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Abstract

This note presents a quick introduction to the Version 2 implementation of CutLang, a domain specific
language for cut based high energy physics data analysis description and its interpretation framework.
CutLang allows to write analyses as a set of commands in human readable text files (adl files), which are
interpreted by the framework at run time. It is implemented in C++ on top of ROOT classes and operates
on particles based on Lorentz vectors. The version 2 uses the Lex/Yacc based approach for adl file processing.
Main features of CutLang V2 are described, and two analysis examples are presented to demonstrate its
usage. The initial experience with CutLang has shown that run time interpretation of human readable
analysis description is a highly practical alternative in analysis writing that is worth exploring further.

1 Introduction

The steep learning curve for general purpose programming languages and experiment specific analysis frame-
works erect a barrier between data and the physicist who may simply wish to try an analysis idea. These
difficulties could be overcome by using analysis description language (ADL). It is a human readable, declarative
domain specific language, capable of describing the analysis flow in a standard and unambiguous way, inde-
pendent of any computing framework. An ADL decouples the mathematical and logical algorithm of a physics
analysis from computing operations. Being declarative, it eliminates programming difficulties and errors, con-
sequently allowing the analysis to be more efficient and flawless. CutLang V2 is such a language, processing
events from ROOT files, using algorithms described in human readable analysis description files.

2 The ADL file structure

The analysis description text file is referred commonly as an adl file. The mass, energy and momentum are
all written in Giga Electron Volt (GEV) and angles in radians. User comments and explanations should be
preceded by a hash (#) sign. The command execution order is top to bottom. In this file, there are five possible
sections, of which one is mandatory:

[initializations] [definitions1] [objects] [definitions2] commands .

initializations: This section contains so far 3 possible keywords and values separated by an equal sign. The
last two lines in the same table refer to the lepton (electron or muon) triggers. Although their utilization
will become apparent in the next subsection, it is worth noting at this point that MC simulation weights
are not taken into account when the trigger value is set to data.

definitions1: This section has the potential to render the following analysis commands more understandable by
introducing shortcuts like Zhreco for a hadronically reconstructed Z boson. It can only use the predefined
keywords and particle definitions. It is also possible to define values like mH.

objects: This section can be used to define new objects based on predefined physics objects and shorthand
notations declared in definitions1.

definitions2: This section has the potential to render the following analysis commands even more understand-
able by introducing more shortcuts. It can use the newly defined objects in the previous section and
predefined particles.

commands: This section is mandatory with a name and at least one command. A command is either a selection
criteria or a special instruction to include Monte Carlo weight factors or to fill histograms. Currently both
one and two dimensional histograms are accepted.

∗The version 2 of this software also contains contributions by A.M. Toon, A. Paul, B. Gokturk, N. Ravel, B.Orgen
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Table 1: initialization keywords and possible values
Keyword Explanation

SkipHistos Display (=1) or not (=0) the histograms in final efficiency table
TRGm 0=no trigger, 1=trigger for data for muons, 2=Monte Carlo trigger for muons
TRGe 0=no trigger, 1=trigger for data for electrons, 2=Monte Carlo trigger for electrons

3 Predefined physics objects

Some basic physics objects and their properties are already defined in CutLang. The particles are initially sorted
per decreasing transverse momentum and their indices start at zero. Both python type and latex type notations
are accepted, the former with square brackets and the latter with an underline character. The base particle
types and notation examples are given in Table 2. There are two object types that merit special attention: The
lepton and the neutrino cases. The LEP keyword is generic and reduced to an electron or to a muon depending
on the trigger choice made in Table 1. This helps the physicist avoiding two algorithm sections, one for electron
and other muon triggered analyses. The second object type is more delicate and it is related to the taming
of the neutrino escaping from the detector. It has been shown that at LHC energies and beyond, for which
this tool is intended, the W bosons are generally produced with a sufficient boost such that in the leptonic
decays, the pseudorapidity of the charged lepton is not very different from the chargeless one [R]. Therefore
this particular physics object benefits from this approximation to define a massless and chargeless particle with
transverse momentum and azimuthal angle (φ) values extracted from the Missing Transverse Energy (MET)
measurements. The pseudorapidity, however, is taken equal to that of the charged lepton with the same particle
index.

Table 2: Basic physics object nomenclature in CutLang

Name Keyword First object Second object j + 1th object

Electron ELE ELE[0] ELE_0 ELE[1] ELE_1 ELE_j

Muon MUO MUO[0] MUO_0 MUO[1] MUO_1 MUO_j

Tau TAU TAU[0] TAU_0 TAU[1] TAU_1 TAU_j

Lepton LEP LEP[0] LEP_0 LEP[1] LEP_1 LEP_j

Photon PHO PHO[0] PHO_0 PHO[1] PHO_1 PHO_j

Jet JET JET[0] JET_0 JET[1] JET_1 JET_j

Fat Jet FJET FJET[0] FJET_0 FJET[1] FJET_1 FJET_j

b-tagged Jet BJET BJET[0] BJET_0 BJET[1] BJET_1 BJET_j

light Jet QGJET QGJET[0] QGJET_0 QGJET[1] QGJET_1 QGJET_j

Neutrino NUMET NUMET[0] NUMET_0 NUMET[1] NUMET_1 NUMET_j

MET METLV METLV[0] METLV_0 — — —
generator particle GEN GEN[0] GEN_0 GEN[1] GEN_1 GEN_j

4 Predefined functions

The functions are mostly case insensitive, however they are written here in a certain syntax for reading clarity.
External functions can be downloaded and added to CutLang library. Such an operation is described in Appendix
A.

4.1 Particle related functions

There are two classes of functions in CutLang V2, the ones directly related to Lorentz Vectors such as Mass,
Rapidity etc, and the ones related to other variables found in some commonly used ntuples. In both cases, both
the function syntax with parentheses and the attribute syntax with curly braces can be used. The syntaxes
are given in Tables 3 and 4. One should note that in CutLang V2, it is not necessary to use a + sign to add
two particles, but it is also an accepted notation. Additionally, the last three functions in Table 3 require two
comma separated particles.

4.2 Mathematical functions

Trigonometric and logarithmic functions are implemented with their usual meanings. There are few functions
to pay attention to, such as the minimization and maximization functions which are discussed in subsection 4.5.

2



Table 3: Lorentz vector function nomenclature in CutLang.

Meaning Syntax 1 Syntax 2

Mass of m( ) { }m

Charge of q( ) { }q

Phi of Phi( ) { }Phi

Eta of Eta( ) { }Eta

Absolute value of Eta of AbsEta( ) { }AbsEta

Rapidity of Rep( ) { }Rep

Pt of Pt( ) { }Pt

Pz of Pz( ) { }Pz

Energy of E( ) { }E

Momentum of P( ) { }P

Angular distance between dR( ) { }dR

Phi difference between dPhi( ) { }dPhi

Eta difference between dEta( ) { }dEta

Table 4: Ntuple variable function nomenclature in CutLang.

Meaning Syntax 1 Syntax 2

Missing transverse energy in the event MET –
sum of jet transverse momenta HT( ) –

PDGID of a particle PDGID( ) { }PDGID

Charge of a particle btagDeepB( ) { }btagDeepB

is the jet b tagged? bTag( ) { }bTag

Soft Drop mass of a jet msoftdrop( ) { }msoftdrop

N-subjetiness variable 1 tau1( ) { }tau1

N-subjetiness variable 2 tau2( ) { }tau2

N-subjetiness variable 3 tau3( ) { }tau3

partitioning of jets into two hemi-spheres fmegajets( ) { }fmegajets

Razor variable MR fMR( ) { }fMR

Razor variable MTR fMTR( ) { }fMTR

Leptonic diTau invariant mass fMTauTau( ) { }fMTauTau

transverse impact parameter dxy( ) { }dxy

longitudinal impact parameter dz( ) { }dz

lepton identification variable (CMS NanoAOD only) softId( ) { }softId

relative isolation for leptons (CMS NanoAOD only) miniPFRelIsoAll( ) { }miniPFRelIsoAll

MVA based tau ID (CMS NanoAOD only) dMVAnewDM2017v2( ) { }dMVAnewDM2017v2

The Heaviside step function or the unit step function, is a discontinuous function, named after Oliver Heaviside,
whose value is zero for negative arguments and one for positive arguments. The size / count function returns
the number of elements of a given set, such as the number of electrons.

Table 5: mathematical and logical operators
Meaning Operator Meaning Operator

number of Size( ) Count() NumOf() absolute value abs()
tangent tan() hyperbolic tangent tanh()

sine sin() hyperbolic sine cosh()
cosine cos() hyperbolic cosine sinh()

natural exponential exp() natural logarithm log()
square root sqrt() Heaviside step function hstep()

as close as possible ~= usual meaning + - / *
as far away as possible != to the power ^
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4.3 Comparators, range and logical functions

CutLang understands the basic mathematical comparison expressions and logical operations. Therefore C/C++

operator notations and their Fortran counterparts are recognized and correctly interpreted. Additionally square
braces are used to define inclusive or exclusive ranges. The available comparators can be found in Table 6.

Table 6: Range comparators in CutLang

Keywords Explanation

> >= == <= < usual meaning
GT GE EQ LE LT usual meaning

<> NE not equal
[ ] in the interval
] [ not in the interval
NOT logical not

AND and && logical and
OR or || logical or

4.4 Ternary operator

Application of conditional selection criteria is available, including nested statements. The C++ syntax is
assumed: condition ? true-case : false-case . An example is given below, if the number of muonsVeto particles
is one, than the MTm quantity should be less than 100 otherwise MTe quantity should be less than 100.

Size(muonsVeto) == 1 ? MTm < 100 : MTe < 100

4.5 χ
2 minimization

In an analysis with a multitude of objects of the same type, the analyst could search for the best combination
defined by some criterion. A typical example, used in fully hadronic tt̄ reconstruction would be to find the jet
combination that would yield the best W boson mass, or to find the two charged leptons that would result in
the best Z boson mass. The need for such a search can be expressed in CutLang using two special comparison
operators: ~= and != . The former is used in the sense of “as close as possible to” whereas the latter for
calculation “as far as possible from”. These two operators can be used to express χ2 like operations. The indices
of the particles in such a search are to be given as negative. For example, the statement “find two leptons with
a combined invariant mass as close to 90.1 GeV” has its equivalent in CutLang notation as { LEP_-1 LEP_-1

}m ~= 90.1 . In such cases CutLang finds such a pair of particles and stores per event for possible later use.
However the analyzer should not use negative indices directly inside the algorithm section. It is a much better
practice that improves readability to define a new object such as define ZLepRec = LEP[-1] LEP[-1]. This
definition can be used in histograms or in other selection criteria such as selecting the charge of the found
lepton pair etc. If another particle of the same type (e.g. another lepton) is to be found, it is necessary to use a
different but still negative index value. This concept will be further explained in section 7.2 with two examples.

5 Shortcuts and other declarations

Keywords can be assigned to constants (e.g. Z boson mass) or variables (e.g. angular variables between objects,
mass of the Z boson reconstructed from two leptons, etc.). Simple explanations and examples are given in
Table 7. Similarly, objects can be defined from already existing objects (e.g. defining b-tagged jets from high
transverse momentum jets) or from derived objects. The necessary keywords and their usage are discussed in
Table 8.

Table 7: Simple definitions
Keywords argument1 symbol1 argument1 Example

def define name : = value define mZprime = 500
def define name : = function define mTop1 : m(Top1)
def define name : = particle(s) define Zreco : ELE[0] ELE[1]

table name list of value min max triplets
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Table 8: Object definitions
Keywords argument1 symbol2 argument1 Example

obj object new object name : using take base object name object goodEle : ELE

5.1 Defining new objects

New objects can be declared using the syntax in Table 8, however this is usually not enough. Some selection
commands are also needed to clarify the difference between the base object class and the derived objects. A
typical example is seen in algorithm box 1.

Algorithm 1 A simple example for new physics object definition

object AK4jets take JET

select {JET_}Pt > 30

select {JET_}AbsEta < 2.4

It is also possible to create a group out of different leptons or their derived objects. This is achieved using
the Union keyword, the utilization example is given in algorithm box 2. This particular case of new object
creation doesn’t use any selection as in the previous box.

Algorithm 2 Creation of a united object

object leps : Union( MUO , ELE, TAU) #add all leptons into a set

object gleps : Union( goodEle , goodMuo ) #add all good electrons and good muons into

another set

5.2 All possible combinations

Sometimes in an analysis algorithm it might be necessary to request all possible combinations of objects and
select the final “good” combination(s) based on certain criteria that should be calculated at run time. CutLang
V2 provides this functionality. This is best explained using an example problem. Therefore lets assume that we
have an event with 5 jets and we would like to reconstruct hadronic Z bosons, hZs. What are the combinations?
Numbering the jets from 1 to 5, some possibilities are given in Table 9 left side. It is obvious that not all
possibilities are listed, and finally only one possibility can be true: after all a jet can not be used to reconstruct
two different Z bosons. On top of this, other requirements might be applied to further restrict the possible
Z candidates. For example there might be a pseudorapidity range limit on each candidate, the transverse
momentum of the jets forming the Z boson could be limited, the angular separation between the hadronic Z
candidate and the first constituent jet might be limited, and finally the invariant mass of the Z candidate might
be requested to be in a certain range. After all these restrictions the same initial set might be reduced to Table
9 right side. The candidates that didn’t pass the requirements are shown as stroked out.

Table 9: Combination example
possibility ID Zhadronic Zhadronic

1 12 34
2 12 35
3 12 45
4 13 24
5 13 25
6 13 45
... ... ...

possibility ID Zhadronic Zhadronic

1 12 34
2 12 35
3 12 45
4 13 24
5 13 25
6 13 45
... ... ...

1both : and = can be used interchangeably
2each be used interchangeably
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Algorithm 3 Combinatorics object example

object hZs : COMB( jets[-1] jets[-2] ) alias ahz # the candidate is temporarily called ahz

select { ahz }AbsEta < 3.0

select {jets[-2] }Pt > 2.1

select {jets[-1] }Pt > 5.1

select {jets[-1], ahz }dR < 0.6 # dR between ahz and its constituent 1, apply to all

select { ahz }m [] 10 200

This example can be written in CutLang using the ADL notation in algorithm box 3. In order to activate
this new object, and eliminate the combinations that do not satisfy the requirements, one has to put a selection
command into the running algorithm (or region), this could be, for example, to have at least two hadronic Z
candidates per event:

a lgo testCombinations
s e l e c t S i z e ( j e t s ) >= 2 #we need at l e a s t 2 j e t s f o r a Z boson
s e l e c t Count ( hZs ) >= 2 #the ob je c t name i s used , not the temporary a l i a s .

As indicated by Table 9 right side, there are still multiple possibilities, such as rows 2, 4 and 5. To further
reduce these by killing the overlapping candidates and leave a single valid one, some sort of ideal condition
should be specified. This can be achieved using the previously discussed χ2 minimization. As an example case,
lets require the masses of the both candidates to be as close as possible to the known Z mass. Therefore, the
final algorithm is given in algorithm box 4.

Algorithm 4 Combinatorics final example

object hZs : COMB( jets[-1] jets[-2] ) alias ahz # the candidate is temporarily called ahz

select { ahz }AbsEta < 3.0

select {jets[-2] }Pt > 2.1

select {jets[-1] }Pt > 5.1

select {jets[-1], ahz }dR < 0.6 # dR between ahz and its constituent 1, apply to all

select { ahz }m [] 10 200

define zham : {hZs[-1]}m

define zhbm : {hZs[-2]}m

define chi2 : (zham - 91.2)^2 + (zhbm - 91.2)^2

Algo testCombinations

select ALL # to count all events # count number size are all the same.

select Size(jets) >= 2 # we need at least 2 jets for a Z boson

select Count(hZs) >= 2 # we need at least 2 Zhad candidates.

select chi2 ~= 0 # we kill here overlapping candidates. .

6 Selection and histogramming

The histogramming follow closely the ROOT notation. A simple 1D histogram should have a name, like
h1mReco, and a list of parameters separated by commas. The explanation of the histogram contents should be
given in quotation marks, "Z candidate mass (GeV)", the number of bins, lower and upper limits as numbers
e.g. 100, 0, 200, and finally the quantity to histogram e.g. {ELE_0 ELE_1}m . A similar syntax is also used
for the 2D histograms: hmTopWH2 , "Top W correlation (GeV)", 50, 50, 150, 70, 0, 700, m(WH2), mTop2 . An
example algorithm showing sorting and histogramming commands applied on a user defined object is available
in Figure 1.

Table 10: Selection and related keywords
Keywords argument Explanation

cmd cut select command condition accepts the events according to the condition
reject condition rejects the events according to the condition

algo region algorithm name starts a new algorithm / region with the name given
histo name details fills the named histogram according to given details
weight name table(function) applies a user weight according to the given function
Sort function Descend or Ascend sorts the particle set in the function in selected way
save filename3 saves the surviving events in LVL0 format
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Figure 1: An example algorithm including sorting and 1D histogram examples on a user defined object

6.1 Conditions

The conditions based on which an event can be accepted or rejected are usually written in the form of functions
applied on particles complemented by a comparison operator and a limit value. An example would be “select
Size(goodEle) >= 2” . However there are some special keywords that require further discussion. These are
explained in Table 11.

Table 11: Special Conditions in CutLang

Keywords Example Explanation

ALL select ALL accept all events
LEPsf cmd LEPsf apply leptonic scale factor to MC events
bTagSF cmd bTagSF apply b-jet tagging scale factor to MC events

7 Two analysis examples

7.1 Z-boson reconstruction

The first simple example is the reconstruction of the Z boson mass from two charged leptons. This simple
algorithm in CutLang notation is given in Figure 2 left side. The first section of the analysis defines new objects
based on electrons and muons for their proper observability. The first command, ALL, will accept all events and
provides a simple way for selection efficiency calculation and normalization as an internal histogram is filled
automatically after each CutLang command. The first real selection is requiring events with only two leptons,
needed for a simple Z boson reconstruction. Among the reconstructed Z boson candidates, only opposite
charged ones are selected as the reconstructed particle is chargeless, and only those in the mass window of 70 to
120 GeV are accepted. Finally the invariant mass of the surviving lepton pairs are filled in a histogram which
can be found in the same figure, right side. There are two regions or algorithms which are executed in parallel,
one for electrons and the other for muons.

3without the . and the extension name
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Figure 2: Z boson reconstruction simple example

The next example is very similar, with the exception that it is illustrating the utilization of the search
method. The reconstruction algorithm allows any event with two or more leptons and searches the pair that
would give an invariant mass close to that of a Z boson. In this particular sample, there are about 3000 events
with more than two electrons. As the search command doesn’t reject any events by itself, a mass window could
be defined as an additional selection criterion. The rest of the algorithm is as before and the resulting histogram
is shown in the same figure, right hand side.

Figure 3: Z boson reconstruction example with automatic search

7.2 Top quark pair production

t̄t production is one of the main processes we work with at LHC. The final states in the fully hadronic mode has
at least 6 jets, two of which could be b-tagged. Although it is possible to reconstruct top quark masses using
b-tagging, it is not often desirable because of the low tagging efficiency. However, it is possible to reconstruct
the top quark invariant masses without using b-tagging. This method consists of minimizing the χ2 defined by
equation (1). It simply is the difference of the W’s mass difference from the known value, squared added to the
squared difference between the two top quark candidates.

χ2 =
(mb1j1j2 −mb2j3j4)

2

σ2

∆mbjj

+
(mj1j2 −mMC

W )2

σ2

∆mMC
W

+
(mj3j4 −mMC

W )2

σ2

∆mMC
W

(1)

This algorithm can be implemented in CutLang as presented in Figure 4. The resulting plots can be seen
in figure, 5.
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Figure 4: Fully hadronic top quark pair example with automatic search

Figure 5: Fully hadronic boson reconstruction results

8 Compiling and Running the code

The code lives in https://github.com/unelg/CutLang . The ROOT library from CERN should be preinstalled.
After downloading the source code, the make command executed in CLA subdirectory compiles the whole pro-
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gram. The execution should be made in runs subdirectory using the script CLA.sh . In this subdirectory there
are a multitude of example ADL files. The execution command line is

. /CLA. sh ROOTfile_name ROOTfile_type
[−h ] − i |−− i n i f i l e −e|−−events −s|−− s t a r t −h|−−help −v|−−verbose

where ROOT f i l e type can be ( without the quotat ion marks ) :
"LHCO" "FCC" "LVL0" "DELPHES" "ATLASVLL" "ATLMIN" "ATLASOD" "CMSOD" "CMSNANO"

histoOut-ex2.root

Appendix A: Adding an external function

–To be written–
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