Payload behavioural studies,
scheduling, optimization and system
tools for payload control

Marta Bertran
26/09/2022
ALICE Tier-1 Tier-2 Workshop

Payload profiling —
Understanding its behavior

Observed issues on new multicore workflows

CPU usage information

Elevated System

CPU component
ew 2 CPU cores

=« | Originally allocated .
= | CPU share (8 cores)

CPU usage information

CPU usage information

CPU usage information

o% = -

14:32 | 14:37 | 14:42 | 14:47 | 14:52 | 14557 | 15:02 | 15:07 | 15:12 | 15:17 | 15:22 | 15:27 | 15:32 | 15:37 | 15:42 | 15:47 | 15:52 | 15:57 | 16:02 | 16:07 | 16:12 16:17 | 16:22 | 16:27 | 16:32
16 jun 2022
CEST time

o%
Ue32 1437 1442 1647 1452 1457 1502| 1507 1512|1517 1522 1527 1532 1537 1542 1547 1552 1557 1602 1607 1612 1617 1622 1627 1632
16jun 2022

User & Nice a System 10 wait a Hardware int & Software int Idle CEST time

CPU usage information
CPU usage information

Series Lastvalue Min Avg Max Sevien 8 Castvene) | MR [v e
Lmsysem 0 0007 19 113
1. W User 0.033 0.018 9.879 26.89
2. W Nice 0 0 1186 3387
3. Wl System 0.021 0.007 1997 11.35
4. 10 wait 0.001 0.001 0.062 0477
5. | Hardware int 0 0 0 0

SMStmvi M G LG e CPU efficiency —160.25%

Jun 16 16:21:19 [proc]: 08:37:20 31040 160.25 0.00 49740.19 85.02 85.02 32 6 1200 59688.23 22970.03 22970.03 1000

Observed issues on new multicore workflows

Run 3 jobs are multicore and run on a completely new software stack.

Execution of high amount of short-lived processes that requires changes in the
monitoring framework

- CPU reported by executing machine did not correspond with the one reported by our job
monitoring.

High overhead / large System CPU usage due to process creation.
- Large amount of folders in LD LIBRARY PATH => overhead from loading dependent libraries.
- High amount of process initializations.

Deep analysis into job internal behaviour.
- Origin of system calls might not be observable at first glance.
- Clear picture of how the resources are being used.

Profiled execution analysis

Job execution wrapped with strace command:

strace -e trace=process -ttt -f -s 10000 -o /tmp/jobId-execution.strace

Exhaustive study of the deployed processes and threads, their amount, the
execution frequency, the time distribution and the resource usage.

Observations from the reported metrics revealed some potential areas for
improvement.

Profiled execution analysis and improvements

Process durations Gantt plot

Originally:
Total process+thread count - 72.5K

After improvements:
Total process+thread count - 38.3K

Total count decreased by 47.17%

Jun 16, 2022

Profiled execution analysis and improvements

37k Process type 31k Process type
= fork()/clone(); exec*() = fork()/clone(); exec*()
35Kk fork()/clone() w/o exec*() 30k fork()/clone() w/o exec*()
86% decrease on system calls
) 23% decrease on O2 processes
- 16% decrease on threads

System commands fork()/clone() w/o exec*() 02 processes System commands fork()/clone() w/o exec*()
Process category Process category

32k system calls 4.5k system calls
3.5k O2 processes 2.7k O2 processes
37k threads 31k threads

Profiled execution analysis and improvements

CPU usage information

105% Lo
100% 1oos
as% o
so% aox
a% -
E5 80%
o 75%
i 70%

5 o 5 on

5 g

1 e

£ s £ sw

£ oon §

2 0w { 2 o
=% =
0% o
% =
2 20%
5% 1500 |
10% o
i |

o% L
1226 1231 1236 1241 1246 1251 1256 1301 1306 1311 1316 1321 1326 1331 1336 1341 1346 1351 1356 1401 14:06 1411 1416 1421 1426
09 Mar 2022
CEST time

CPU usage information

16 jun 2022
CEST time

o% L e d . 2t
14:32 1437 1442 1447 1452 1457 1502 1507 1512 1517 1522 1527 1532 1537 1542 1547 1552 1557

s User « Nice a System 10 wait & Hardware int & Software int_ Idle 8 User

Nice a System

10 wait & Hardware int

Software int -~ Idle

1:46h

.02 1607 1612 1617|1622 | 1627 1632

<

Execution time decreased by 35%

1:09h

Framework and payload developments

 Correct oading o 02 process merging and
, dependent libraries

________________ | decrease of initialisations

Grid site

......... e
[Storage }:[Computing W Batch Queue

Element Element J

/ Worker \

node

Payload

Job
Wrapper

Ej Ej 5 MonALISA [~ D,
Improved Fmm------------ .
monitoring i Per-process l

| fine-grained monitoring :

I New efficiency
. accounting methodology

Extended monitoring features

New methodology for efficiency monitoring to properly account for child processes and
threads. Two values being reported:

- Instantaneous CPU efficiency.
Reported as absolute percentage (100% = a fully used core).

- Average CPU efficiency.
Reported as a percentage over the allocated cores.

Added per process type grained monitoring

- Enabled with the Monitoring = "payload"; option in the JDL.

- Reported metrics (per-process and total accumulated):

CPU usage
Voluntary and non-voluntary context switches

10

System monitored parameters

aliendboej.cern.ch: aliendboej.cern.ch

File_Draw_Manage sots View File_Draw_Manage sets View File_Draw_Manage sels View File Draw_Manage sets View File Draw_Manage sets View : 5
2596688966 2596688966 2596688966 allendb06).cern.ch allendbos).cern.ch DiSK write
== Non voluntary “=*Voluntary Context Sys CPU | = rate
- Context Switches o -== Switches - [T ot i e e, | ol ! [= '
: e : R = z ‘ | 1 ‘
&= il 10! i { I 1|]
j 5 -~ | t i Ll b in
«ff : T |
) J __ | L4 = [BY;
— S s wemssAverage CPU Usage e W W DR DR T R R e e
e = = Ssriok Locel Tine,) " Servie LocalTime g

2596688966 2596688966 [n Dran Donsuezeh View ssacensons | T Ha. Orav_Banagesels Vew endnoR < Fla, Deaw: Managa sets mcw" — .
08 memT T T i s allend 6).cern.c
- . Non voluntary Context | ... E \S/oI.L:n:]ary R?otntext JSS;a:[c i Usr CPU | wm Disk read
= Switches Rate m witches Rate e e == T rate
=l | 00, ¥ fhor 1
200+ . |
: Iz " :AI | ' |] Y A |) W g
= ‘ " | esmen | ‘ / L) L Ermey o BN Nk (4.1t =
‘f‘ L | ’ :: | | | v o B WQ | -‘".‘ AR
] | 1 I = (1] : | RS AR
Servce Local Tme
File Draw Manage sets View File Draw Manage sets View File Draw Manage sets View N _ .
2596688966 2596688966 aliendb0sj.cern.cl = o it e Deswi eriiiiaut MR e ckos -
Processes Threads - . e)
(R,S,D,Ztotal)| = i (RS,D.Ztotal) | = 1 creationrate | .- .
; I\ i] + ! ' w |
\ - ‘ ‘ v 4] o
ol Ty L 1
». # Nl LTl 8 B e {
» 2 e L | :
o I Sessoomns S ots Sfrreptasgensy F N N 0 N N O ... WP

11

File

CPU usage reporting

aliendbosj.ce

Draw Manage sets View

2633811861

210
200
190
180
170 23 ;
160 -~ "
150 %
140
130
120
110 ¢
100 / [uimage
90 /
80 +
70
601 1
501
40+
301/
20
10

e
-

-
\.. -
-
-

G
-
e mama,
.

13:20 13:225 13:30 13:35 1340 1345 13:50 13:55 1400 14:05 1410 1415 14:20
Service Local Time

Average CPU usage of job

aliendbosj.cern.ch: 2633811861 - o @

file Draw Manage sets View

2633811861

[cpuusage oz pri.
 chu_usage_o2-pc
2507 4 cpu_usage_o2-mid.
+ cpu_usage._o2-sim.
- cpu_usage_python3
2251 r’j ¥ cpu_usage_oz-ced.
‘cpu_usage_o2-glob.
‘ » cpu_usage_o2-fv0-.
' cpu_usage java
2001 « cpu_usage_o2-Ro-
cpu_usage_o2-pho.
cpuusage_jusibin
+ cpu_usage Jib64/ld.
= cpu_usage_o2-rd-
‘ ¥ cpu_usage_grep
cpuusage_sinit

1757

150 ‘ <pu_usage_o2-aod.
+ cpu_usage_tail

cpu_usage_o2-tof-

1251 [| u cpu_usage.oz-tof-
o chuusage_o2-sec.
& cpu_usage_o2-sim.

. reqm e dpimmad [ST

ey

1001y FEY T OARRE

PRV S

<pu_usage_o2-me.
® cpu_usage_o2-fdd-
<pu_usage jbinish
<pu_usage_cat
<pu_usage_o2-tpc-.
<pu_usage jusribin.
¥ cpu_usage_o2-cpv.
=~ cpu_usage_o2-sim
» cpu_usage_Apptai.

0k M » - A - ¥ cpu_usage_o2-mid.
13 20 13:25 13 30 13 35 l3 40 13 45 13 50 13:55 14:00 14:05 14:10 14:15 14:20¢ ‘P"—“““—“;'"‘“
® cpu_usage_o2-co.

Service Local Time <o usage_oztrd-.

Instantaneous CPU usage per process type

12

Per-process context switches reporting

» CS_nonvoluntary_o2-tpe-reco-workflow
2-mch.

CS_nonvelurtary_o2-tof-matcher-morkflon
cs I\ i K Wl
€5 _nonvolurtary_o2-tof-reco-morkflon
€S_nonvolurkary_o2-sim

€5 _nonvoluntary_fusr/binitime
CS_nonvolutary_o2-sim-device-runner
©5_nonvoluntary_o2-its-reca-workflow

o

11:10

115

11:20

11:25 11:30
Service Local Time

11:35

“na

CS, I
€5 _nonvelurtary_o2-fdd-reca-warkflow

€S _nonvelunkary_cat

€S _nonvolurkary_python3

€S _nonvolurkary_o2-emcakreco-morkflon
CS_nonvolutary_o2-cpv-reco-workflow
©5_nonvolurtary_grep
©5_nonvoluntary_o2-aod-peoducer-workflow
€5_nonwolurtary_o2-mft-raco-workflon

€S _nonvolunkary_fib&Afld-linux-x86-64.50.2
€5 _nonvelurtary_o2.zim.digitizer-workflon
cs. I " o2-trd
©5_nonvoluntary_o2-mi
©5_nonvolurkary_o2-
CS_nonvoluntary_sh

reco-norkflon
-digis-reader-norkflon

* CS_nonvoluntary, ey
= €5_nonvalurtary_fusibinbash
v cs l _o2-primary g-norkdl

€S_nonvolurkary_o2-fv0-reco-werkflow

€5 _nonvolurtery_o2-trd-global-tracking

©5_nonvolurtary_o2-fto-reco-morkflon

©5_nonvoluntary_o2-secondary-vertexing-workflom

€5 _nonvolurtary_o2-mid-tracks-reader-workflow

€S_nonvolurtary_o2.globalfwd.matcher.workfiow
2

cs 1l X mergar

CS_nonvolurkary_o2-phes-reco-norkilon

cs. . ¥ " h KA.
v cs inkary, 02-mech-trads-read Ak

©5_nonvoluntary_fbirvbash
C5_nonveluntary_fbirvsh

cs_ I 02 imary-server-da

« €S_nonvelurtary_o2 4pcitz-match-warkflow
® CS_nonvoluntary_o2-sim:ht-mergerrunner

Non-voluntary context switches per process type

37,500,000

35,000,000
32,500,000
30,000,000
27,500,000
25,000,000
22,500,000
20,000,000
17,500,000
15,000,000
12,500,000
10,000,000

7,500,000

5,000,000

2,500,000

11:10

11:15

11:20

202175712

11:25 11:30
Service Local Time

11:35

11:40

® CS_voluntary_o2-mft-reco-workflow
® CS_voluntary_o2-mud-tracks-reader-workflow
4 CS_volurtary_o2-mi-reco-workflow

+ C5_voluntary_o2-mdh-tracks-reader-norkflon

= C5_vokintary_python3

¥ ©S_voluntary_o2-smeal-raco-warkfiow
€5 _voluntary_sh

» CS_voluntary_total

+ CS_vokuntary_o2-srm-primary-server-device-runne

« CS_volurtary_o2-fv0-reco-norkflon

® C5_voluntary_o2-muon-tracks-niiter-workflow

* CS_vokuntary_oz-sm-hit-merger-runnee
©5_voluntary_oz-ft0-reco-workflow

o2-4pcts-makch-norkilon
¥ CS_volurtary_o2-of-matcher-workflow
C5_voluntary _justfbinbash
©5_vohntary_o2-tpe-chunkeddigit-merger
+ C5_voluntary_oz-trd-ghbaktracking
€5 _volntar
CS_voluntary_o2-sm-device-runner
CS_volrtary_o2-sm
CS_volurtary_o2-ts-reco-norkflon
CS_voluntary_o2-mid-digts-reader-workflow
€5 _voluntary_o2-tpe-reco-norkflon
©5_voluntary_lb64d-inux-x86-64 50,2
©S_volntary_o2-commonutis-tresmergartool
» CS_voluntary_o2-fdd-recomorkilon
o2-4rdtracklet transformer
€S _volurtary_o2-scd-producer-norkflon
» CS_voluntary_binish
©5_voluntary_o2-mdh-reco-norkflon
,_02-secondary-vertexing-workflon
€5_volurtary_o2-primary-vartaxing-workflow
€S _volurtary_jbinbash
¥ CS_volurtary_o2-musn-tracks-matcher-morkilow
= CS_voluntary_o2-sim-dighizer-workflow
» CS_voluntary_o2-cov-reco-morkflow
1 CS_voluntary_cat
« CS_volntary_o2-globalfwd-matcher-morkilon
©2-phos-race-workflow
€S_volntary_jusifbintime

02-tof-raco-workfiow

«teren

'

Voluntary context switches per process type

13

Improving efficiency in monitoring

Accounting for the Proportional Set Size (PSS) of processes.
- lteration over /proc/PID/smaps file of every deployed process.
- Parsing of these files is a costly operation in CentOS7 format.

- CentOS8 introduces /proc/PID/smaps rollup with pre-summed memory
information for a process.

Upgrading to CentOS8 would allow for a higher monitoring rate with less overhead and
increased monitoring precision

- Also quicker to react on jobs running over the memory limits

14

Payload control methodology

15

Multicore jobs running on the Grid

Multicore jobs can run in two configurations:

- Whole node: JAIIEn manages resources and splits them into job execution

slots.
- Slots of N cores: Jobs are assigned a set of resources.
- This might be enforced by some resource constraining mechanism.
- These slots can be further partitioned to run finer-grained jobs.

We are particularly interested on being granted a whole node for increased
flexibility and optimal resource management.

16

ALICE Run 3 payloads

New workflows make use of multicore slots (8-core slots).

- All kind of payloads are using multicore: Asynchronous reconstruction, Monte Carlo,
Analysis...

- Grid still running some legacy workflows with 1 core.

Some of the processes consume more than the given 8-core share if they can
freely use all the resources of the working node.

For resource fairness, we need to enforce constraining of these jobs to a set of
resources.

17

Constraining jobs to a set of resources

Cgroups v2 is available in CentOS8 to constrain the job to a set of cores.
- However, it is not available in CentOS7.
- This would be the best alternative.

We already have an implementation of CPU pinning to constrain jobs to run on a
set of specific CPU cores that works for CentOS7.

- We explore what cores are pinned to pin those that are free.
- To pin specific CPU cores to jobs we use the taskset Linux tool.

18

Constraining jobs to a set of resources

CPU usage information Non_isolated job

0928 0933 09:38 0343 0348 09:33 | 0958 1003 1008

|ldle machine just running our job
Total CPU usage - Goes over 50%, i.e. 16

cores of 32 available

CPU usage information Isolated jOb

Idle machine just running our job
CPU usage is limited with taskset
Total CPU usage - 100%, i.e. 8 cores of 8

cores requested 19

Constraining jobs to a set of resources
Depending on the node configuration:

- Jobs running inside a container in the worker node: Containers should already have
cpuset assigned to limit resource consumption.
- We can not see configuration of other processes for optimal core selection.
- We might get assigned a resource slice that can be further split between the
running payloads.

- Whole node without containers: JAIIEn takes care of the CPU management
assigning the cores to the running workflows.

20

Constraining jobs to a set of resources

Hybrid strategy implemented:

Jobs can expand when there is enough resources but once overconsumption detected
(and after a grace period) they are constrained to a set of cores (originally requested
amount).

This prevents that jobs make use of resources granted to other jobs.

Performed study on pinning configurations with a focus on exploiting data locality of
NUMA nodes.

Still in testing phase but planned to be added in production environment.

21

Tested pinning configurations

Tested 5 different configurations:

1.

3.
4.
5.

Same NUMA Node and independent L1,L2
cache

Different NUMA Nodes and independent L1,L.2
cache

Same NUMA Node and sharing L1,L2 cache
Random core assignment

No pinning - jobs run freely on the machine

Configuration 1 proved best
performance.

| NUMA Node L#0 || NUMA Node L#1 |
‘ Level 3 ’ ‘ Level 3 I
oo [iewz]| |[tawz |[tamiz] ooo
x8 total x8 total
] | [i)
Enlicoicn
Core L#0 | | Core L#1 Core L#7 Core L#8 | | Core L#9 Core L#15
Y fodl | Risll =iolmlmls Badd
Pi16 Pi23 P#24 Pif25 P#31

22

CPU resource consumption on over consuming job

CPU usage information

CPU usage information

105%

100%
95%
90%

85% 1

80%
75%

70%

65%
60%

55% |
50%

45%
40%

35%
30% -
25%-
20%-

15%

10% -

5%

cores when detected

prolonged overconsumption.

Adjustable grace period
given.

1
1
1
1
|
=
1
1
1
1
1

8-core job using 50%
of a 32 cores node (16
cores - 2x requested
amount)

User « Nicea S

10 wait a Hardware int = Software int Idle

23

Exploiting optimal resource usage —
Executing in oversubscription regime

24

Whole node oversubscription

Workflows of different nature running on the Grid use resources differently.

- Analysis jobs are IO intensive and they do not fully use the allocated CPU slot at all
times.

- ldle portions of CPU can be gathered and used to execute computing intensive jobs
(MonteCarlo).

- No added pressure in 10.
Many of the worker nodes (more than 76%) have spare memory resources not

used by the running jobs, which are allocated 2GB RAM (allowed up to 8 GB/core
when considering SWAP).

25

Whole node oversubscription

In whole node scheduling scenarios we want to use the available resources in the
most efficient way.

Memory is a constraining factor in job execution.

Compute memory per CPU core ratio and see if they can be oversubscribed.

Node’s Idle CPU above a threshold and at least 2GB free memory in the system. — |t
has room for an extra job.

Advertised “extra” free resources to the CS.

Extra job of specific nature with complementary resource usage patterns.

Assign unused memory to new jobs and oversubscribe CPU cores.

Constant monitoring of machine CPU and memory consumption to preempt extra
jobs if limits surpassed.

Preempted jobs are rescheduled without penalty.

26

Whole node oversubscription

The amount of CPUs available for oversubscription will depend on the node’s
memory.

- Minimum between [RAM/2, (RAM+SWAP)/8].
Oversubscribed jobs are executed with a lower priority.

Whole node scheduling is needed for managing all available resources.

Running additional jobs with complementary resource usage patterns on a worker
node has a great potential to compensate for inefficiencies.

27

|dle CPU cores from Grid hosts

No. hosts

1 15

Total free CPUs: 54764

2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 1010.5 1 1.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 2020.5 21 21.5 2222.523 23.5 24+

No. idle CPUs

- Minimum amount of idle CPU cores per host during a period of 1 hour.

Percentage of idle CPU parsed from /proc/stat.
Multiplied by the total amount of cores — Idle cores.

28

Free memory from Grid hosts

No. hosts

Total free memory: 1082 TB

1000

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000 150000 160000 170000 180000 190000 200000+

Memory (MB)

- Minimum amount of memory available per host during a period of 1 hour.
- Free memory computed parsing /proc/meminfo — (MemFree+Buffers+Cached) .

29

Potential extra 8-core slots on Grid hosts

Elapsed hours

Minimum amount of extra jobs that would not be preempted running for the set
amount of hours.
Extra slots as min (floor (idle cores / 8) , floor (free memory / 16 GB))

30

Conclusions and final remarks

Need to adapt Grid framework to new payload software stack.
- Enhanced and extended monitoring.
- Optimized fairness on resource usage. — Job confinement.
- Improved resource utilisation levels. —Whole node oversubscription.

For observable results in overall Grid performance we need:
- Whole-node allocations.
- Accurate accounting of node’s activity. —Efficient resource management.
- Migration to CentOSS8.
- Support for cgroups?
- More efficient monitoring
- Growing need for features not available in prior operating systems.

31

Payload behavioural studies,
scheduling, optimization and
system tools for payload control

Marta Bertran
26/09/2022
ALICE Tier-1 Tier-2 Workshop

32

Extra slides

33

RAM/CPU Core ratio analysis

mon_data=> select ram_per_core, count(1) from (select host_id, (a::bigint/b::bigint/1024/102.4) nt/10. ram_per_core from (select host_id, (select (test_me
ssage_json->>'RAM_kB_MemTotal') from sitesonar_tests where host_id=x.host_id and test_name='ram_info') a,(select (test_message_json->>'CPU_AMOUNT') from sit

esonar_tests where host_1i .host_id and test_name ='cpuset_checking') b from (select host_id from sitesonar_tests s where last_updated > extract(epoch from
now()-'1 week' nterval int and test_name='ram_info') x) y where a is not null and b is not null and length(a)>@ and length(b)>0) z group by 1;

ram_per_core

1.00000000000000000000
.2000000000000000
.3000000000000000
.4000000000000000

.5000000000000000
.6000000000000000
.7600000000000000
.9000000000000000
.0000000000000000
.1000000000000000
.2000000000000000
.3000000000000000
.4000000000000000
.5000000000000000
.6000000000000000
.7000000000000000
.8000000000000000
.9000000000000000
.1000000000000000
.3000000000000000
.4000000000000000
.5000000000000000
.70600000000000000
.8000000000000000
.9000000000000000
.4000000000000000
.5000000000000000
.7600000000000000
.9000000000000000
.2000000000000000
.40600000000000000
.9000000000000000
.3000000000000000
.96000000000000000
.2000000000000000
.7600000000000000
.8000000000000000
.96000000000000000
.0000000000000000
.4000000000000000
11.8000000000000000
13.8000000000000000
15.7000000000000000
(43 rows)

Total of 14826 over 19335 hots (76.68%)
have more RAM per core than required

34

