CutLang

1

an "interpreted" analysis description language

G. Unel / UCI S. Sekmen / KNU

Veri Çözümlemesi

// if (Cut(ientry) < 0) continue;</pre>

eff->Fill(3);

```
eff->Fill(1);
jmult->Fill(Jet );
lmult->Fill(Muon + Electron );
for ( int i=0; i<Jet ; i++) {</pre>
  jets[i].SetPtEtaPhiM (Jet PT[i], Jet Eta[i], Jet Phi[i], Jet Mass[i
  jeteta->Fill (jets[i].Eta() );
  jetphi->Fill (jets[i].Phi() );
  jetPT->Fill (jets[i].Pt() );
if ( Jet != 2) continue;
eff->Fill(2);
MJJ=jets[0]+jets[1];
jjmass->Fill( MJJ.M() );
MET->Fill(MissingET MET[0]);
if ( MissingET MET[0] <20 ) continue;
```


sorunlar....

sorunlar

C++ / python vs

- öğrenme zorluğu, yenilere kapalı kutu, dediğini gerçekten yapıyor mu?
- tekrar tekrar aynı döngüler, aynı seçimler, aynı histogramlar...

• Framework ile ilgili

• fizik analiz algoritması, kodu ve alt yapısı (framework) iç içe geçmiş durumda

Karşılaştırma

- tam olarak ne yapılıyor? gruplar-arası karşılaştırma, deneyler arası!?!
- deney-kuram karşılaştırma, phenomenology olaybilim

Tekrarlama

• 2011'de yapılan bir analizi tekrar etmek = kabus!

Introducing CutLang v2

- Analysis description language (ADL) and runtime interpreter
 - Human readable text file to describe the whole analysis
 - Run time interpretation of the ADL file: *No compiling!*
 - ADL: [initializations] [definitions] [objects] [definitions] commands

- Works with multiple input data formats
 - Currently available data formats: LVL0, ATLAS OpenData, CMS OpenData, Delphes, LHCO, FCC, CMSNANOAOD,....
 - more can be easily added...

CutLang implementation

- Modest requirements:
 - Pure C++ classes, on top of ROOT LorentzVectors and histograms
 - Linux or Mac, C++ (gcc4.x)
 - ROOT6
 - yacc & lexx (NEW)
- Additional tools to help the analyst and the advisor
 - All definitions, cuts and object selections are saved into the output ROOT file
 - Shell & Python scripts for plotting & addition of "user functions" being updated
- The project is opensource and lives on github
 - https://github.com/unelg/CutLang.git

Syntax 1

- The execution order is top to bottom.
 - units are in GeV, comment character is #, mostly case insensitive

Most mathematical functions are available

sin(), sinh(), cos(), cosh(), tan(), tanh(), Hstep(), abs(), sqrt(), ^, *, /, +, -, interval inclusion [] and exclusion][

Predefined concepts

- particles are: ELECTRON, MUON, TAU, PHOTON, JET, FATJET, MET
 - particles are already sorted in decreasing transverse momentum order
- particle attributes and functions are: charge q mass m, energy E, transverse momentum pT, total momentum P, pseudorapidity Eta, angular distances dPhi,...

particle notation

- On the blackboard, we write
 - When you type it in latex it is jet_1

• CL understands *particleName_index* notation:

Highest Pt object	Second Highest Pt object
ELE_0	ELE_1
MUO_O	MUO_1

• On the computer, we write

• CL understands *particleName[index]* notation:

muonsVeto[0]
photons[0]

functions & attributes

- Is pseudo rapidity or transverse momentum a property of a particle? of the addition of many particles? is it an attribute? is it a function?
- DO I CARE? no.
 - I only care about the result of my analysis
- However, when I speak or write I might say either of
 - "the mass of a particle set" m()
 - "the particle set's mass" { }m
- CL understands both notations

Meaning	Operator	Operator	
Mass of	m()	{ }m	
Charge of	q()	{ }q	
Phi of	Phi()	{ }Phi	
Eta of	Eta()	{ }Eta	
Absolute value of Eta of	AbsEta()	{ }AbsEta	
Pt of	Pt()	{ }Pt	

more natural in Turkish

Syntax 2

- Main keywords:
 - use **select** / **reject** (or **cmd**) to select/reject events
 - use define (or def) to define constants, functions and composite particles
 - use histo to book and fill histograms
 - use **region** (or **algo**) to define independent algorithms
 - use **object** (or **obj**) to define new/composite particle objects
 - use **sort** to sort particles according to a property
 - use table to define a table (currently 1D only)
 - use weight to define an event weight
 - use **save** to record surviving events
 - use Union to define a new set of particles
 - use Comb to construct probability combinatorics

A very simple example

- reconstruct Z boson candidate from the first two electrons $Z \rightarrow \ell \ell \ell \quad \ell = e, \mu$
- histogram the mass of the candidate

user's ADL file		
region tes	t	
select	ALL	# to count all events
select	Size (ELE) >= 2	<pre># events with 2 or more electrons</pre>
histo	mReco, "Z candid	late mass (GeV)", 100, 0, 200, {ELE_0 ELE_1}m

A very simple example

Additional constraint

 $Z \to \ell \ell \quad \ell = e, \mu$

11

the Z candidate should be neutral (q=0)

user's ADL file	
region test select select histo select histo	<pre>ALL # to count all events Size (ELE) >= 2 # events with 2 or more electrons h1mReco, "Z candidate mass (GeV)", 100, 0, 200, {ELE_0 ELE_1}m {ELE[0] ELE[1] }q == 0 # Z is neutral h2mReco, "Z candidate mass (GeV)", 100, 0, 200, {ELE_0 ELE_1}m</pre>
CL output	2 electron combination is often used, why not to give it a name
[Histo] Z candi {ELE[0]	Based on 125000 events: ALL : 1 +- 0 evt: 125000 ALL : 1 +- 0 evt: 125000 0.00128 evt: 35501 Size (ELE) >= 2 : 0.284 +- 0.00128 evt: 35501 Date mass (GeV) : 1 +- 0 evt: 35501 ELE[1] }q == 0 : 0.9595 +- 0.00105 evt: 34063 Date mass (GeV) : 1 +- 0 evt: 34063

A very simple example

introducing definitions

 $Z \to \ell \ell \quad \ell = e, \mu$

user's ADL file

define Zreco	: ELE[0] ELE[1]
region test select select histo select histo	<pre>ALL # to count all events Size (ELE) >= 2 # events with 2 or more electrons h1mReco, "Z candidate mass (GeV)", 100, 0, 200, {Zreco}m {Zreco}q == 0 # Z is neutral h2mReco, "Z candidate mass (GeV)", 100, 0, 200, m(Zreco)</pre>

CL output Based on 125000 events: test ALL : 0 evt: 125000 1 +-Size (ELE) >= 2 : 0.284 +-0.00128 evt: 35501 Are these [Histo] Z candidate mass (GeV) : 1 +-0 evt: 35501 {Zreco}q == 0 : 0.9595 +-0.00105 evt: 34063 electrons inside the [Histo] Z candidate mass (GeV) : 1 +-0 evt: 34063 inner tracker? --> Overall efficiency = 27.3 % +-0.126 %

A simple example

introducing derived objects

 $Z \rightarrow \ell \ell \quad \ell = e, \mu$

```
define Zreco : ELE[0] ELE[1]
object goodEle : ELE
 select Pt(ELE_) > 10
select abs({ELE_}Eta) < 2.4</pre>
 select {ELE_}AbsEta ][ 1.442 1.556
define goodZreco : goodEle[0] goodEle[1]
region test
 select ALL # to count all events
 select
             Size(ELE) >= 2 # events with 2 or more electrons
             Size(goodEle) >= 2 # events with 2 or more electrons
 select
            h1mReco, "Z candidate mass (GeV)", 100, 0, 200, {Zreco}m
 histo
 histo
             h1mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, {goodZreco}m
 select {Zreco}q == 0  # Z is neutral
             {goodZreco}q == 0 # Z is neutral
 select
             h2mReco , "Z candidate mass (GeV)", 100, 0, 200, m(Zreco)
 histo
             h2mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, m(goodZreco)
 histo
```

Derived objects

• Further cleaning or refining can be achieved using derived objects

- Derived objects can be used to derive further refined objects
 - JETS —> goodJETs —> cleanJETs —> verycleanJets ...
- Multiple selection criteria can be applied
- If all members of a particular class (e.g. jets) are considered, a _ sign might be used
- The criteria selection line can contain at most 2 different type of objects (e.g. j & p)
- The whole criteria returns a boolean for the considered pair (j_i and p_j)

Analysis algorithms can use the original objects or derived objects

A simple example

introducing derived objects

 $Z \rightarrow \ell \ell \quad \ell = e, \mu$

 do not use "reject" in object selection there is a bug in this version
 CLA v02.02.02 compiled on Sun Feb 2 21:46:31 CET 2020

```
define Zreco : ELE[0] ELE[1]
object goodEle : ELE
 select Pt(ELE_) > 10
                                                              this is not fair,
 select {ELE_}AbsEta < 2.4</pre>
                                                          Zreco's charge should
 select {ELE_}AbsEta ][ 1.442 1.556
                                                          not impact goodZreco
define goodZreco : goodEle[0] goodEle[1]
                                                                selection.
region
       test
             ALL # to count all events
 select
            Size(ELE) >= 2 # events with 2 or more electrons
 select
 select
             Size(goodEle) >= 2 # events with 2 or more electrons
 histo
             h1mReco, "Z candidate mass (GeV)", 100, 0, 200, {Zreco}m
 histo
             h1mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, {goodZreco}m
          {Zreco}q == 0  # Z is neutral
 select
             {goodZreco}q == 0 # Z is neutral
 select
             h2mReco , "Z candidate mass (GeV)", 100, 0, 200, m(Zreco)
 histo
             h2mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, m(goodZreco)
 histo
```

weights

16

• weights are needed for MC processes

- simulate the relative importance of certain events
- simulate the efficiencies (trigger, pileup, vertex, others...)

Two possbilities

- via a simple coefficient
- via a table

	<pre>randWeight 1.123 effWeight effTable({ELE_0}pT) # new</pre>
histo	h1ept, "E0 pt (GeV)", 100, 0, 2000, {ELE_0}pT

table	effTab	le	
#	value	min	max
	0.1	0.0	10.0
	0.2	10.0	20.0
	0.4	20.0	50.0
	0.7	50.0	70.0
	0.95	70.0	1000.0
region	test		
select	: ALL		# to

A simple example

• introducing multiple regions or algorithms

```
Z \rightarrow \ell \ell \quad \ell = e, \mu
```

```
define Zreco : ELE[0] ELE[1]
object goodEle : ELE
  select Pt(ELE_) > 10
 select {ELE }AbsEta < 2.4</pre>
 select {ELE }AbsEta ][ 1.442 1.556
define goodZreco : goodEle[0] goodEle[1]
algo preselection
 select ALL # to count all events
 select Size(ELE) >= 2 # events with 2 or more electrons
algo
     testA
preselection
# histo h1mReco, "Z candidate mass (GeV)", 100, 0, 200, {Zreco}m
select {Zreco}q == 0 # Z is neutral
            h2mReco , "Z candidate mass (GeV)", 100, 0, 200, m(Zreco)
 histo
algo testB
 preselection
 select
            Size(goodEle) >= 2 # events with 2 or more electrons
# histo h1mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, {goodZreco}m
 select {goodZreco}q == 0 # Z is neutral
 histo
             h2mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, m(goodZreco)
```

Running with multiple regions

- A user defined region can contain another one
 - e.g. SignalRegion containing preselection
- All regions are processed in parallel and saved as TDirectories in the output ROOT file

TFile**	histoOu	ut-ex5.roo	ot	
TFile*	histoOu	t-ex5.ro	ot	
KEY: TDir	ectoryFile	preseled	ction;1	preselect
KEY: TDir	ectoryFile	<pre>_testA;1</pre>	testA	
KEY: TDir	ectoryFile	testB;1	testB	

```
root [2] testA->cd()
(bool) true
root [3] .ls
TDirectoryFile*
                   testA
                              testA
KEY: TText CLA2cuts;1
 select ALL
 select Size(ELE) >= 2
select {Zreco}q == 0
histo h2mReco , "Z candidate mass (GeV)", 100, 0, 200, m(Zreco)
 select ALL
             CLA2defs;1
 KEY: TText
define Zreco : ELE[0] ELE[1]
define goodZreco : goodEle[0] goodEle[1]
 KEY: TText
             CLA20bjs;1
object goodEle : ELE
  select Pt(ELE_)
                       > 10
 select abs({ELE_}Eta ) < 2.4</pre>
 select {ELE_}AbsEta ][ 1.442 1.556
               eff;1 selection efficiencies
 KEY: TH1F
 KEY: TNtuple rntuple;1
                               run info
 KEY: TH1D
               h2mReco;1
                               "Z candidate mass (GeV)"
```

An example $_{Z \rightarrow \ell\ell} \ell = e, \mu$

Introducing optimizers

• if there are more than 2 electrons, search all possible combinations to find the "best" candidate

```
define Zreco : ELE[0] ELE[1]
object goodEle : ELE
  select Pt(ELE_) > 10
  select {ELE_}AbsEta < 2.4</pre>
  select {ELE_}AbsEta ][ 1.442 1.556
define goodZreco : goodEle[-1] goodEle[-1]
algo BestZ
                            # to count all events
  select
            ALL
 select Size(goodEle) >= 2 # events with 2 or more electrons
            {goodZreco}m ~= 91.2 # find the pair yielding mass closest to Z
 select
            {goodZreco}q == 0  # Z is neutral
 select
             hZRecoB, "Z candidate mass (GeV)", 100, 0, 200, m(goodZreco)
 histo
```

We use negative indices if they are to be determined at run time, using a criterion, such as: $\sim \equiv$

Repeating the same negative value helps speeding up since $e_i e_j = e_j e_i$

$t\bar{t}$ Reconstruction example

 $t \rightarrow Wb \rightarrow jjj_b$

There are 6 jets in the event <u>of which 2 can be b-tagged</u> + LOTS of *other jets* from spectator quarks and QCD effects

Which one is which?

with the
$$\chi^2$$
 defined as:

$$\chi^2 = \frac{(m_{b_1 j_1 j_2} - m_{b_2 j_3 j_4})^2}{\sigma_{\Delta m_{b_j j}}^2} + \frac{(m_{j_1 j_2} - m_W^{\text{MC}})^2}{\sigma_{m_W^{\text{MC}}}^2} + \frac{(m_{j_3 j_4} - m_W^{\text{MC}})^2}{\sigma_{m_W^{\text{MC}}}^2}.$$

$t\bar{t}$ Reconstruction example

```
define
         WH1 : JET[-1] JET[-1]
define
         WH2 : JET[-3] JET[-3]
### chi2 for W finder
        Wchi2 : (({WH1}m - 80.4)/2.1)^2 + (({WH2}m - 80.4)/2.1)^2
define
## top quarks without b tagging
define
       Top1 : WH1 JET[-2]
define Top2 : WH1 JET[-4]
define
       mTop1 : m(Top1)
define
        mTop2 : m(Top2)
### chi2 for top finder
define topchi2 : ((mTop1 - mTop2)/4.2)^2
algo besttop
 SelectALL# to count all eventsselectSize(JET) >= 6# at least 6 jetsselectMET < 100</td># at least 6 jets
           MET < 100 # no large MET
  select
  select
           Wchi2 + topchi2 ~= 0 # find the tops and ws
           hmWH1 , "Hadronic W reco (GeV)", 50, 50, 150, m(WH1)
  histo
           hmWH2 , "Hadronic W reco (GeV)", 50, 50, 150, m(WH2)
  histo
           hmTop1 , "Hadronic top reco (GeV)", 70, 0, 700, mTop1
  histo
           hmTop2 , "Hadronic top reco (GeV)", 70, 0, 700, mTop2
  histo
```


reconstructed W bosons

reconstructed top quarks

reterence guide

The Objects

Name	Keyword	Highest Pt object	Second Highest Pt object	$j + 1^{th}$ Highest Pt object
Electron	ELE	ELE_0	ELE_1	ELE_j
Muon	MUO	мио_0	MUO_1	MUO_j
Tau	TAU	TAU_0	TAU_1	TAU_j
Lepton	LEP	LEP_0	LEP_1	LEP_j
Photon	PHO	PHO_0	PHO_1	РНО_ј
Jet	JET	JET_0	JET_1	JET_j
Fat Jet	FJET	FJET_0	FJET_1	FJET_j
b-tagged Jet	BJET	BJET_0	BJET_1	BJET_j
light Jet	QGJET	QGJET_0	QGJET_1	QGJET_j
neutrino	METV	METV_0	METV_1	METV_j

Functions

	· · · · · · · · · · · · · · · · · · ·			
Meaning	Operator	Meaning	Operator	Operator
number of	Size()	Mass of	m()	{ }m
tangent	tan()	Charge of	q()	{ }q
sinus	sin()	Phi of	Phi()	{ }Phi
cosinus	cos()	Eta of	Eta()	{ }Eta
absolute value	abs()	Absolute value of Eta of	AbsEta()	{ }AbsEta
square root	<pre>sqrt()</pre>	Pt of	Pt()	{ }Pt
in the interval	[]	Pz of	Pz()	{ }Pz
not in the interval][Energy of	E()	{ }E
as close as possible	~=	Momentum of	P()	{ }P
far away as possible	!=	Angular distance between	dR()	{
usual meaning	+_/*	Phi difference between	dPhi()	{ }dPhi
to the power	^	Eta difference between	dEta()	{ }dEta

The ternary function in C notation

as far awa

TRUE

User (external) functions

- User defined selection functions are somewhat difficult to incorporate into an interpreter
- Currently we define a user function type and compile it in.
 - CLv2 will provide the means to do this automatically
 - Currently Razor functions are pre-integrated:

std::vector<TLorentzVector> fmegajets(std::vector<TLorentzVector> myjets);
double fMR(std::vector<TLorentzVector> j);
double fMTR(std::vector<TLorentzVector> j, TVector2 amet);
double fMTR2(std::vector<TLorentzVector> j, TLorentzVector amet);

Simple functions can be interpreted using CL math functions

return sqrt(2 * lepton.Pt() * pfmet.Pt() * (1 - cos(pfmet.Phi() - lepton.Phi())));

define MTe : sqrt(2*{electronsVeto_0}Pt *MET*(1-cos({METLV_0}Phi - {electronsVeto_0}Phi))) define MTm : sqrt(2*{muonsVeto_0}Pt *MET*(1-cos({METLV_0}Phi - {muonsVeto_0}Phi))) define mZ : 91.187 Lets assume we have 5 jets 12345

we can make 2 hadronic Zs

12 34 12 35 12 45	CutLang code to define all possibilities, with some cuts:
12 45	object hZs : COMB(jets[-1] jets[-2]) alias ahz
13 24	<pre>select { ahz }AbsEta < 3.0</pre>
13 25	select {jets[-2] }Pt > 2.1
13 45	<pre>select {jets[-1] }Pt > 5.1 select {jets[-1], ahz }dR < 0.6 # means a member of hZs a</pre>
•••••	select { ahz }m [] 10 200

CutLang code to **use** those cuts:

region testA
select Count(hZs) >= 2

.

```
12 34
         Some combinations are removed because of the selection cuts above.
12 35
         Lines with 1 remaining Zh are removed since we required at least 2 hadronic Zs
12 45
13 24
13 25
13 45
                     But which combination to use?
. . . . . .
                     12 35
                                        define zham : {hZs[-1]}m
                     13 24
                                        define zhbm : {hZs[-2]}m
                                        define chi2 : (zham - 91.2)^2 + (zhbm - 91.2)^2
                     13 25
```

select chi2 ~= 0

Union

- It is possible to group charged leptons, or derived objects from charged leptons
 - needed in some susy analyses

•

• united object requires to be knows

```
check other object goodEle : ELE
              select Pt(ELE) > 10
              select abs({ELE}Eta) < 2.4
              select {ELE}AbsEta ][ 1.442 1.556
            object GMUO : MUO
              select Pt(MUO) > 10
              select abs({MUO}Eta) < 2.4</pre>
            object geps : Union( MUO , ELE, TAU)
                                                         #add all leptons into
            object gleps : Union( goodEle , GMU0 )
                                                        #add all good electron
            define Zreco = ELE[-1] ELE[-1]
                                                     #negative indices are to
            region test
              select
                                # to count all events
                         ALL
                         Size (goodEle) >= 1 # events with 2 or more electrons
              select
              select
                         Size (GMUO) >= 1 # events with 2 or more electrons
                         Size (gleps) > 2 # events with 2 or more leptons
              select
```

OutLook

- compatibility between CutLang and LHADA is nearly achieved via ADL
- A CutLang Gui is planned
 - edit config file, run, look at histograms...
- Improve CutLang documentation
 & training guide including a wiki page
- More work on CutLang v2

✓ 2D histograms...

- ✓ SORT, COMBInation
- multithreaded version
- automatic inputfile type and external function inclusion
- Analysis database preparation

We will have a CERN summer student to work on some of these. CutLang needs you!