 3 weeks of downtime

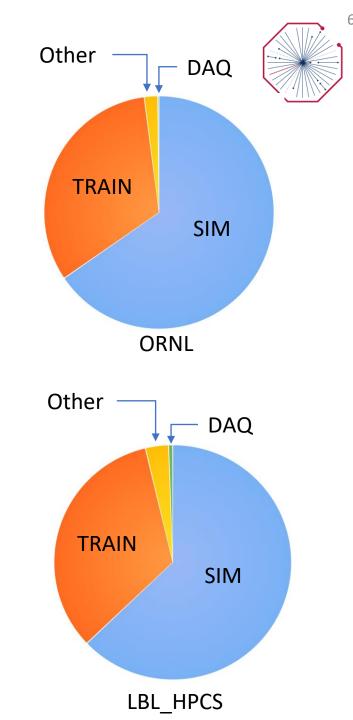
CPU	
Obligations	kHS06
ALICE-USA	70.25
LBNL HPCS T2	35.125
ORNL T2	35.125

USA T2 Site	Per/core CPU (HS06/Core)	CPU Delivered (MHS06*hr) ALICE- Monitored	CPU Delivered (MHS06*hr) WLCG- Monitored	ALICE-USA Obligation (MHS06*hr)	Delivered per WLCG- Monitored Obligation (%)
LBNL	16.7	303.3	318.8	290.1	109.9
ORNL	11.5	302.2	303.2	307.6	98.6
Total		605.5	621.9	597.6	104.1


WLCG Summary | RRB 2021

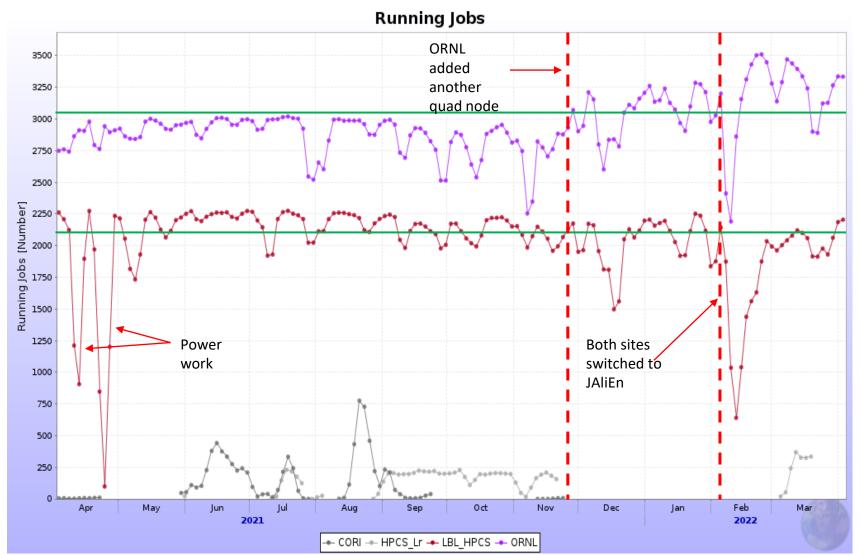
Target Availability for each site is 97.0%.

Availability Algorithm:

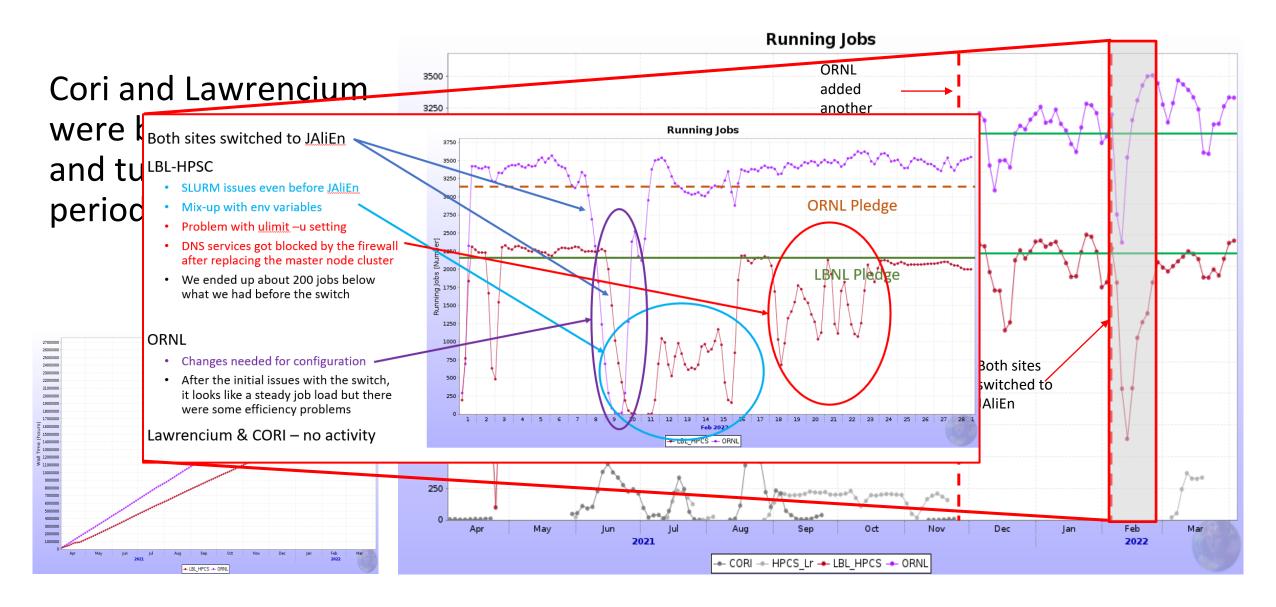

@ALICE_CE * @ALICE_VOBOX * all AliEn-SE

MonAlisa Summary | RRB 2021

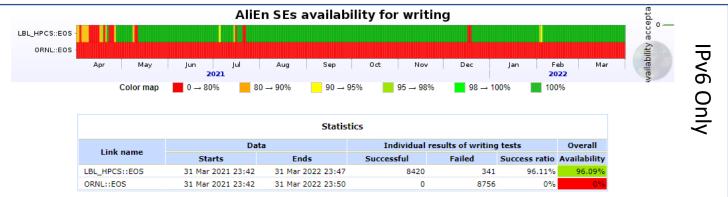
- Average job CPU efficiency and total wall time
- JobMix defines the average CPU efficiency delivered



CPU Performance | RRB 2021

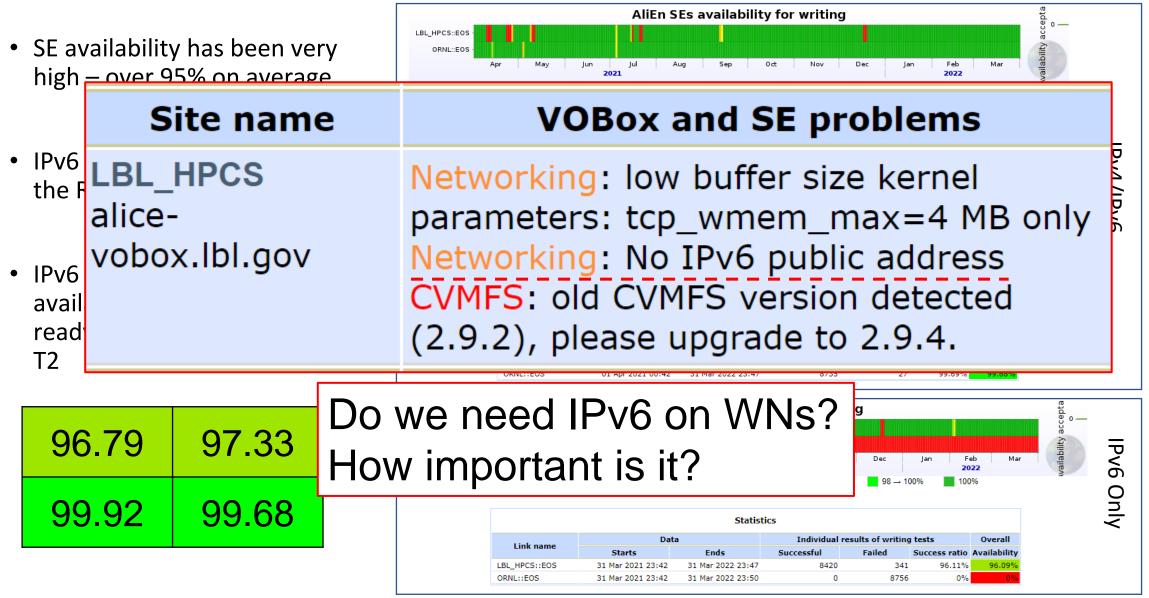

Cori and Lawrencium were being tested and tuned during this period.

CPU Performance | RRB 2021


Storage Performance | RRB 2021

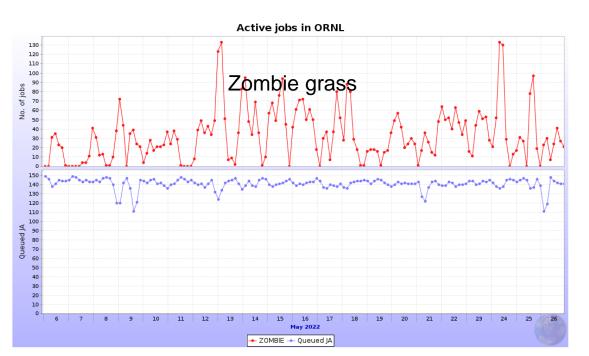
°

- SE availability has been very high over 95% on average
- IPv6 is up at LBNL for most of the RRB2021
- IPv6 infrastructure is now available at ORNL as well and is ready to be configured on our T2


96.79	97.33
99.92	99.68

Storage Performance | RRB 2021

Lessons Learned - LBNL

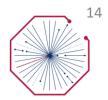


- AliEn to JAliEn switch needed accurate attention to ENV and LDAP settings
 - ulimit setting became important with much more java and singularity processes spawn by JAliEn
 - Initial TTL at LBL was set for 48 hours that highlighted the issue with the jobAgents sitting idle
 - Setting was changed to match one at ORNL (25 hours) that seems optimal with the length of jobs, thus SLURM jobs expire and not let jobAgents sit idle for long
 - This change recovered about 200 jobs for LBNL and later the issue with the idle jobAgent was fixed

Lessons Learned - ORNL

- Unusual number of jobs terminating simultaneously on certain hosts
- No obvious reasons (nothing logged, no anomalous system behavior)
- SLURM reported that the host was down for one cycle, then it was back up again - marked the jobs dead, killed after reconnection
- Mean run time across all jobs on cray-012 varied between 4 hours and 15.3 hours. Mean run time across all jobs on 109 varied between 12 minutes and 15.1 hours.
- Diagnosing: host, network, switches no issues
- Log files report no problems until they stop
- Solution: a couple of nodes had stale /etc/host files they were down on last configuration push. Updating host files resolved the issue.
- Would a configuration mismatch monitoring and logging be a good idea to avoid such problems in the future?!

Lessons Learned - ORNL


- Unusual number of jobs terminating simultaneously on certain hosts
- No obvious reasons (nothing logged, no anomalous system behavior)
- SLURM reported that the host was down for one cycle, then it was back up again - marked the jobs dead, killed after reconnection
- Mean run time across all jobs on cray-012 varied between 4 hours and 15.3 hours. Mean run time across all jobs on 109 varied between 12 minutes and 15.1 hours.
- Diagnosing: host, network, switches no issues
- Log files report no problems until they stop
- Solution: a couple of nodes had stale /etc/host files they were down on last configuration push. Updating host files resolved the issue.
- Would a configuration mismatch monitoring and logging be a good idea to avoid such problems in the future?!

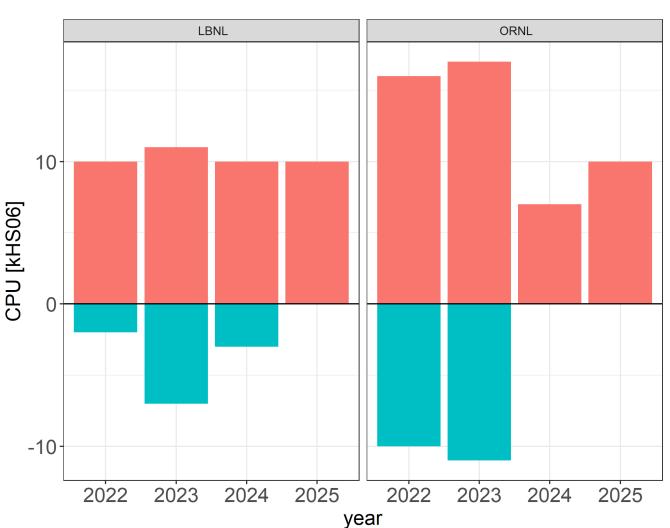
13

Slide from: Pete Eby & Steve Moulton

- HTTPS support was enabled on both ORNL and LBNL sites in Mid 2021
- NERSC security scans discovered a vulnerability in the implementation.
- John reported a security vulnerability to EOS team in August.
- EOS replied that they will fix the issue.
- ALICE-USA sites disabled the HTTPS support
- Fix was implemented pretty promptly in <u>September 2021</u>
- But we only learned about it by explicitly inquiring about the subject in June 2022
- This raises questions:
 - Should we have a convenient way of communicating which EOS/XRootD/CVMFS/etc. versions have the necessary developments/fixes and need to be updated?
 - JAliEn handles updates pretty seamlessly and transparently for the sites but the rest need manual involvement from the system admins, however they need a timely cue to act
- For the moment HTTPS is enabled with the new implementation and by explicitly firewalling the access for the library with vulnerable implementation (XrdHttp is is use and libmicrohttpd is firewalled)

ALICE-USA Obligations and Acquisition Strategy

 ALICE-USA share of resources in respect to WLCG / C-RCG recommendations for the next few years and planned hardware acquisition strategy table

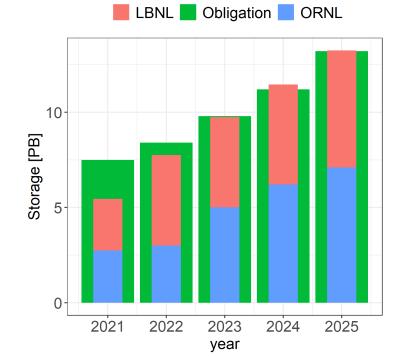

Year	FY2021	FY2022	FY2023	FY2024	FY2025
ALICE Requirements					
CPU (kHS06)	852	1013	1164	1338	1579
Disk (PB)	91	104	121	138	163
ALICE-USA Participation					
ALICE M&O-A	561	571	566	566	566
ALICE-USA M&O-A	46	46	46	46	46
ALICE-USA/ALICE (%)	8.20%	8.06%	8.13%	8.13%	8.13%
ALICE-USA Obligations					
CPU (kHS06)	69.9	81.6	94.6	108.7	128.3
Disk (PB)	7.5	8.4	9.8	11.2	13.2

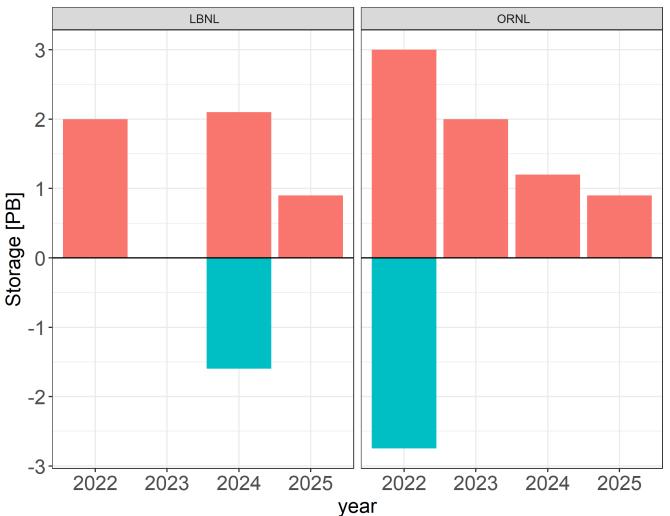
Resource	Installed	FY2022	FY2023	FY2024	FY2025
LBNL HW & Costs					
CPU change (+/- kHS06)		-2.0+10.0	-7.0+11.0	-3.0+10.0	0.0 + 10.0
CPU Installed (kHS06)	35	43	47	54	64
Disk change (+/- PB)		0.0 + 2.0	0.0 + 0.0	-1.6+2.1	0.0+0.9
Disk installed (PB)	2.75	4.75	4.75	5.25	6.15
ORNL HW & Costs					
CPU change (+/- kHS06)		-10.0+16.0	-11.0+17.0	0.0+7.0	0.0+10.0
CPU Installed (kHS06)	35	41	47	54	64
Disk change (+/- PB)		-2.75+3.0	0.0 + 2.0	0.0+1.2	0.0+0.9
Disk installed (PB)	2.75	3.00	5.00	6.20	7.10

CPU Acquisition

- We are gradually retiring out of warranty hardware
- HS06 for the planned CPU acquisition is roughly estimated based on the measurements we made on similar nodes

LBNL Obligation ORNL





Storage Acquisition

- Our storage utilization has been on a lighter side
- We keep evaluating the utilization and purchase the new storage based on it and optimized for the available budget



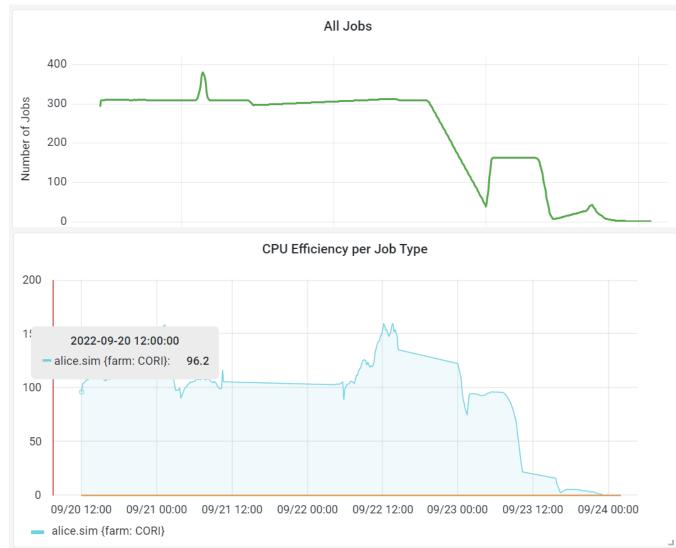


HPCS Lawrencium

- R&D project for using opportunistic resources on HPC clusters is now fully operational
- We make steady use of Lawrencium for the past half a year month
- Started with only MC jobs to minimize frustration if preemption was Performance was too disruptive, but it proved so reliable that we mixed in train jobs for the past month

2022 RRB CPU Delivery vs. Obligations

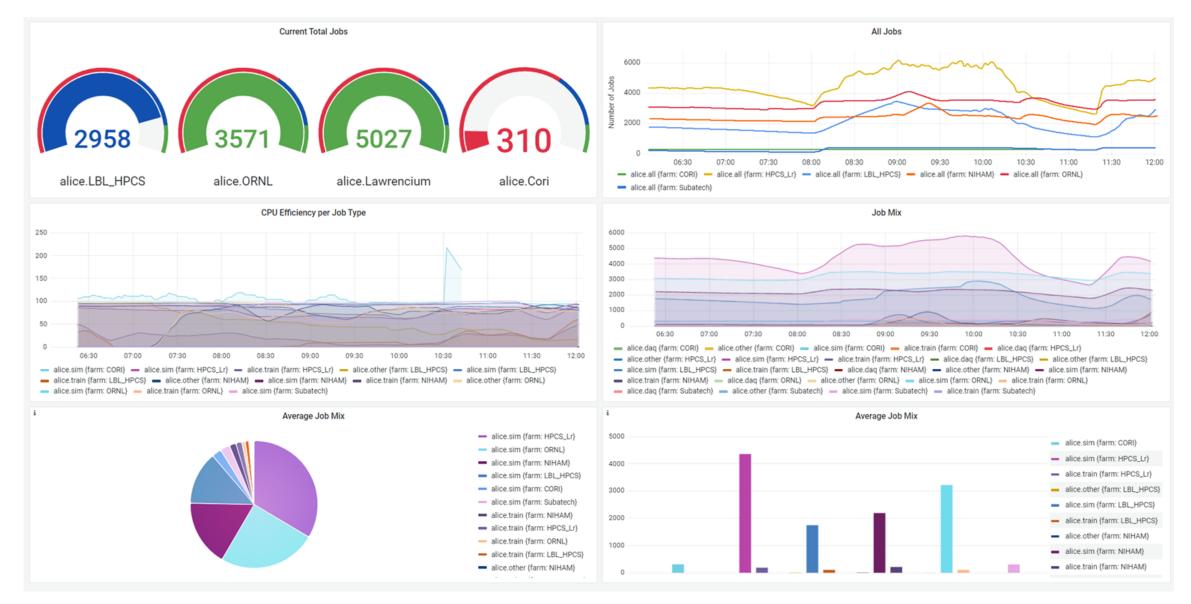
- Due to some budget uncertainties the FY2021-2022 hardware acquisition was postponed and is in progress right now
- This causes slight under delivery for the ALICE-USA sites starting RRB2022
- The use of Lawrencium however picks up the slack


USA T2 Sites	Per/cpre CPU (HS06/Core)	CPU Delivered (MHS06*hr) ALICE-Monitored	CPU Delivered (MHS06*ht) WLCG-Monitored	ALICE-USA Obligation (MHS06*hr)	Delivered (%) WLCG-Monitored	Delivered (%) ALICE- Monitored	Delivered ALICE-Monitored Excluding Lawrencium
LBNL	16.7	148.9	191.8	89.544	2.141883543	166.3%	82.4%
ORNL	11.5	82.7	84.8	89.544	0.946723399	92.4%	92.4%
Total	28.2	231.6	276.6	179.088	1.544303471	129.3%	87.4%

NERSC Allocation

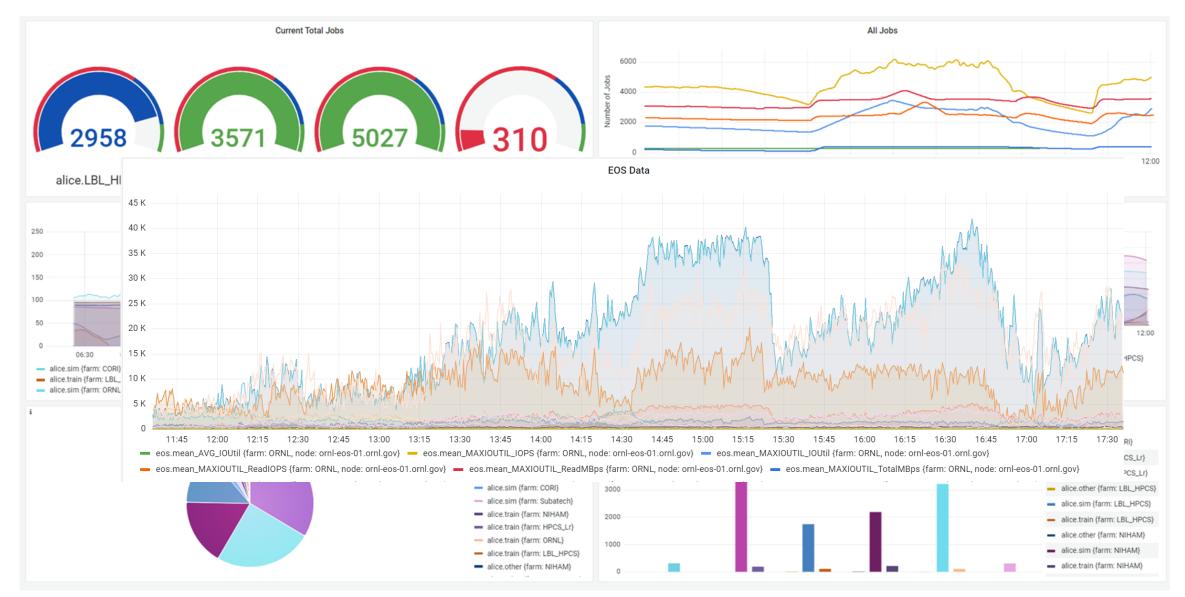
- As part of the project, we request allocation on NERSC HPCs
- Cori is generally used as out R&D platform for HPCs
- Cori was announced to retire in January 2023, need to start planning to move the workflow to the new Perlmutter machine

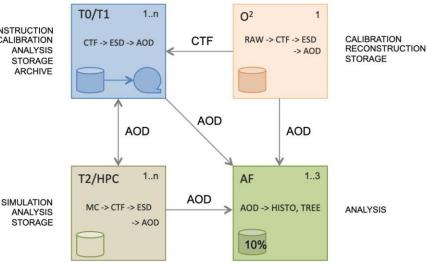
$\mathsf{Cori} \to \mathsf{Perlmutter}$


Cori	Partition	# of nodes	Processor	Clock Rate	Cores Per Node	Memory Per Node
	Login	20	Intel Xeon Processor E5- 2698 v3	2.3 GHz	32	515 GB
	Haswell	2,388	Intel Xeon Processor E5- 2698 v3	2.3 GHz	32	128 GB
	KNL	9,688	<u>Intel Xeon Phi Processor</u> <u>7250</u>	1.4 GHz	68	96 GB (DDR4), 16 GB (MCDRAM)
	Large Memory	20	AMD EPYC 7302	3.0 GHz	32	2 TB

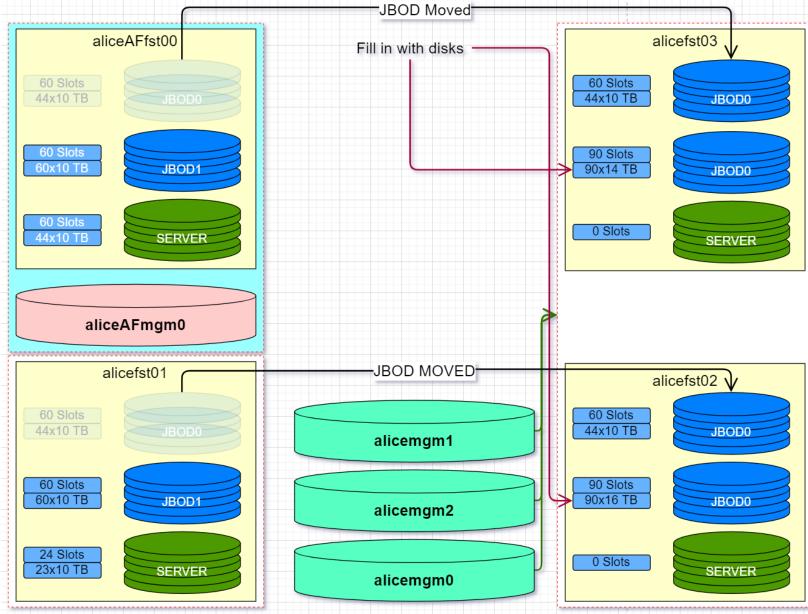
Perlmutter

	Partition	# of nodes	CPU	Cores Per Node	GPU	Aggregated Memory [TB]
	GPU	1536	1x AMD EPYC 7763	64 for CPU	4x <u>NVIDIA A100</u> (40GB)	240
	CPU	3072	2x <u>AMD EPYC 7763</u>	64	-	384
	Login	40	1x <u>AMD EPYC 7713</u>	64	1x <u>NVIDIA A100</u> (40GB)	
	Large Memory	4	1x <u>AMD EPYC 7713</u>	64	1x <u>NVIDIA A100</u> (40GB)	


ALICE-USA Local cluster monitoring


ALICE-USA Local cluster monitoring

ALICE-USA Analysis Facility


- ALICE Collaboration has introduced the concept of Analysis Facility (AF) in its Run 3 computing model
 - ALICE AF is meant to be a Grid Facility like T2s
 - AFs will provide resources dedicated for the AOD level physics analysis
- The proposal to host such an AF by the ALICE-USA was presented to the RECONSTRUCTION DOE
 - ~2000 cores for analysis jobs
 - ~2.5 PB of usable disk storage
- AF is planned to be hosted at LBL
 - In parallel with our current T2
 - The data would be accessible from NERSC by ALICE-USA physicists (small latency access)
- DOE showed interest in the project
- Project is pending additional consideration by the DOE

ALICE-USA Analysis Facility Prototype

- With the retired out-of-warranty LBNL WN and storage we plan to build ALICE AF prototype facility
- In existing setup ALICE shares storage and CPU resources with STAR experiment
- Plan is to move STAR storage and CE to ITD Lr cluster
- Rearrange storage into 3 alicefsts and 1 aliceAFfst

25

Potential use of ORNL out-of-warranty hardware

- ORNL will also retire some hardware that could be used for:
 - Second prototype AF
 - Feedback: Perhaps a dedicated site where developers can test fast data access type of jobs
 - US-based CCDB storage element
 - Feedback: This may have value to have db replica of a particular type
- Perhaps both?!

- ALICE-USA Computing project grows along with ALICE to meet it's ALICE-USA obligations
- We currently operate two T2 sites, one at LBL and one at ORNL
- Sites continue to deliver pledged resources with very high availability and reliability
- Both sites have successfully switched to JAliEn in the middle of February
- Local R&D projects have good results in utilizing the HPC recourses Lawrencium is now a wellrespected member of ALICE grid family
- Hosting of an AF, as part of the ALICE-USA computing project, was evaluated, proposed, and plans for the prototype facility are in place