
JAliEn for HPC, whole-node and
multicore jobs

Sergiu Weisz
sergiu.weisz@upb.ro

26/09/2022

Software Updates for the ALICE Run3 and Beyond

- Updated data acquisition model
- Increased 100x event rate
- Generation of 10x more data

- New software framework for the experiment
- Parallel memory-sharing processes
- Fit into the 2GB/slot Grid limits

- Grouping of analysis tasks using the same input data
- Independent processes run in multicore environment - increased I/O efficiency

- New paradigm: multi-core scheduling and payload support

2

Tackling Multi-core Jobs

3

- New JobRunner component starts payload depending on slot configuration

- Single-core slots remain unchanged

- Multi-core slots can scale up or down depending on available jobs

4

Multi-core Scheduling

Central Services

Computing Element Job Runner

matcharg: CPUCORES=8
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=8JDL file

CPU=8

Resource pool

5

Multi-core Scheduling

Central Services

Computing Element Job Runner

matcharg: CPUCORES=8
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=8JDL file

Job Agent
Thread 1
CPU=8

Job Wrapper

ALIEN_JDL_CPUCORES=8

Environment

CPU=0

Resource pool

6

Central Services

Computing Element

matcharg: CPUCORES=8
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=1JDL file

CPU=8

Resource pool

Multi-core Scheduling - 1 Core Jobs

Job Runner

7

Central Services

Computing Element

matcharg: CPUCORES=8
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=1JDL file

Job Agent
Thread 1
CPU=1

Job Wrapper

ALIEN_JDL_CPUCORES=1

Environment

CPU=7

Resource pool

Multi-core Scheduling - 1 Core Jobs

Job Runner

8

Central Services

Computing Element

matcharg: CPUCORES=8
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=1JDL file

Job Agent
Thread 1
CPU=1

Job Wrapper

ALIEN_JDL_CPUCORES=1

Environment

CPU=0
Job Agent
Thread 8
CPU=1

Job Wrapper

Resource pool

…

Multi-core Scheduling - 1 Core Jobs

Job Runner

Whole-node Scheduling

9

- What?
- Instead of running jobs in slots that will fill a node, one slot is one node

- Why?
- Better control of job environment
- Allows for clever scheduling, like oversubscription

- How?
- Per JobRunner resource management
- For each node we check the RAM and CPU available and run as many jobs as possible

10

Central Services

Computing Element

matcharg: CPUCORES=0
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

AvailableCPUs
= min(CPU cores, Mem/2GB)

= 24

Resource pool

Whole-node Scheduling Run Through

Job Runner

CPU cores = 32
Mem = 48GB

11

Central Services

Computing Element

matcharg: CPUCORES=0
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=8JDL file

AvailableCPUs
= min(CPU cores, Mem/2GB)

= 24

Resource pool

Whole-node Scheduling Run Through

Job Runner

CPU cores = 32
Mem = 48GB

12

Central Services

Computing Element

matcharg: CPUCORES=0
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=8JDL file

Job Agent
Thread 1
CPU=8

Job Wrapper

AvailableCPUs
= 16

Whole-node Scheduling Run Through

Job Runner

Resource pool

13

Central Services

Computing Element

matcharg: CPUCORES=0
cerequirements: other.cpucores>=1

submitarg: "-c 8" (SLURM)

Compute
node

CPUCores=8JDL file

Job Agent
Thread 1
CPU=8

Job Wrapper

AvailableCPUs
= 0

Job Agent
Thread 3
CPU=8

Job Wrapper

Whole-node Scheduling Run Through

Job Runner

Resource pool

Job Agent
Thread 2
CPU=8

Job Wrapper

LDAP Entries for Multi-core

- Assigned cores per slot are set in the matcharg: CPUCORES variable
- Set to 0 if using whole node scheduling

- cerequirements accounts for the requirements imposed by the CE to host the
execution of jobs

- The CE might impose constraints on the number of used cores

- submitarg sets the arguments to be appended to the batch queue submission
command

- The site is added to the multicore_8 partition

14

Single and Multi-core Job Share

Monthly view of main sites running single-core jobs

15

Monthly view of main sites running eight-core jobs

Sum avg: 2313Sum avg: 114928

- 2% of the jobs are multi-core
- 10% of cores used in multi-core jobs

Caveats of Multi-core Jobs

- More file descriptors open => we should double check the open file ulimit
- The issue is both with CVMFS and the grid process, set both services

- More running processes => we should double check the running process limit

- Higher load on CMVFS => we recommend 20GB per node cache

- Jobs may use too much CPU => we should isolate multi-core slots

16

HPC resources

17

Why HPC?

18

Chart extracted from Cori supercomputer at Lawrence
Berkeley National Lab

HPC Particularities

- Closed networks

- Heterogeneous architecture

- Peculiar software distributions
- Some can’t run CVMFS

19

Meet CORI

- Runs SLES 15

- Only whole-node scheduling

- 2,388 nodes running Intel Xeon Processor E5-2698 v3, 32 core, 128 GB memory

- Jobs run in Shifter containers

- Outside connection from nodes and nodes to CE connection

- Full CVMFS support

20

Running Jobs On CORI So Far

21

14k jobs

Scheduling peaks

- Most of the time
running 100-200 jobs

- Peaks in scheduling,
as expected

- Long shutdown while
testing networking
and job behaviour

Running Jobs On CORI

- JAliEn runs from the source files

- In order to have a working environment, we have to run the jobs in a Shifter container
- The only packages installed are strace and HEP_OSlibs and debugging applications
- CVMFS is mounted using Shifter

- We still run the old MonaLisa scripts

22

Issues With Running Jobs On CORI

- VObox scripts don’t work
- There’s an incompatibility with the CVMFS java version
- For now we’re running a source files instance with running scripts changed

- We’re working now on demonizing the CE without the vobox scripts

- Low uptime is a big problem
- Have to always keep an eye out for the screen being killed

23

Running Analysis Jobs On CORI

- CORI supercomputer is now limited to running simulation jobs

- Analysis tasks are I/O intensive operations
- Require download bandwidth of at least 10 MB/s per core

- No dedicated storage - all data is accessed remotely
- Pre-location of the data in the nearest SE - ALICE::LBL_HPCS::EOS.
- Bandwidth link of 30 Gbps

- Study of site capabilities and behavior in concurrent downloads
- Usage of crawling tool reporting dimensions and duration of downloads

24

Running Analysis Jobs On Supercomputers

- Relevant factors:
- Location of SE from which data is taken - ALICE::LBL_HPCS::EOS
- File system of the tasks’ working directory
- Amount of parallel tasks running on working nodes
- Number of used nodes

- Observed much lower bandwidth than expected
- Tests on speed of data storage revealed that the problem was on the CORI networking

infrastructure

- Not enough details on network topology - handed out problem to site admins
- Developed set of python scripts that could be used without Grid credentials
-

25

Opportunistic job
scheduling

26

Opportunistic Jobs?

- What?
- Preemptable job queues

- Why?
- Cheap resources

27

Running Jobs On HPCS_Lr So Far

- AKA the second
JAliEn install

- Using whole-node
slots

- Jobs are being
constantly preempted,
but their number is
lower

- Average running: 3082

28

Job Fluctuations On HPCS_LR

- Expected job
fluctuation

- Average preemption
rate: 9.144

- Job fail rate: 0.2%

29

Running Jobs On Lawrencium

- JAliEn runs using vobox scripts

- Jobs run in a whole-node scheduling fashion

- It has turned out to be a good resource provider, for now

30

Conclusion

31

- Multi-core jobs are running on the grid

- Sites should migrate to multi-core slots

- If available, whole-node slots are recommended

- HPC resources have been integrated with mild success

- Scavenging queue have proven to be a great success

