

Revisiting flux jumps impact on orbit

D. Gamba, R. Tomas, G. Arduini, M. Martino, M.C. Bastos,L. Fiscarelli, J. Coello de Portugal

167th HiLumi WP2 – 18 Feb 2020

When do we expect Flux Jumps?

- Typically, most of them well between 1-3 TeV
 - 2 kA @10A/s are made in about 200 s

MBHSP109 - Differential voltage

How fast/long?

- Typically: 4.4 jumps/second
 - Only measured on 11T short model.
 - We don't know for the **quadrupoles** in the triplet
 - Michele estimated about 2.5 jumps/second in this case [link]
 - We need more measurements!!!
- Rise time ~50 ms. Let's say FWHM ~120 ms.
 - 120x4.4=~500 ms: ~half of the time a magnet is experiencing a jump, which can be either positive or negative.

How intense?

Size of a **Flux Jump** in single magnet:

- 0.2 units (for the main field)
 - i.e. B0 in 11T, B1 for quadrupoles in the triplet,...

WARNING2: neglected here the 0.15 units up-down gradient measured on 11T

Biggest PC-jump induced by flux jump:

- **0.06 units on whole RQX** circuit (at injection only)
 - It becomes negligible at top energy (<0.06 units)</p>
 - Note: PC linearity+short term stability of the order of 0.2 units at injection, even though those are variations at very low frequency (<1 Hz)
- negligible for 11T dipoles (~0.06 units at injection only)
- WARNING3: PC-jumps studied only for RQX and 11T trim circuits, assuming single event in a single magnet with some *arbitrary* hypothesis on scaling laws. Dedicated studies needed!

 0.2 ± 0.1

0.6

units

0.4

 $10^{-4} \Delta \phi / \phi$

30

10

n

0.2

20 Count

Impact of flux jump on orbit at TCPs

 Each value represents the orbit jump induced by the most effective single half-magnet affected by a jump of 0.2 units

Optics	Magnet	Optics sensitivity $[\sigma/10^{-4}]$	Jump-induced rms orbit $[10^{-3}\sigma]$
	Q1	< 0.01	< 2
Injection	Q2	0.01	2
Injection	Q3	< 0.01	< 2
	Q1–Q3	0.01	2
	Q1	0.06	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	56		
p = 15 cm	Q3	0.18	36
	Q1–Q3	0.48	96
	Q1	0.02	4
$\beta^* - 1 m$	Q2	0.11	22
$\rho = 1 \text{ m}$	Q3	0.06	12
	Q1–Q3	0.11	22

TABLE III. R.m.s. closed orbit variation at HL–LHC TCPs under the effect of the expected flux jumps for each half quadrupole composing the triplet (Q1; Q2; Q3) and for a whole triplet (Q1–Q3) computed in units of beam sigma. The optics sensitivity in units of beam sigma per unit of magnetic field change is also reported.

Optics	Optics sensitivity $[\sigma/10^{-4}]$	Jump-induced rms orbit $[10^{-3}\sigma]$
Injection	0.02	4
$\beta^*=15 \mathrm{cm}$	0.07	14
$\beta^* = 1 \mathbf{m}$	0.07	14

TABLE V. R.m.s. closed orbit variation at HL–LHC TCPs under the effect of the expected flux jumps at the 11 T dipoles computed in units of beam sigma. The optics sensitivity in units of beam sigma per unit of magnetic field change is also reported.

Assumptions:

- 2.5 um norm. emit.
- 7 TeV for 1m and 15 cm optics
- 450 GeV for injection optics

=> A jump in some key magnet could lead to ~2% beam sigma jump at TCPs

Some numbers

Affected magnets:

- 2 halves x 2 sides P7 of 11 T dipoles
 - Acting mainly on horizontal plane
- 2 halves x 2 sides x 1 IP1/5 of Q1 + Q2 + Q3
 - Each IP is acting mainly on one plane due to crossing angle

Number of events:

- Over 200 s (one ramp, from ~1.2 to ~2.3 TeV), we expect 200x4.4 = 880 jumps for each single magnet
- Number of fills in lifetime of HL-LHC:
 - 10 years x 300 fills/year = **3000 fills**.
 - Total number of events/magnet = 2.64x10⁶

Some probability of concurrent jumps

- At a given time, probability of a single magnet to be in a jump of a given sign is ¼.
- At a given time, probability that *n* magnets are in a jump of a given sign is therefore (1/4)ⁿ
- Additional assumptions:
 - Assuming 1 m optics at 3 TeV (still conservative)
 - need to scale optics sensitivity values by sqrt(3/7) = 0.65 as beam size is then bigger, i.e. size of jump in beam sigma is smaller.
 - no cross-talk between magnets
 - all flux jump of 0.2 units, 120 ms long, 4.4 isolated events/s
 - neglected the contribution of the power converters
 - Considering here only the horizontal plane

First order estimate of cases

NumberOfEventsPerRamp	880			Units	0.20												
NumberOfRamps	3000		Beam Energy (TeV)		3.00												
Numer of events	2640000	0															
							# ma	s being aff	being affected								
Magnet	sigma@TCP/unit	1 2 3		4	5	6	7	8	9	10	11	12	13	14			
Q2B IP1 L	0.10	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Q2A IP1 L	0.10	0	1	1	1	1	1	1	1	1	1	1	1	1	1		
MBH.A8L7	0.07	0	0	1	1	1	1	1	1	1	1	1	1	1	1		
MBH.B8L7	0.07	0	0	0	1	1	1	1	1	1	1	1	1	1	1		
Q3B IP1 R	0.06	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
Q3A IP1 R	0.05	0	0 0	0	0	1	1	1	1	1	1	1	1	1			
Q2B IP1 R	0.04	0	0	0	0	0	0	1	1	1	1	1	1	1	1		
Q3A IP1 L	0.03	0	0	0	0	0	0	0	1	1	1	1	1	1	1		
Q3B IP1 L	0.03	0	0	0	0	0	0	0	0	1	1	1	1	1	1		
Q2A IP1 R	0.02	0	0	0	0	0	0	0	0	0	1	1	1	1	1		
Q1B IP1 L	0.02	0	0	0	0	0	0	0	0	0	0	1	1	1	1		
Q1B IP1 R	0.01	0	0	0	0	0	0	0	0	0	0	0	1	1	1		
Q1A IP1 L	0.01	0	0	0	0	0	0	0	0	0	0	0	0	1	1		
Q1A IP1 R	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
1/probability:		1	2	8	32	128	512	2048	8192	32768	131072	524288	2097152	8388608	33554432		
Cases during 1 ramp		880	440	110	28	7	2	0	0	0	0	0	0	0	0		
Cases Lifetime		2640000	1320000	330000	82500	20625	5156	1289	322	81	20	5	1	0	0		
Impact at TCP [% beam s.]		1.3	2.6	3.5	4.5	5.2	5.9	6.5	6.9	7.2	7.5	7.8	8.0	8.1	8.3		

• At least **one event** of ~6% σ_{beam} jump/ramp (~8% σ_{beam} during HL-LHC lifetime)

- Similar in vertical/diagonal direction (i.e. x3 number of "bad" events)
- One can be more conservative (i.e. 0.6 units jumps => up to ~20% σ_{beam} jumps)

Conclusions

- Typically, a few % σ_{beam} orbit jumps at TCPs
 - For every ramp: >1 case with a jump up to ~6% σ_{beam}
 - During HL-LHC lifetime, >1 case with a jump up to ~8% σ_{beam}
 - Values can be scaled up to x3 to be very conservative
- We have **limited knowledge** on:
 - PC behavior for complex circuits like the triplet
 - Amplitude of B₀ jump in a quadrupole magnet
- **Run3** will be **fundamental** to collect more data from 11T:
 - Firing 6k-turn-by-turn BPM data every "second"
 - ADT spectra
 - BPM 25Hz rms data
 - Other signals? BLM data?
- String tests could be another place where to learn more.

Backup

Impact of quads @TCP @1m beta* @7TeV @295 urad crossing

CERN

-I HC PROJEC

11

Impact of 11T @TCP @1m beta* @7TeV

CERN

HILUM

More complicated: diagonal kick + PC effect

NumberOfEventsPerRamp							880		Flux jur	np [units]	0.20													
NumberOfRamps							3000		PC jur	np [units]	0.06				•									
Numer of events							2640000		Beam En	ergv (TeV)	3.00													
										0/(/														
												# magnet halves being affected												
Magnet	н	V	IP1 L	IP1 R	IP5 L	IP5 R	sigma @TCP/unit	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
RQX circuit IP1 L	1	0	1	0	0	0	0.10	1	1	2	2	2	2	2	2	2	2	3	3	4	4			
RQX circuit IP1 R	.1	0					0.10	0	0	0	0	0	0	1	1	2	2	2	2	2	2			
RQX circuit IP5 L	0	1					0.10	0	0	0	0	0	0	0	1	1	2	2	2	2	2			
RQX circuit IP5 R	0	1	0	0	0	1	0.10	0	1	1	2	2	2	2	2	2	2	2	3	3	4			
Q2A IP1 L	1	0	1	0	0	0	0.10	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Q2A IP5 R	.0	1	0	0	0	1	0.10	0	1	1	1	1	1	1	1	1	1	1	1	1	1			
Q2B IP1 L	1	0	1	0	0	0	0.10	0	0	1	1	1	1	1	1	1	1	1	1	1	1			
Q2B IP5 R	0	1	0	0	0	1	0.10	0	0	0	1	1	1	1	1	1	1	1	1	1	1			
MBH.A8L7	1	0	0	0	0	0	0.07	0	0	0	0	1	1	1	1	1	1	1	1	1	1			
MBH.B8L7	1	0	0	0	0	0	0.07	0	0	0	0	0	1	1	1	1	1	1	1	1	1			
Q3A IP1 R	1	0	0	1	0	0	0.06	0	0	0	0	0	0	1	1	1	1	1	1	1	1			
Q3A IP5 L	0	1	0	0	1	0	0.06	0	0	0	0	0	0	0	1	1	1	1	1	1	1			
Q3B IP1 R	1	0	0	1	0	0	0.05	0	0	0	0	0	0	0	0	1	1	1	1	1	1			
Q3B IP5 L	.0	1	0	0	1	.0	0.05	0	0	0	0	0	0	0	0	0	1	1	1	1	1			
Q1A IP1 L	1	0	1	0	0	0	0.04	0	0	0	0	0	0	0	0	0	0	1	1	1	1			
Q1A IP5 R	0	1	0	0	0	1	0.04	0	0	0	0	0	0	0	0	0	0	0	1	1	1			
Q1B IP1 L	1	0	1	0	0	0	0.04	0	0	0	0	0	0	0	0	0	0	0	0	1	1			
Q1B IP5 R	0	1	0	0	0	1	0.04	0	0	0	0	0	0	0	0	0	0	0	0	0	1			
1/probability:								1	2	8	32	128	512	2048	8192	32768	131072	524288	2097152	8388608	*****			
Cases during 1 ramp								880	440	110	28	7	2	0	0	0	0	0	0	0	0			
Cases Lifetime								2640000	1320000	330000	82500	20625	5156	1289	322	81	20	5	1	0	0			
Impact at H TCP [% beam s.]								1.7	1.7	3.4	3.4	4.3	5.2	6.4	6.4	7.5	7.5	8.4	8.4	9.3	9.3			
Impact at V TCP [% beam s.]								0.0	1.7	1.7	3.4	3.4	3.4	3.4	4.6	4.6	5.6	5.6	6.5	6.5	7.5			
impact at diag ICP [% beam s.]						-		1.2	2.4	3.6	4.8	5.5	6.1	6.9	7.8	8.5	9.3	9.9	10.6	11.2	11.9			

 Actual result is very similar (within 10-20%) to horizontal plane computation only.

Still missing full analysis of PC behavior

