
March 2020

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Optimization Notice
Getting started with oneAPI

Agenda

▪ Introduction

▪ DPC++ “Hello world”

▪ DPC++ Software Model

– Platform Model

– Execution Model

– Memory Model

– Kernel Model

▪ Tips and tricks

Optimization Notice
2

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

The language is:

C++
+

SYCL

+
Additional Features

such as...

ndrange subgroups, USM, ordered queue

WHAT IS DPC++?

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/

https://www.khronos.org/sycl/

3

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/
https://www.khronos.org/sycl/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

The implementation is:

Clang
+

LLVM
+

Runtime

WHAT IS DPC++?

https://github.com/intel/llvm

4

https://github.com/intel/llvm

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

PROGRAMMING IN DPC++

DPC++ implements cross-platform data parallelism support (extends C++).

▷ Write `kernels'

▷ Control when/where/how they might beaccelerated

5

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Before we start
Lambda Expressions

#include <algorithm>
#include <cmath>

void abssort(float* x, unsigned n) {
std::sort(x, x + n,

// Lambda expression
[](float a, float b)
{

return (std::abs(a) < std::abs(b));
}

);
}

• A convenient way of defining an
anonymous function object right at
the location where it is invoked or
passed as an argument to a function

• Lambda functions can be used to
define kernels in SYCL

• The kernel lambda MUST use copy
for all its captures (i.e., [=])

Capture clause

Parameter list Lambda body

6

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ PROGRAM overview

#include<CL/sycl.hpp>
using namespace sycl;

int main(int argc, char *argv[]) {

...

// define buffers!!!

queue myQueue{...};

...

myQueue.submit([&](handler &h) {

// accessors (for connecting to memory via buffers)

h.parallel_for(range<3>(1024,1024,1024),

[=](id<3> myID) { // kernel function });

});

}

▷ Queue accepts work requests as
submissions.

▷ Highlighted lines are the command

group scope.

▷ Submissions finish asynchronously.

▷ Only one kernel (work described in a
lambda) per submit!

▷ All work requests are done via a
queue.

▷ A queue uniquely attaches to a single
device (e.g., GPU, FPGA, AI, CPU, Host).

7

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Common code snippet

#include <CL/sycl.hpp>

using namespace sycl;

#define dpc_r access::mode::read

#define dpc_w access::mode::write

#define dpc_rw access::mode::read_write

Compile with -fsycl-unnamed-lambda option
• default starting from Beta 04

8

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

DPC++ “Hello World”: Vector Addition

dpcpp test.cpp

9

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Host code

Host code

Anatomy of a DPC++ Application

10

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Accelerator
device code

Anatomy of a DPC++ Application

11

Host code

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Host code

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Create buffers using
host pointers

DPC++ basics

12

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Create a queue to submit work
to a device (including host)

DPC++ basics

13

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Read/write accessors
create dependencies if
other kernels or host
access buffers.

DPC++ basics

14

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Vector addition
kernel enqueues a
parallel_for task.

Pass a function
object/lambda to
be executed by
each work-item

DPC++ basics

15

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ Constructs that Describe Parallelism
h.single_task(

[=]() {

});

});

[=](h_item<1> myItem) {

// kernel function is executed EXACTLY once on a SINGLE work-item

h.parallel_for(

range<3>(1024,1024,1024), // using 3D in this example

[=](id<3> myID) {

// kernel function is executed on an n-dimensional range (NDrange)

});

h.parallel_for(

nd_range<3>({1024,1024,1024},{16,16,16}), // using 3D in this example

[=](nd_item<3> myID) {

// kernel function is executed on an n-dimensional range (NDrange)

h.parallel_for_work_group(

range<2>(1024,1024), // using 2D in this example

[=](group<2> grp) {

// kernel function is executed once per work-group

});

grp.parallel_for_work_item(

range<1>(1024), // using 1D in this example

// kernel function is executed once per work-item

});

16

Basic data parallel

Explicit ND-Range

Hierarchical parallelism

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for<class vector_add>(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

SYCL 1.2.1 requires to
name the lambda

-fsycl-unnamed-lambda
allows to avoid it

DPC++ basics

17

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

The range defines
the iteration space

DPC++ basics

18

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Each iteration
(work-item) will
have a separate
index id (i)

DPC++ basics

19

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

LANGUAGE OF THE HIERARCHY ABSTRACTION (FULL 3D)

DPC++ vocabulary follows and extends vocabulary of CUDA, OpenCL, SYCL.

20

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

DPC++ basics

21

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Write-buffer is now out-of-
scope, so kernel completes
and host pointer has
consistent view of output.

DPC++ basics

22

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

std::vector<float> A(1024), B(1024), C(1024);

{

buffer bufA {A}, bufB {B}, bufC {C};

queue q;

q.submit([&](auto &h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range(1024), [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

Simplified DPC++ style (Beta 04)

23

dpcpp test.cpp -std=c++17

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Get a device (any device): queue queue(); // default_selector{}

Get device from class:
queue queue(gpu_selector{});
queue queue(cpu_selector{});
queue queue(host_selector{});

default_selector

• DPC++ runtime scores all the devices and picks one with highest compute power

• Environment variable

export SYCL_DEVICE_TYPE=GPU | CPU | HOST

Where is my “Hello World” code executed?
Device Selector

24

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

int main() {

float A[1024], B[1024], C[1024];

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q(gpu_selector{});

q.submit([&](handler& h) {

auto A = bufA.get_access<dpc_r>(h);

auto B = bufB.get_access<dpc_r>(h);

auto C = bufC.get_access<dpc_w>(h);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

DPC++ basics

Explicit device selector

25

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

Kernel IR/ISA
(SPIR-V? ISA?)

Kernel IR/ISA
(SPIR-V? ISA?)

main.cpp:
#include <iostream>

int main() {
const size_t array_size = 16;
int data[array_size];
{

buffer<int, 1> resultBuf{ data, range<1>{array_size} };
queue q;
q.submit([&](handler& h) {

auto resultAcc = resultBuf.get_access<access::mode::write>(h);

h.parallel_for(range<1>{array_size}, [=](id<1> i) {
resultAcc[i] = static_cast<int>(i.get(0));

});
});

}
for(int i = 0; i < array_size; i++) {

std::cout << "data[" << i << "] = " << data[i] << std::endl;
}
return 0;

}

Standard
Object File

(main.o)

Kernel IR/ISA
(SPIR-V, vISA, ISA)

Standard
Linker

Executable!

DPC++ Compilation Flow: Single Source Concept

oneAPI DPC++
Compiler

Optimization Notice

dpcpp main.cpp

27

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Executable

DPC++ Runtime

Intel CPU Intel iGPU

H
o

st
 D

e
v

ic
e

C
P

U
 D

e
v

ic
e

G
P

U
 D

e
v

ic
e

DPC++ Execution Flow

Intel FPGA

F
G

A
 D

e
v

ic
e

28

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ Compilation and execution: full version

29

DPC++ device selection

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ DEVICE SELECTION
▷ In a system without

accelerators, we use

the CPU

▷ The grayed out devices

are not in this system!

31

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ DEVICE SELECTION
▷ We can control

devices to use.

▷ Some algorithms

use the top device.

32

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ DEVICE SELECTION
▷ A single system

might have both

accelerators

available.

▷ We can choose the

mapping we want -

based on best

match, application

balance, data

movement, etc.

33

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ DEVICE SELECTION

▷ In a system with the

top device.

▷ Both programs can

be accelerated.

34

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ DEVICE SELECTIONDPC++ DEVICE SELECTION

▷ In a system with the

bottom device.

▷ Only our second

example had uses

for it.

35

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ DEVICE SELECTIONDPC++ DEVICE SELECTION

▷ In system with BOTH

devices.

▷ Both programs have

options.

36

Where and how to get and use DPC++?

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

EASIEST - USE THE PREBUILT DPC++ WITH COMPLETE ONEAPI TOOLKITS

▷ DevCloud

▷ Download Toolkits
You'll want oneAPI toolkits, even if you build your own DPC++ compiler.

38

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

DEVCLOUD

https://software.intel.com/en-us/devcloud/oneapi

39

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

BUILD FROM OPEN SOURCE, EASY LINUX OR WINDOWS

https://github.com/intel/llvm

40

https://github.com/intel/llvm

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPIGetting started with oneAPI

BUILD FROM OPEN SOURCE, LINUX (FOR EXAMPLE)

41

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

JUMP ON DEVCLOUD
$ ssh devcloud

...login to the devcloud...

$ wget tinyurl.com/oneapimodule?2 -O 2.tz

$ tar xvfz 2.tz

...fetch and unpack code I'll be playing with for module 2...

$ pbsnodes -l free

...list of free nodes...

$ pbsnodes s001-145

...information about node s001-145...

$ pbsnodes | more

...lots more detail...

$ pbsnodes | grep properties

...useful properties list...

$ pbsnodes | grep fpga

...useful fpga oriented list...

42

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

HELLO QSUB

$ mkdir mytst

$ cd mytst

$ cat - > myhello.sh

echo "HELLO, WORLD!"

^D

$ qsub myhello.sh

$ qstat

Job ID Name ...

------ ----------

3463 myhello.sh ...

$ qstat

43

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

HELLO QSUB
$ ls -l

total 8

-rw-r--r-- 1 u27938 u27938 21 Oct 14 22:58 myhello.sh

-rw------- 1 u27938 u27938 0 Oct 14 22:58 myhello.sh.e3463

-rw------- 1 u27938 u27938 603 Oct 14 22:58 myhello.sh.o3463

$ cat myhello.sh.o3463

##
Date:

Job ID:

User:

Mon Oct 14 22:58:58 PDT 2019

3463.v-qsvr-nda.aidevcloud

u27938

Resources: neednodes=1:ppn=2,nodes=1:ppn=2,walltime=06:00:00

##

HELLO, WORLD!

##

End of output for job 3463.v-qsvr-nda.aidevcloud

Date: Mon Oct 14 22:58:59 PDT 2019

##

44

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

HELLO QSUB

...use a particular node...

$ qsub -lnodes=s001-n155:ppn=2

...use a node based on a property...

$ qsub -lnodes=1:ppn=2:fpga_compile

$ qsub -lnodes=1:ppn=2:gpu

$ qsub -lnodes=1:ppn=2:skl

$ qsub -lnodes=1:ppn=2:cfl

45

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DPC++ Software Model

47

• Details four models to employ one or more devices as an accelerator.
• Platform model - what to program (host and devices).

• Host: A CPU-based system that executes the application scope and
command group scope.

• Device: An accelerator or specialized component
• Examples include CPU, FPGA, GPU.

• Execution model – how to control (command queues)
Queues, Accessors

• Memory model - how to feed the data
Buffers, Images, Unified Shared Memory

• Kernel model – how to program (kernels)
Subset of C++, ND-range, work-item

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Platform Model

Global/Constant Memory

Host Memory

Host

Device

(CPU)

(GPU, MIC, FPGA, …)

Compute Unit
(CU)

Lo
cal M

em
o

ry
Lo

cal M
em

o
ry

Lo
cal M

em
o

ry
Lo

cal M
em

o
ry

Command
Group

• Synchronization cmd
• Data movement ops
• User-defined kernels

Command
GroupCommand

GroupCommand
Group

Command
Queue

Executed on…

submits...

Command
Queue
Command

Queue

Host code
Executed on…

DPC++ Application

Device code

Private Memory

49

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Platform Model

Platform: Intel(R) CPU Runtime for OpenCL(TM) Applications
Device: Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz

Platform: Intel(R) FPGA Emulation Platform for OpenCL(TM)
Device: Intel(R) FPGA Emulation Device

Platform: Intel(R) OpenCL HD Graphics
Device: Intel(R) Gen9 HD Graphics NEO

50

auto platforms = platform::get_platforms();

for (auto& platform : platforms) {

std::cout << "Platform: "<< platform.get_info<info::platform::name>();

std::cout << std::endl;

auto devices = platform.get_devices();

for (auto& device : devices) {

std::cout << " Device: "<< device.get_info<info::device::name>();

std::cout << std::endl;

}

}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Get a device (any device): queue queue(); // default_selector{}

Get device from class:

queue queue(gpu_selector{});
queue queue(accelerator_selector{});
queue queue(cpu_selector{});
queue queue(host_selector{});

Custom selector:

class custom_selector : public device_selector {
int operator()(……

…
queue queue(custom_selector{});

51

default_selector

• DPC++ runtime scores all the devices and picks one with highest compute power

• Environment variable

export SYCL_DEVICE_TYPE=GPU | CPU | HOST

Platform Model
Device Selector

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Execution Model
Execution of Kernel Instances

Device (GPU, FPGA, …)

Compute Unit
(CU)

Kernel instance =

Kernel object &

nd_range &

work-group
decomposition

Work-pool

Command
Queue
Command

Queue
Command

Queue

enqueued…

53

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DEPENDENCIES IN A KERNEL-BASED WORLD

▷ The order of kernels may matter - think of kernels as tasks with

potential dependencies.

▷ Data transfers to/from the host create dependencies also -

think of data accesses on the hosts as defining tasks with

potential dependencies as well.

54

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

TASK GRAPH WITH DISJOINT DEPENDENCIES

E must be done
before F

A, B, and C must
be done before
D

A must be done
before B or C

55

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

IN-ORDER QUEUES
ordered_queue myQueue;

myQueue.submit([&](handler& h) {

h.parallel_for<class taskA>(…);

});

myQueue.submit([&](handler& h) {

h.parallel_for<class taskB>(…);

});

myQueue.submit([&](handler& h) {

h.parallel_for<class taskC>(…);

});

myQueue.submit([&](handler& h) {

h.parallel_for<class taskD>(…);

});

myQueue.submit([&](handler& h) {

h.parallel_for<class taskE>(…);

});

myQueue.submit([&](handler& h) {

h.parallel_for<class taskF>(…);

});

56

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

DEPENDENCIES VIA COMMAND GROUPS

▷ We've been using handler &h in examples already!

▷ A command group handler object can only be constructed by

the SYCL runtime.

▷ The runtime determines the dependencies, because:
• all of the accessors defined in command group scope take as a

parameter an instance of the command group handler, and
• all the kernel invocation functions are member functions of this class.

▷ An instance of a command group handler may not be moved

or copied.

57

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

EXPLICIT DEPENDENCIES

▷ Tasks can be explictlyordered.

▷ myQueue.wait() - waits for everything submitted to a queue to

finish.

▷ auto myTokenX = myQueue.submit...
• myToken.wait() - waits for a particular submission to finish.
• cgh.depends_on(myToken) - waits for another submission (DPC++

only)

58

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

59 /
48

QUEUES

queue myQueue;

auto myTokA = myQueue.submit([&](handler& h) {

h.parallel_for<class taskA>(…);

});

auto myTokB = myQueue.submit([&](handler& h) {

h.depends_on(myTokA);

h.parallel_for<class taskB>(…);

});

auto myTokC = myQueue.submit([&](handler& h) {

h.depends_on(myTokA);

h.parallel_for<class taskC>(…);

});

auto myTokD = myQueue.submit([&](handler& h) {

h.depends_on(myTokB);

h.depends_on(myTokC);

h.parallel_for<class taskD>(…);

});

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Execution Model
Synchronization summary

Synchronization with kernel function

• Barriers for synchronizing work items within a workgroup.

• No synchronization primitives across workgroups

Synchronization between host and device

• Call to wait() member function of device queue

• Buffer destruction will synchronize the data with host memory

• Host accessor constructor is a blocked call and returns only after all
enqueued kernels operating on this buffer finishes execution

• DAG construction from command group function objects enqueued into
the device queue

60

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

C++ Exception-based
DPC++ is based on C++

• Errors in C++ are handled through exceptions

• SYCL uses exceptions, not return codes!

Synchronous exceptions

• Thrown immediately when an API call fails (e.g. can’t create buffer)

• Normal C++ exceptions

61

// Synchronous Exception Handler

try {

device_queue.reset(new queue(device_selector));

}

catch (exception const& e) {

std::cout << "Caught a synchronous SYCL exception:“ <<e.what();

return;

}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

C++ Exception-based
Asynchronous exceptions

• Caused by a future failure (e.g. during DAG node execution when data deps met)

• Host program has already moved on to new things!

• Programmer provides processing function, and says when to process

62

//Asynchronous Exception Handler on Device side

auto async_exception_handler = [](exception_list exceptions) {

for (std::exception_ptr const& e : exceptions) {

try {

std::rethrow_exception(e);

}

catch (exception const& e) {

std::cout << “Caught a Asynchronous SYCL exception” << e.what() << std::endl;

}

}

};

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Global memory:

• Accessible to all work-items in all work-
groups.

• Reads and writes may be cached.

• Persistent across kernel invocations

Memory Model

Constant memory:

• A region of global memory that
remains constant during the
execution of a kernel

Local Memory:

• Memory region shared between
work-items in a single work-
group.

Private Memory:

• Region of memory private to a work-
item. Variables defined in one work-
item’s private memory are not visible to
another work-item

Global/Constant Memory

Device (GPU, FPGA, …)

Compute Unit
(CU)

Lo
cal M

em
o

ry
Lo

cal M
em

o
ry

Lo
cal M

em
o

ry
Lo

cal M
em

o
ry

Private Memory

64

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Memory Model
Access to Memory & Memory Consistency

The application running on the host
can use buffer objects to allocate
memory in the global address space

Buffer Accessor

To access data in buffers inside a
kernel, the user must create an
accessor object

Any variable defined inside a parallel_for/parallel_for_work_item scope will be allocated in private memory.

• Read-only/Write-only/Read-write
• Atomic

65

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Memory Model
Managing Memory across Host and Devices

Storage and access of memory is separated via buffers and accessors.

Buffer

CPU

GPU

Accessor

Accessor

Command
Group

Command
Group

66

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

UNIFIED SHARED MEMORY (USM)
▷ DPC++ only (not part of the SYCL 1.2.1specification)

▷ Requires hardware support for a unified virtual address space

(this allows a pointer value to be the same on a device and the

host).

▷ All memory is allocated by the host, however USM supports
three allocation types:

• device - located on the device, not accesible by the host
• host - located on the host, accessible by host or device
• shared - accessible by host or device, location can migrate back and

forth
Basic code samples:

67

https://github.com/intel/llvm/tree/sycl/sycl/test/usm

https://github.com/intel/llvm/tree/sycl/sycl/test/usm

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

USM MEMCPY FOR EXPLICIT DATA MOVEMENT
queue myQueue;

auto dev = myQueue.get_device();

auto ctxt = myQueue.get_context();

int hostArray[42];

int *deviceArray = (int*) malloc_device(42 * sizeof(int), dev, ctxt);

for (int i = 0; i < 42; i++) hostArray[i] = 42;

myQueue.submit([&](handler& h) {

// copy hostArray to deviceArray

h.memcpy(deviceArray, &hostArray[0], 42 * sizeof(int));

});

myQueue.wait(); // needed for now (we learn how to ditch soon)

myQueue.submit([&](handler& h) {

h.parallel_for(range<1>{42}, [=](id<1> ID) {

int i = ID[0];

deviceArray[i]++;

}); });

myQueue.wait(); // needed for now (we learn how to ditch soon)

myQueue.submit([&](handler& h) {

// copy deviceArray back to hostArray

h.memcpy(&hostArray[0], deviceArray, 42 * sizeof(int));

});

myQueue.wait(); // needed for now (we learn how to ditch soon)

free(deviceArray, ctxt);

▷ device

memory can

be accessed

by the host

via a memcpy

operation

68

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

USM IMPLICIT DATA MOVEMENT
queue myQueue;

auto dev = myQueue.get_device();

auto ctxt = myQueue.get_context();

int *hostArray = (int*) malloc_host(42 * sizeof(int), ctxt);

int *sharedArray = (int*) malloc_shared(42 * sizeof(int), dev, ctxt);

for (int i = 0; i < 42; i++) hostArray[i] = 1234;

myQueue.submit([&](handler& h) {

h.parallel_for(range<1>{42}, [=](id<1> myID) {

int i = myID[0];

// access sharedArray and hostArray on device

sharedArray[i] = hostArray[i] + 1;

});

});

myQueue.wait();

for (int i = 0; i < 42; i++) hostArray[i] = sharedArray[i];

free(sharedArray, ctxt);

free(hostArray, ctxt);

▷ no memcpy

needed for

host or

shared types,

but

coherence

needs to be

understood

(hence the

calls to wait)

69

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

queue q;

int data[N] = {10,10};

buffer<int, 1> my_buffer(data, range<1>(N));

q.submit([&] (handler &h){

auto my_accessor = my_buffer.get_access<dpc_rw>(h);

h.parallel_for(range<1>(N), [=](item<1> item){

size_t index = item.get_linear_id();

my_accessor[index] += 1;

});

});

q.wait_and_throw();

my_buffer.get_access<read>();

std::cout << "Output : " << data[0] << ", " << data[1] << std::endl;

EXAMPLE
Implementation with Buffers & Accessors

Create buffer

Instantiate
accessor

Update buffer

Host can
initialize

Device can
modify

Host has
output

70

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

queue q;

int* data = (int*)malloc_shared(N * sizeof(int), q.get_device(), q.get_context());

data[0] = 10; data[1] = 10;

q.submit([&](handler& h) {

h.parallel_for(range<1>(N), [=](item<1> item) {

size_t index = item.get_linear_id();

data[index] += 1;

});

});

q.wait_and_throw();

std::cout << "Output : " << data[0] << ", " << data[1] << std::endl;

Example
Implementation with USM

Host can
initialize

Device can
modify

Host has
output

Setup Unified
Shared Memory

71

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Task Scheduling with USM

Explicit Scheduling

• Work submission returns an event

• Programmers can explicitly wait on these
events to order tasks

DAG Scheduling

• Programmers can also build DAGs with
these events

72

float* a = malloc_shared(…);

float* b = malloc_shared(…);

float* c = malloc_shared(…);

queue Q; auto e = Q.submit([&](handler& h) {

cgh.parallel_for(range<1> {10}, [=](id<1> i)

{

c[i] = a[i] + b[i];

});

);

e.wait();

class handler {

…

public: … void depends_on(event e);

};

auto e = Q.submit([&](handler& h) {

…

});

Q.submit(([&](handler& h) {

h.depends_on(e);

h.parallel_for(range<1> {10}, [=](id<1> i)

{

c[i] = a[i] + b[i];

});

});

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Kernel Execution Model

• Explicit ND-range for control- similar to programming models such as
OpenCL, SYCL, CUDA.

ND-range

Global work size

Work-group

Work-item

74

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

nd_range & nd_item

Example: Process every pixel in a 1920x1080 image

• Each pixel needs processing, kernel is executed on each pixel (work-item)

• 1920 x 1080 = 2M pixels = global size

• Not all 2M can run in parallel on device, there is hardware resource limits.

• We have to split into smaller groups of pixel blocks = local size (work-group)

• Either let the complier determine work-group size OR we can specify the
work-group size using nd_range()

75

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Example: Process every pixel in a 1920x1080 image

• Let compiler determine work-group size

• Programmer specifies work-group size

h.parallel_for(nd_range<2>(range<2>(1920,1080),range<2>(8,8)),

[=](id<2> item){

// CODE THAT RUNS ON DEVICE

})

h.parallel_for(range<2>(1920,1080), [=](id<2> item){

// CODE THAT RUNS ON DEVICE

});

nd_range & nd_item

global
size

local size
(work-group size)

76

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

nd_range & nd_item

Example: Process every pixel in a 1920x1080 image

• How do we choose work-group size?

• Work-group size of 8x8 divides equally for 1920x1080

• Work-group size of 9x9 does not divide equally for 1920x1080

• Compiler will throw error (invalid work group size error)

• Work-group size of 10x10 divides equally for 1920x1080

• Works, but always better to use multiple of 8 for better resource utilization

• Work-group size of 24x24 divides equally for 1920x1080

• 24x24=576, will fail compile assuming GPU max work-group size is 256

GOOD

77

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Kernel Execution Model
Sub-groups

• Additional level of execution model hierarchy

• Think SIMD register or Warp Sub-group decomposition
of work-group

Global work size

Work-group

Work-item

Sub-group

78

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Supported features

₊ templates

₊ classes

₊ operator overloading

₊ static polymorphism

₊ lambdas

₊ short vector types (2/3/4/8/16-wide)

₊ reach library of built-in functions

Unsupported features

₋ dynamic memory allocation

₋ dynamic polymorphism

₋ runtime type information

₋ exception handling

₋ function pointers

₋ pointer structure members

₋ static variables

Device/Kernel Features

79

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

buffer<int,1> buf { range<1>{16} };

auto placeholder_accessor = accessor<int, 1, dpc_w, access::target::global_buffer,

access::placeholder::true_t>(buf);

auto lambda = [=](id<1> index) { placeholder_accessor[2] = 5; };

deviceQueue.submit([&](handler &h) {

h.require(placeholder_accessor);

h.parallel_for(range<1>(16), lambda);

});

Kernel Definition
Stored lambda

80

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Clear C++ way to define re-usable kernels.

81

class Functor{

public:

Functor(accessor<int, 1, dpc_w, access::target::global_buffer> ptr) : ptr_ {ptr} {}

void operator()(item<1> i) { ptr_[i] = 5; } // Kernel body

private: accessor<int, 1, dpc_w, access::target::global_buffer> ptr_;

};

int main() {

queue deviceQueue;

buffer<int,1> buf { range<1>{16} };

deviceQueue.submit([&](handler &h) {

auto acc = buf.get_access<dpc_w>(h);

h.parallel_for<>(range<1>(16), Functor(acc));

});

Kernel Definition
Named functor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Optimization Notice
Getting started with oneAPI

troubleshooting runtime issues
https://github.com/bashbaug/OpenCLPapers/blob/markdown/OpenCLOnLinux.md

▪ Step 1: Do you have libOpenCL.so?
$ ldd /path/to/your/application | grep OpenCL

libOpenCL.so.1 => /path/to/your/libOpenCL.so.1 (0x00007f9182d27000)
locate libOpenCL.so

▪ Step 2: Do You Have An OpenCL Implementation?

– Is your OpenCL implementation in /etc/OpenCL/vendors?
ls -l /etc/OpenCL/vendors/

– Is the file for your OpenCL implementation readable?

– Are the contents of the file for your OpenCL implementation correct?
$ more vendor.icd
/opt/vendor/opencl-1.2-X.Y.Z.W/lib64/libvendorocl.so

NOTE: with oneAPI we set the path using setvars.sh and the icd file has only the lib name, not a full path

▪ clinfo

– https://github.com/Oblomov/clinfo

▪ Using strace to Troubleshoot
strace ./a.out 2>trace.txt

Optimization Notice
83

https://github.com/bashbaug/OpenCLPapers/blob/markdown/OpenCLOnLinux.md
https://github.com/Oblomov/clinfo

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 84

Buffer creation

int main() {

auto Data = new int[10];

buffer<int, 1> Buf(Data, {10});

Data[4] = 42;

delete Data;

}

• The ownership of the memory
passed to the buffer
constructor belongs to the buffer

• Accessing(and removing) this
memory is undefined behavior until
the buffer is destructed

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 85

Buffer creation

int main() {

auto Data = new int[10];

{

buffer<int, 1> Buf(Data, {10});

}

Data[4] = 42;

delete Data;

}

• The ownership of the memory
passed to the buffer
constructor belongs to the buffer

• The buffer is destructed when we
go out of scope

• Operations with the memory is legal

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 86

Context and program compilation

int main() {

buffer<int, 1> Buf({10});

for(int I = 0; I < Buf.get_count(); ++I) {

queue Q ();

Q.submit([&](handler &h) {

auto Acc = Buf.get_access<dpc_w>(h);

h.single_task([=]() { Acc[0] = 42; });

});

}

}

• Creation of queue triggers
creation of new context object

• Submitting kernel for a first time
for a context triggers JIT
compilation of device code
which is cached for the context

• Exiting loop scope leads to
queue -> context -> cached
programs destruction

• On the second iteration the
process happens again

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 87

Context and program compilation

int main() {

buffer<int, 1> Buf({10});

queue Q ();

for(int I = 0; I < Buf.get_count(); ++I) {

Q.submit([&](handler &h) {

auto Acc = Buf.get_access<dpc_w>(h);

h.single_task([=]() { Acc[0] = 42; });

});

}

}

• Creation of queue triggers
creation of new context object

• Submitting kernel for a first time
for a context triggers JIT
compilation of device code
which is cached for the context

• Exiting loop scope DOESN’T lead
to queue -> context -> cached
programs destruction

• On the second a cached program
is used

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 88

Using command group
int main() {

buffer<int, 1> Buf({10});

queue Q();

Q.submit([&](handler &h) {

auto Acc = Buf.get_access<dpc_w>(h);

h.single_task([=]() { Acc[0] = 42; });

h.fill(Acc, 42);

});

Q.submit([&](handler &h) {

auto Acc = Buf.get_access<dpc_w>(h);

Acc[0] = 32;

});

}

• Only one operation can be
“requested” in one command
group
• Command group must contain
kernel invocation or explicit
memory operation
• Accessing memory thru device
side accessors is legal in
kernel scope only

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 89

Using command group
int main() {

buffer<int, 1> Buf({10});

queue Q();

Q.submit([&](handler &h) {

auto Acc = Buf.get_access<dcp_w>(h);

h.fill(Acc, 42);

});

Q.submit([&](handler &h) {

auto Acc = Buf.get_access<dpc_w>(h);

Acc[0] = 32;

h.single_task([=]() { Acc[0] = 42; });

});

}

• Only one operation can be
“requested” in one command
group
• Command group must contain
kernel invocation or explicit
memory operation
• Accessing memory thru device
side accessors is legal in
kernel scope only

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 90

Buffer creation
int main() {

int Data1[1] = {1};

int Data2[1] = {42};

{

buffer<int, 1> Buf1(Data1, {1});

buffer<int, 1> Buf2(Data2, {1});

queue Q();

Q.submit([&](handler &h) {

auto Acc2 = Buf2.get_access<dpc_r>(h);

h.single_task([=]() { Acc2[0] *= 42; });

});

Q.submit([&](handler &h) {

auto Acc1 = Buf.get_access<dpc_rw>(h);

auto Acc2 = Buf.get_access<dpc_rw>(h);

h.single_task([=]() { Acc1[0] += Acc2[0]; });

});

}

return Data1[0];

}

• The pointer passed to the
buffer constructor should be
aligned to the size of the type
buffer points to in order to
achieve zero copy

• The memory will be copied to
host during buffer destruction
while it’s not needed

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI 91

Buffer creation
int main() {

int Data1[1] __attribute__((aligned(sizeof(int)))) = {1};

int Data2[1] = {42};

{

buffer<int, 1> Buf1(Data1, {1});

buffer<int, 1> Buf2(Data2, {1});

Buf2.set_write_back(false);

queue Q();

Q.submit([&](handler &h) {

auto Acc2 = Buf2.get_access<dpc_r>(h);

h.single_task([=]() { Acc2[0] *= 42; });

});

Q.submit([&](handler &h) {

auto Acc1 = Buf.get_access<dpc_rw>(h);

auto Acc2 = Buf.get_access<dpc_r>(h);

h.single_task([=]() { Acc1[0] += Acc2[0]; });

});

}

return Data1[0];

}

• The pointer passed to the buffer constructor should be
aligned to the size of the type buffer points to in order
to achieve zero copy

• Calling set_write_back(false) disables write back on
buffer destruction

• Several ways to disable “copy-back” during the buffer
construction:

• set_write_back(false)

• set_final_data(nullptr)

• pass pointer to const data to the buffer
constructor

• no “write accessor” for the buffer

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Optimization Notice
Getting started with oneAPI

Summary

Data Parallel C++:

▪ Delivers power and productivity of modern C++

▪ Leverages SYCL* standard to support parallelism and heterogenous
programming

Links:

▪ Intel oneAPI

– https://software.intel.com/en-us/oneapi

▪ Open source project on Github

– https://github.com/intel/llvm

▪ Intel® DevCloud for oneAPI Projects

– https://software.intel.com/en-us/devcloud/oneapi

92

https://software.intel.com/en-us/oneapi
https://github.com/intel/llvm
https://software.intel.com/en-us/devcloud/oneapi

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Getting started with oneAPI

Legal Disclaimer & Optimization Notice
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product
are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.
Notice Revision #20110804

Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others

© Intel Corporation.

9393

