
Payload behavioural studies,
scheduling, optimization and system

tools for payload control
Marta Bertran
26/09/2022

ALICE Tier-1 Tier-2 Workshop

1

Payload profiling –
Understanding its behavior

2

Observed issues on new multicore workflows

Jun 16 16:21:19 [proc]: 08:37:20 31040 160.25 0.00 49740.19 85.02 85.02 32 6 1200 59688.23 22970.03 22970.03 1000

CPU efficiency →160.25%

Originally allocated
CPU share (8 cores)

Elevated System
CPU component

2 CPU cores

3

Run 3 jobs are multicore and run on a completely new software stack.

Execution of high amount of short-lived processes that requires changes in the
monitoring framework

- CPU reported by executing machine did not correspond with the one reported by our job
monitoring.

High overhead / large System CPU usage due to process creation.
- Large amount of folders in LD_LIBRARY_PATH => overhead from loading dependent libraries.
- High amount of process initializations.

Deep analysis into job internal behaviour.
- Origin of system calls might not be observable at first glance.
- Clear picture of how the resources are being used.

Observed issues on new multicore workflows

4

5

Profiled execution analysis

Job execution wrapped with strace command:

strace -e trace=process -ttt -f -s 10000 -o /tmp/jobId-execution.strace

Exhaustive study of the deployed processes and threads, their amount, the
execution frequency, the time distribution and the resource usage.

Observations from the reported metrics revealed some potential areas for
improvement.

Process durations Gantt plot

Originally:
Total process+thread count - 72.5K

After improvements:
Total process+thread count - 38.3K

Process durations Gantt plot

Originally:
Total process+thread count - 72.5K

After improvements:
Total process+thread count - 38.3K

Total count decreased by 47.17%

Profiled execution analysis and improvements

6

32k system calls
3.5k O2 processes

37k threads

4.5k system calls
2.7k O2 processes

31k threads

32k system calls
3.5k O2 processes

37k threads

4.5k system calls
2.7k O2 processes

31k threads

86% decrease on system calls
23% decrease on O2 processes

16% decrease on threads

Profiled execution analysis and improvements

7

Execution time decreased by 35%

1:09h1:46h

Profiled execution analysis and improvements

8

Improved
monitoring

Framework and payload developments

Computing
Element

Worker
node

Job
Wrapper

Storage
Element

LRMS
Batch Queue

Payload

Job
Agent

CVMFSGrid site

MonALISA

VoBox

New efficiency
accounting methodology

Per-process
fine-grained monitoring

Correct loading of
dependent libraries

O2 process merging and
decrease of initialisations

9

10

Extended monitoring features
New methodology for efficiency monitoring to properly account for child processes and
threads. Two values being reported:

- Instantaneous CPU efficiency.
- Reported as absolute percentage (100% = a fully used core).

- Average CPU efficiency.
- Reported as a percentage over the allocated cores.

Added per process type grained monitoring

- Enabled with the Monitoring = "payload"; option in the JDL.

- Reported metrics (per-process and total accumulated):
- CPU usage
- Voluntary and non-voluntary context switches

Sys CPU
Disk write
rate

Disk read
rate

Voluntary Context
Switches Rate

Fork
creation rate

Non voluntary
Context Switches

Voluntary Context
Switches

Instant CPU
Usage

Average CPU Usage

Processes
(R,S,D,Z,total)

Threads
(R,S,D,Z,total)

Usr CPU

IOWait CPU

Non voluntary Context
Switches Rate

System monitored parameters

11

12

CPU usage reporting

Instantaneous CPU usage per process typeAverage CPU usage of job

13

Per-process context switches reporting

Voluntary context switches per process typeNon-voluntary context switches per process type

Accounting for the Proportional Set Size (PSS) of processes.

- Iteration over /proc/PID/smaps file of every deployed process.

- Parsing of these files is a costly operation in CentOS7 format.

- CentOS8 introduces /proc/PID/smaps_rollup with pre-summed memory
information for a process.

Upgrading to CentOS8 would allow for a higher monitoring rate with less overhead and
increased monitoring precision

- Also quicker to react on jobs running over the memory limits

Improving efficiency in monitoring

14

Payload control methodology

15

Multicore jobs running on the Grid

Multicore jobs can run in two configurations:

- Whole node: JAliEn manages resources and splits them into job execution
slots.

- Slots of N cores: Jobs are assigned a set of resources.
- This might be enforced by some resource constraining mechanism.
- These slots can be further partitioned to run finer-grained jobs.

We are particularly interested on being granted a whole node for increased
flexibility and optimal resource management.

16

ALICE Run 3 payloads

New workflows make use of multicore slots (8-core slots).

- All kind of payloads are using multicore: Asynchronous reconstruction, Monte Carlo,
Analysis…

- Grid still running some legacy workflows with 1 core.

Some of the processes consume more than the given 8-core share if they can
freely use all the resources of the working node.

For resource fairness, we need to enforce constraining of these jobs to a set of
resources.

17

Constraining jobs to a set of resources

Cgroups v2 is available in CentOS8 to constrain the job to a set of cores.
- However, it is not available in CentOS7.
- This would be the best alternative.

We already have an implementation of CPU pinning to constrain jobs to run on a
set of specific CPU cores that works for CentOS7.

- We explore what cores are pinned to pin those that are free.
- To pin specific CPU cores to jobs we use the taskset Linux tool.

18

19

Constraining jobs to a set of resources

Idle machine just running our job
Total CPU usage - Goes over 50%, i.e. 16
cores of 32 available

Idle machine just running our job
CPU usage is limited with taskset
Total CPU usage - 100%, i.e. 8 cores of 8
cores requested

Non-isolated job Isolated job

Constraining jobs to a set of resources
Depending on the node configuration:

- Jobs running inside a container in the worker node: Containers should already have
cpuset assigned to limit resource consumption.

- We can not see configuration of other processes for optimal core selection.
- We might get assigned a resource slice that can be further split between the

running payloads.

- Whole node without containers: JAliEn takes care of the CPU management
assigning the cores to the running workflows.

20

Constraining jobs to a set of resources

Hybrid strategy implemented:

- Jobs can expand when there is enough resources but once overconsumption detected
(and after a grace period) they are constrained to a set of cores (originally requested
amount).

- This prevents that jobs make use of resources granted to other jobs.

- Performed study on pinning configurations with a focus on exploiting data locality of
NUMA nodes.

- Still in testing phase but planned to be added in production environment.

21

Tested pinning configurations

Tested 5 different configurations:

1. Same NUMA Node and independent L1,L2
cache

2. Different NUMA Nodes and independent L1,L2
cache

3. Same NUMA Node and sharing L1,L2 cache
4. Random core assignment
5. No pinning - jobs run freely on the machine

Configuration 1 proved best
performance.

22

23

CPU resource consumption on over consuming job
8-core job using 50%
of a 32 cores node (16
cores - 2x requested
amount)

Enforce constrainment to 8
cores when detected
prolonged overconsumption.
Adjustable grace period
given.

Exploiting optimal resource usage –
Executing in oversubscription regime

24

Whole node oversubscription

Workflows of different nature running on the Grid use resources differently.

- Analysis jobs are IO intensive and they do not fully use the allocated CPU slot at all
times.

- Idle portions of CPU can be gathered and used to execute computing intensive jobs
(MonteCarlo).

- No added pressure in IO.

Many of the worker nodes (more than 76%) have spare memory resources not
used by the running jobs, which are allocated 2GB RAM (allowed up to 8GB/core
when considering SWAP).

25

Whole node oversubscription

In whole node scheduling scenarios we want to use the available resources in the
most efficient way.

- Memory is a constraining factor in job execution.
- Compute memory per CPU core ratio and see if they can be oversubscribed.
- Node’s Idle CPU above a threshold and at least 2GB free memory in the system. → It

has room for an extra job.
- Advertised “extra” free resources to the CS.
- Extra job of specific nature with complementary resource usage patterns.
- Assign unused memory to new jobs and oversubscribe CPU cores.
- Constant monitoring of machine CPU and memory consumption to preempt extra

jobs if limits surpassed.
- Preempted jobs are rescheduled without penalty.

26

The amount of CPUs available for oversubscription will depend on the node’s
memory.

- Minimum between [RAM/2, (RAM+SWAP)/8].

Oversubscribed jobs are executed with a lower priority.

Whole node scheduling is needed for managing all available resources.

Running additional jobs with complementary resource usage patterns on a worker
node has a great potential to compensate for inefficiencies.

Whole node oversubscription

27

- Minimum amount of idle CPU cores per host during a period of 1 hour.
- Percentage of idle CPU parsed from /proc/stat.
- Multiplied by the total amount of cores → Idle cores.

28

Idle CPU cores from Grid hosts

24+

No. idle CPUs

No. hosts Total free CPUs: 54764

- Minimum amount of memory available per host during a period of 1 hour.
- Free memory computed parsing /proc/meminfo → (MemFree+Buffers+Cached) .

29

Free memory from Grid hosts

200000+

Memory (MB)

No. hosts Total free memory: 1082 TB

30

Potential extra 8-core slots on Grid hosts

- Minimum amount of extra jobs that would not be preempted running for the set
amount of hours.

- Extra slots as min(floor(idle_cores / 8) , floor(free_memory / 16 GB))

Conclusions and final remarks

Need to adapt Grid framework to new payload software stack.
- Enhanced and extended monitoring.
- Optimized fairness on resource usage. → Job confinement.
- Improved resource utilisation levels. →Whole node oversubscription.

For observable results in overall Grid performance we need:
- Whole-node allocations.

- Accurate accounting of node’s activity. →Efficient resource management.
- Migration to CentOS8.

- Support for cgroups2
- More efficient monitoring
- Growing need for features not available in prior operating systems.

31

Payload behavioural studies,
scheduling, optimization and

system tools for payload control
Marta Bertran
26/09/2022

ALICE Tier-1 Tier-2 Workshop

32

Extra slides

33

RAM/CPU Core ratio analysis

Total of 14826 over 19335 hots (76.68%)
have more RAM per core than required

34

