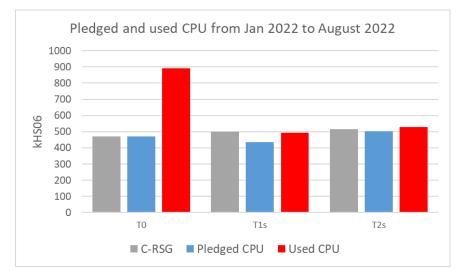


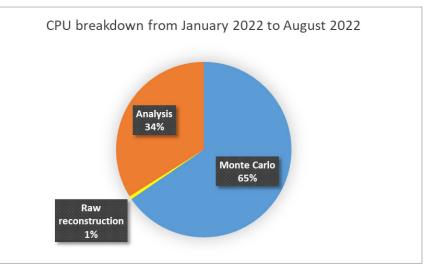
ALICE Computing Resource Stefano Piano

September 26th, 2022

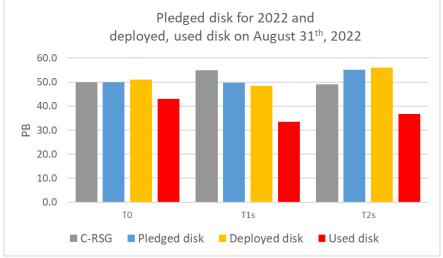
ALICE T1/T2 Workshop - Stefano Piano - ALICE computing resources

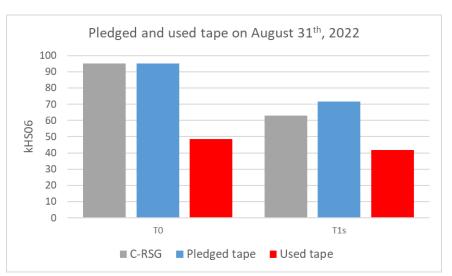
Outline


- Resources usage in 2022
- Status of data taking and processing
- ALICE 2023 Resource Requests
- Impact of the war in Ukraine on ALICE computing resources
- Pledged resources for 2023
- Estimates for 2024
- LHC energy consumption reduction

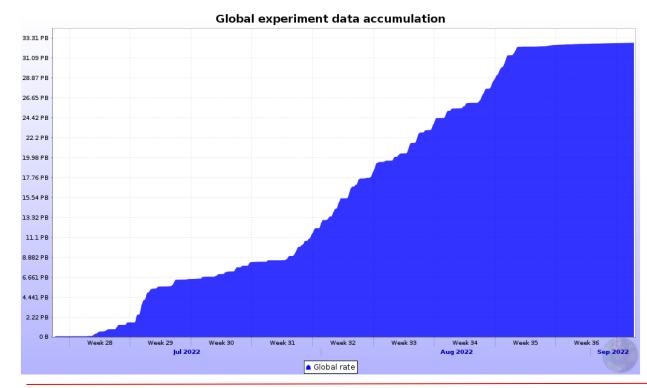

Resources usage in 2022

CPU utilization and breakdown by job types


- Full utilization of the available resources with significant amount of opportunistic CPU usage at the T0, where Used/Pledged CPU ~1.9
- CPU capacity covers the pledges @ T0, T1s and T2s but pledge / C-RSG 90% @ T1 in 2022


- MC simulations in preparation for Run 3
- High analysis activity for summer conferences and publications and AO2D conversion campaign
- Raw reconstruction of the first Run 3 pp runs and cosmics data

DISK and TAPE utilization


- The deployment of the pledged disk for 2022:
 - 100% at T0 and T2s, 98% at T1s
- Overall deployed / 2022 C-RSG ~100%:
 - Deficit at T1s, surplus at T2s
- Current disk use ~75% of deployed capacity

- Archival of Run 3 commissioning data ongoing
- Pledges / C-RSG: 100% at T0 and 114% at T1s (8.8 PB surplus in 2022)
- 2022 expected usage in line with the requested resources as for CPU and disk

Data accumulation on O2 Disk Buffer

Used disk buffer to date: 47 PB Buffer size: 91.5 PB

Since July 1st collected 32 PB: 80% of CTFs and 20% of rawTFs

About 15 PB of data on O2 disk buffer was collected before July

Archival and deletion of commissioning data ongoing

pp @ 500 kHz CTF will be removed once skimmed with the event selections

Status of data taking and processing

2022 data taking

- Collisions at injection energy: 6 stable beam fills in May and in June
 - Collected successfully about 116M pp collisions @ 900 GeV
- Data taking at top energy started the 5th of July:
 - Priority to commissioning of the apparatus and to HI preparation:
 - Low-rate magnet scans with different polarities of the solenoid
 - Interaction rate ramp-up from 50 kHz to 500 kHz + 1 MHz tests
 - High-rate tests at 2/3/4/5 MHz
 - Beam rate scan from 1 MHz to 0.6 kHz
 - Collected 278B collisions of pp @ 500 kHz:
 - Calibrations ongoing
 - Quality of data will be fully assessed once the calibrations are completed and included
 - To be processed with the first pass of asynchronous reconstruction
 - Followed by the event selections and the CTF skimming

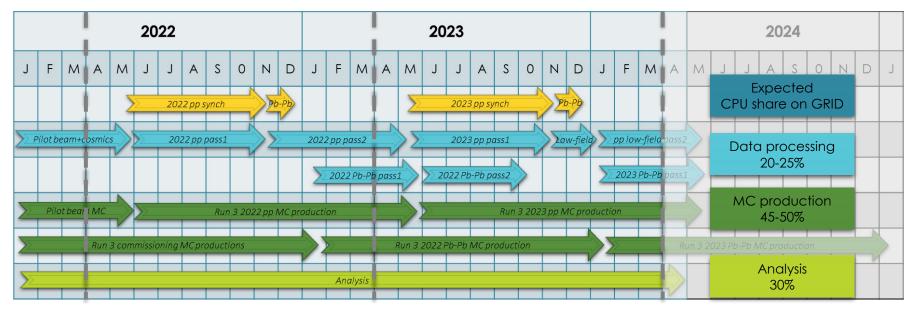
Data and simulation processing

Period	Energy	B field	N. runs	N. runs processed	_
LHC22c,d,e	900 GeV	B-,B-,B+	47	42	1
LHC22f	13.6 TeV	В+	31	12	1/
LHC22g	13.6 TeV	B+,low	2	2	\mathbf{V}
LHC22h	13.6 TeV	во	10	10	ſ –
LHC22i	13.6 TeV	B-,low	3	2	
LHC22j	13.6 TeV	В-	25	17	1
LHC22m	13.6 TeV	В-	174	4	

- Extensive Run 3 simulation:
 - pp @ 13.6 TeV productions for the selection studies.
 - Completed the General Purpose MB and the signal embedding simulations
 - Production of MB pp @ 900 GeV anchored to pilot beam 2022
 - Ongoing Pb-Pb targets 2.6x10⁸ events for the validation against 2018 Pb-Pb results
- Large ESD→AO2D conversion campaign:
 - All the Run 1 and Run 2 raw data periods + MC general purpose

About 75% of the runs collected before August already processed with first pass of async reconstruction for the commissioning

Large production will start in the next days on EPN farm (CPU+GPU) for the physics selections


In addition, TPC scan runs processed with residual extraction and pass 5 of Oct 2021 pilot beam data with updated alignment

ALICE 2023 Resource Requests

Processing plan for 2022 and 2023

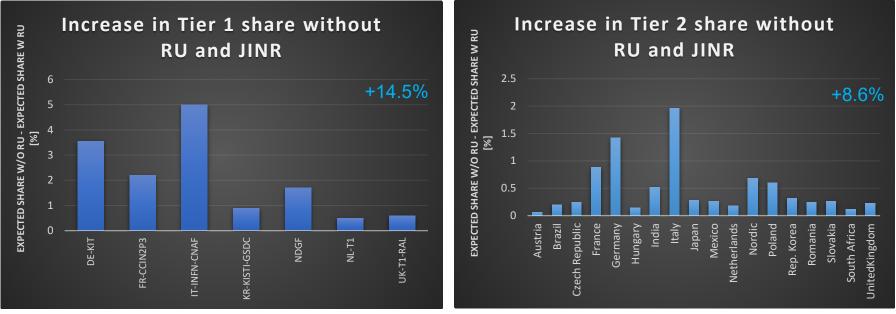
- 2022 CPU and disk requests: commissioning + 2022 pp data + 65% of 1st 2022 Pb-Pb async pass
- 2023 CPU and disk requests: 35% (70%) of 1st 2022 (2023) Pb-Pb async pass + 100% of 2nd 2022 Pb-Pb async pass + 2023 pp full and low field data

2023 Resource Requests

ALICE		20	22		2023			
		C-RSG	Pledge	Req.	C-RSG	C-RSG 2023 / C-RSG 2022	C-RSG 2023 / Pledge 2022	
	Tier-0	471	471	541	541	115%	115%	
	Tier-1	498	448	572	572	115%	128%	
CPU	Tier-2	515	517	592	592	115%	115%	
[kHS06]	ALICE Total	1484	1436	1705	1705	115%	119%	
	Tier-0	50.0	50.0	58.5	58.5	117%	117%	
	Tier-1	55.0	49.7	63.5	63.5	115%	128%	
Disk	Tier-2	49.0	55.2	57.5	57.5	117%	104%	
[PB]	ALICE Total	154.0	154.9	179.5	179.5	117%	116%	
	Tier-0	95.0	95.0	131.0	131.0	138%	138%	
Таре	Tier-1	63.0	71.8	82.0	82.0	130%	114%	
[PB]	ALICE Total	158.0	166.8	213.0	213.0	135%	128%	

- Resource requirements for 2023 are unchanged since the previous report
- The C-RSG endorsed the ALICE 2023 resource requests in April RRB
- Standard growth for CPU (+15%) and disk (+17%) in 2023 compatible with flat budget, step for tape (+55 PB), where strategy B have been considered
- More CPU and disk growth needed to reduce the deficit at Tier 1 (+28%)

Impact of the war in Ukraine on ALICE computing resources



Pledges for 2023 and compensation for RU

- FAs entered their 2023 pledge input into CRIC by September 16th
- RU sites and JINR continue to provide resources to ALICE
- But ALICE cannot rely on the RU sites for the long-term retention of data:
 - T1 tapes will not be used
 - Disk is used for replicas only
 - CPU is used until network evolution allows
- The resources planned to be deployed in Tier 1 RU needed to be replaced in the other Tier 1 sites:
 - The expected 14.5 % contribution of RU to be distributed among Tier 1 sites
 - Considered the Tier 1 share (with and) without RU in agreement with WLCG
 - Priority for the experiment: tape, disk and CPU
 - The cost of energy (and the hardware market trend) is a major concern for all FAs
 - All FAs have offered to help ALICE in case of shortfall

Impact on Tier 1 and 2 share

- Larger impact in countries that provide Tier 1, expected contribution proportional to the share of M&O-A members
- Tier 2 share of 8.6% to be divided among all the countries
- Priority for 2023: tape, disk, CPU

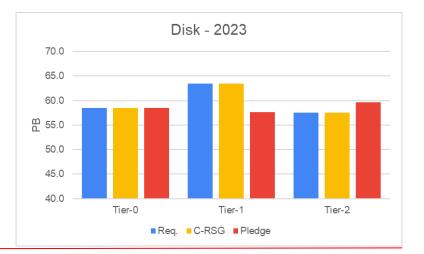
Pledged resources for 2023

Pledges for 2023

Pledged resources sufficient to support ALICE data taking in 2023

- Tape inline with our request at Tier-0 and surplus at Tier-1 (+5.7 PB) which perfectly compensates the tape pledged by RU
 - Commitment of all FA's to support data taking
 - 12 PB KISTI Tapeless Archive Storage

ALICE


Pledges for 2023

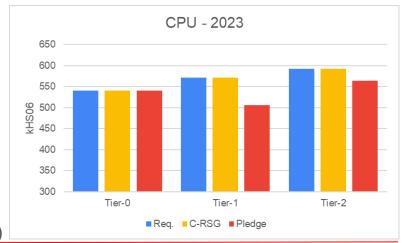
Pledged resources sufficient to support ALICE data taking in 2023

- Tape inline with our request at Tier-0 and surplus at Tier-1 (+5.7 PB) which perfectly compensates the tape pledged by RU
 - Commitment of all FA's to support data taking
 - 12 PB KISTI Tapeless Archive Storage

But they are not enough to support ALICE data processing in 2023

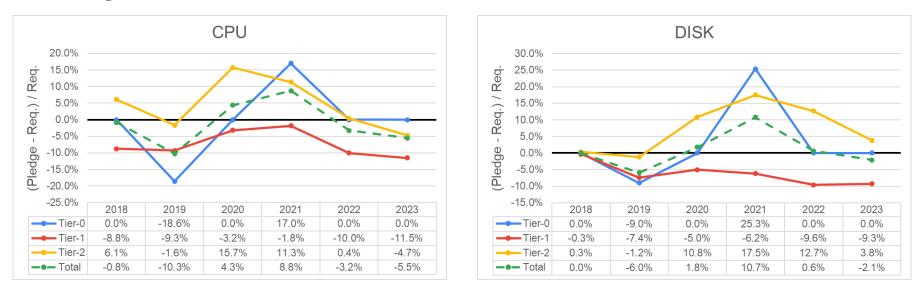
- 3.7 PB deficit in the pledged disk
 - Tier 0 in line with our request
 - Tier 1 under pledged disk (-5.7 PB)
 - Tier 2 surplus of 2.2 PB

ALICE


Pledges for 2023

Pledged resources sufficient to support ALICE data taking in 2023

- Tape inline with our request at Tier-0 and surplus at Tier-1 (+5.7 PB) which perfectly compensates the tape pledged by RU
 - Commitment of all FA's to support data taking
 - 12 PB KISTI Tapeless Archive Storage


But they are not enough to support ALICE data processing in 2023

- 3.7 PB deficit in the pledged disk
 - Tier 0 in line with our request
 - Tier 1 under pledged disk (-5.9 PB)
 - Tier 2 surplus of 2.2 PB
- Slight deficit of pledged CPU (-5%)
 - Mainly due to Tier-1 under pledges (-66 kHS06)

Pledges trend

- Difficult to bridge the CPU and disk resources gap at T1s:
 - Some FAs prefer to balance their contribution between T1s and T2s
 - FAs with fixed budget prioritize tape for data taking
 - Larger budget share needs to be reserved for the increasing electricity costs

Estimates for 2024

Baseline scenario for 2024

<100/fb

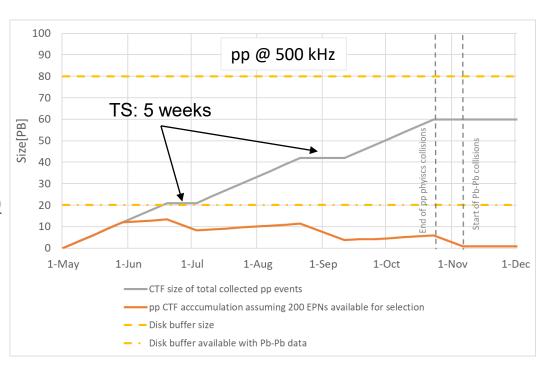
<100/pb

(peak 52)

<50

- ATLAS/CMS luminosity:
- ATLAS/CMS average pile-up:
- LHCb luminosity: <15/fb
- ALICE luminosity (pp):
- Running time pp: 6x10⁶ seconds
- Running time ions (PbPb): 1.2x10⁶ seconds

Same conditions can be assumed for now in 2024 and 2025 for long term projections, except there will be pPb instead of PbPb run in 2024 $\,$

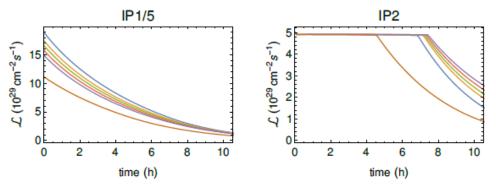

• Assumed for 2024 the same running condition of 2023 with p-Pb collisions during the HI period and short oxygen-beam run

- Considered as upperlimit:
 - **140 days of pp in 2024:**
 - pp collisions at 500kHz
 - Short O-O and p-O run:
 1 nb⁻¹ and 5 nb⁻¹, respectively
 - **28 days of HI in 2024:**
 - 28 HI days dedicated to p-Pb collisions (strategy B aggressive)

pp period in 2024

- 500 kHz IR:
 - Assuming 50%x 90% efficiency:
 - 35 pb⁻¹
 - 2.72 10¹² events
 - 1.2% selection:
 - 0.7 PB CTF
 - 0.25 PB AOD
 - Needed ~ 510 kHS06 (~200 <u>CPU + GPU EPNs)</u>
- 1 MHz:
 - x2 processing capacity to perform online selections wrt 500kHz
 - Crucial to assess the impact of GPU and number of available EPNs for selection (also for 2022)

p-Pb period in 2024


Assumed IR leveled at 1 MHz (1MHz / 2.12 barn = $4.7 \ 10^{29} \ \text{cm}^{-2} \ \text{s}^{-1}$):

- 310 nb⁻¹~545 kHz average IR
- 6.57 10¹¹ collected events
- 95% efficiency: 6.24 10¹¹ events (x27 Pb-Pb)

Estimates from Run 2 data (multiplicity scaling and AOD conversion):

- CTF:
 - o 76.1 kB/event
 - Totaling 47.5 PB (same as Pb-Pb)
- AOD:
 - 17 kB/event
 - 10.6 PB per pass per copy (x2 Pb-Pb)
- MC:
 - 2% of total events
 - 1500 kHS06 per year

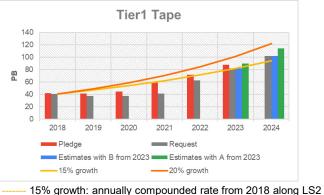
Filling scheme	\mathcal{L}_{tot} IP1/5	\mathcal{L}_{tot} IP2	\mathcal{L}_{tot} IP8
1240b_1240_1200_0	677 [687]	306 [313]	0 [0]
1240b_1144_1144_239	634 [629]	309 [316]	45 [53]
1240b_1088_1088_398	605 [596]	308 [317]	73 [87]
1240b_1032_1032_557	583 [563]	311 [319]	103 [121]
1240b_976_976_716	558 [531]	312 [312]	135 [154]
733b_733_702_468	415 [416]	287 [294]	86 [89]

Computing resource estimates for 2024

		20	22		20	23			2024			
						C-RSG	C-RSG		Est.	Est.		
						2023	2023		2024	2024 /		
					RU	/	/		/	(C-RSG		
					(incl.	C-RSG	Pledge		C-RSG	- RU)		
ALI	CE	C-RSG	Pledge	C-RSG	JINR)	2022	2022	Est.	2023	2023		
	Tier-0	471	471	541	0	115%	115%	622	115%	115%		
	Tier-1	498	448	572	83	115%	128%	655	115%	134%		
CPU	Tier-2	515	517	592	50	115%	115%	683	115%	126%		
[kHS06]	Total	1484	1436	1705	133	115%	119%	1960	115%	125%		
	Tier-0	50.0	50.0	58.5	0.0	117%	117%	67.5	115%	115%		
	Tier-1	55.0	49.7	63.5	9.2	115%	128%	71.5	113%	132%		
Disk	Tier-2	49.0	55.2	57.5	4.9	117%	104%	66.5	116%	126%		
[PB]	Total	154.0	154.9	179.5	14.1	117%	116%	205.5	114%	124%		
Tape	Tier-0	95.0	95.0	131.0	0.0	138%	138%	167.0	127%	127%		
	Tier-1	63.0	71.8	82.0	11.9	130%	114%	102.0	124%	145%		
[PB]	Total	158.0	166.8	213.0	11.9	135%	128%	269.0	126%	134%		

- First estimates for 2024 discussed with C-RSG in preparation of RRB
- Standard growth for CPU (+15%) and disk (+14%) in 2024 compatible with flat budget, step for tape (+56 PB)
- Without the expected RU+JINR contribution, the estimated growth exceeds the flat budget
- Resources of RU+JINR contribution will be missing unless they are not compensated by the other FAs.

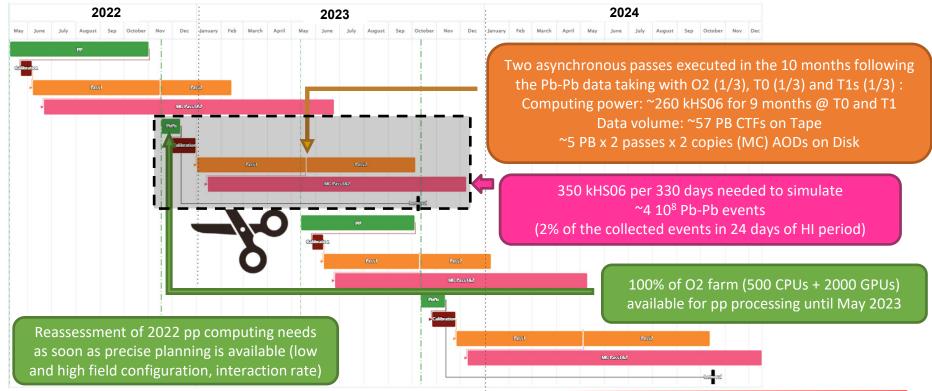
Expected growth of CPU and disk space in 2022-2024


----- 15% growth: annually compounded rate from 2018 along LS2

Expected growth of TAPE space in 2022-2024

• TAPE in 2022 (strategy A):

- Requested 158 PB
- Pledged 167 PB
- 79 PB needed in 2022:
 - 22.0 PB for commissioning + pp
 - 57.0 PB for Pb-Pb
- Flexibility of FA's to delay the deployment:
 - commissioning in February 2022
 - Pb-Pb in October 2022
- TAPE in 2023:
 - + 44 (+66) PB for Pb-Pb with Strategy B (A)
 - \circ + 11 PB for low and high field pp
- TAPE in 2024:
 - + 48 PB for p-Pb with Strategy B
 - \circ + 2 PB for pp and +6 PB for Run 2 archival campaign
- Crucial to adopt strategy B



LHC energy consumption reduction

- CERN is drawing up a plan to reduce its energy consumption this winter:
 - YETS will start 2 weeks in advance (reduced 2022 LHC run) on Monday, November 28th
 - Expected an overall reduction of Run 3 running time ~20% both for pp and for HI
 - O Updated Run 3 LHC schedule not yet available but no HI in 2022
 - Number of days dedicated to HI per year strongly impact on ALICE computing needs
 - Expect a reduction of our needs in 2022
- Impact of no HI in 2022:
 - We will collect ~7 weeks of pp that will requires more resources than planned for pp
 - But ... Less CPU resources for async processing (T0,T1s) and MC (T0,T1s,T2s)
 - And less AODs to be saved to disk and CTF to be archived on tape
 - The computing resource surplus in 2022 will be carried in 2023 (and 2024)
- New estimates for 2023 and 2024 computing needs as soon as the LHC schedule will be available

Impact of no HI in 2022 in ALICE computing needs

Summary

• Computing resource utilization:

- Full utilization of CPU resources
- Disk and tape expected usage in line with the requested resources
- O2 disk buffer: full capacity installed, and the performances exceed the expectations
- Archival and deletion of commissioning data ongoing
- Run 3 data and simulation processing :
 - Good progress of asynchronous reconstruction of pp commissioning data
 - Precise timeline for the reconstruction and the selection of pp data for physics
 - Completed Run 3 pp MC productions for the selection studies
 - Ongoing MC productions anchored to Run 3 pp data and in preparation for Pb-Pb
- Resource requests for 2023 and estimates for 2024:
 - CPU and disk in 2023 and 2024 compatible with flat budget considering RU contribution
 - Without the expected RU+JINR contribution, the estimated growth exceeds the flat budget
 - Unavoidable step increase of tape but computing centres can deploy capacity gradually
 - CERN is considering different scenarios for energy reduction
 - Strong impact on ALICE computing resource needs for Run 3

Thank you for providing reliable resources to ALICE collaboration!