oneAPI

INTRODUCTION TO OFFLOAD ADVISOR

2222222222222222222222

INTEL® ADVISOR BETA

DESIGN ASSISTANT - DESIGN FOR MODERN HARDWARE

Offload Advisor

= |dentify opportunities for offload to an accelerator

Vectorization Advisor

= Add and optimize vectorization

Roofline Analysis
= Optimize CPU/GPU code for memory and compute

Threading Advisor
= Add effective threading to unthreaded applications

Flow Graph Analyzer

= (Create and analyze efficient flow graphs

Original
Host (CPU) Host (CPU) Host

Offloaded

Data transfer costs
Host I

and overhead

(Accelerator) . Host

J « |Cores:|1 v| ¥ |'Y Default FLOAT ~ 1* No Results to Compare ~

Intel Confidential — For use under NDA only

AGENDA

" [ntroduction to Offload Advisor
= Command line tips
" Understanding the performance modelization

= GPU Roofline Analysis

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

INTRODUCTION TO OFFLOAD ADVISOR

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

INTEL OFFLOAD ADVISOR (BETA)

= Starting from a baseline binary (running on CPU):
= Helps defining which sections of the code should run on a given accelerator
= Provides performance projection on accelerators (currently gen9 and gen11)

(intel) OFFLOAD ADVISOR

Summary |

Program metrics @ Offloads bounded by & Gen9 GT2 configuration @

Original @

Amdahl's

Fractiol ed Code @ 99% Code Transfer Tax @

Top non offloaded (

Bounded By @ Data Trans! Location @ Data Transfe cutio Why Not Offloaded @

<0.01MB oop in iso_3 dfd_parallel.cc:85) 0.0SMB Not profitable

[loop in main at ise-3dfd_mai 94 OMB

CPU
[loop in initialize -3dfd s aMB GRU
CPU 0.02s

[loap in initialize i_main ¢ OMB &N @fh

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

MODELING FLOWS SUPPORTED: NOW

Baseline HW (Programming model) Target HW

1. CPU (C,C++,Fortran, Py) CPU + GPU
measured measured

l.a CPU (DPC++, OCL, OMP, CPU + GPU

MEEN “target=host”) measured

Copyright © 2019, Intel Corporation. All rights reserved.
N .

MODELING FLOWS SUPPORTED: NOW + COMING SOON

Baseline HW (Programming model) Target HW

1. CPU (C,C++,Fortran, Py) CPU + GPU
measured measured

l.a CPU (DPC++, OCL, OMP, CPU + GPU
measured “target=host”) measured

p. CPU+iGPU (C, C++, Fortran, DPC++, CPU + GPU

MEENI OCL, OMP) measured

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

FROM YOUR CPU APPLICATION, YOU WONDER:

= How your code might perform on an accelerator ? = What should you offload ?

- Top offloaded ®

Program metrics @

Locat Bounded By @ Data Trans
E_ nqmal- I - 3dfd_p g s 3.C I— Ir;ElUI | LLC_BW = <D.01MB
Target Platform Gend GT2 Time on Ho
Number of Offloa Time on Accelerato
Speed Up fo alerated Code g Data Transfer Tax
Amdahl's Law 5.5x Invo n Ta:

Fraction of A zrated Co g Code Transfer T

= What might be limiting your performance on the = What are the bad candidates for offload and Why ?

Top non offloaded @

accelerator ? Offloads bounded by C
LI o1 Data Transfer @ xecution Time @ Why Not Offloaded @
Compute @

L3 Cache BW

[loop in iso_3dfd at did_paralle 0.05MB . Not profitable.

0.02s Total time is
[loop in main at iso-3dfd_main.ce <0.01s li U old=0
Memory BW 0.01s i

Data Transf

Non Offloader

Copyright © 2019, Intel Corporation. All rights reserved. intel
*QOther names and brands may be claimed as the property of others.

TOP OFFLOADED IN DEPTH

= Provides a detailed description of each loop interesting for offload
= Timings (total time, time on the accelerator, speedup)
= Offload metrics (offload taxe, data transfers)
= Memory traffic (DRAM, L3, L2, L1), trip count

= Highlight which part of the code should run on the accelerator

(intel) OFFLOAD ADVISOR

Surmmary | Offf jions | Mon O Call Tree | Configuration | Logs

Hierarchy

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

8.9x

Number of O

In whole logy

This is where you will

use DPCPP or OMP
target for offload

#pragms paral or
for(int iz=HALF_LENGTH; iz<n
for(int iy=HALF_LENGTI
#pragma omp simd

for(int i

ALF_LENGTH; iz
HALF_LENGTH; iy++) {

ALF_LENGTH; ix+
y*nl + ix;

= Dependency issues
= Not profitable

= Total time is too small

intel) OFFLOADADVISOR

Summary | oaded

Hierarchy

[loop in iso_3dfd at iso-3dfd_parallel.cc:
[loop in main at iso-3dfd_main. 4]

[loop in initialize at i ifd_main.cc:39

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

NON OFFLOADED IN DEPTH

= Explains why Advisor doesn’t recommend a given loop for offload

100.00

Mot profitable.
Total time i

Total time is te

small for reliable modelling. Use --loop-filter-thresh

small for reliable moedelling. Use --loop-filter-thresh

old=0 to model such small offloads.

old=0 to model such small offloads.

Number of O

PROGRAM TREE

The program tree offers another view of the proportion of code that can be offloaded
to the accelerator.

Target=GPU, —
Target = _CPU_ = _ _, == _ Accelerated=c ><—.

—_—

1 =
‘—-_Y.—
N
=
-
=
=
1

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

COMMAND LINE TIPS

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

BEFORE YOU START TO USE OFFLOAD ADVISOR

= The only strict requirement for compilation and linking is full debug information:

-g: Requests full debug information (compiler and linker)

= Offload Advisor supports any optimization level, but the following settings are
considered the optimal requirements:

-02: Requests moderate optimization

-no-ipo: Disables inter-procedural optimizations that may inhibit Offload Advisor to
collect performance data (Intel® C++ & Fortran Compiler specific)

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

SOURCE OFFLOAD ADVISOR

= To set up the Intel® Advisor Beta environment, run one of the shell script:

source <ONEAPI_INSTALL_DIR>/setvars.sh

or

source <ADV_INSTALL_DIR>/env/vars.sh

= This script sets all required Intel Advisor environment variables, including APM,
which points to <ADV_INSTALL_DIR>/perfmodels

= This is the location of the Offload Advisor scripts in the Intel® Advisor Beta
installation directory

el plet Advsor Beta The performance modeling functionality is
available on Linux* OS only

(intel” OFFLOAD ADVISOR

Copyright © 2019, Intel Corporation. All rights reserved intE|) |

*QOther names and brands may be claimed as the property of others.

HOW DOES IT WORK?

= Easy to collect data and generate output with batch mode:

advixe-python <ADV_INSTALL DIR>/perfmodels/run_oa.py <project dir>
--config gen9 --out-dir <project _dir> [--options] -- <app> <app_args>

= By default, run_oa.py marks up all regions and only selects the most profitable
ones for analysis

= To generate the report.html, uses the following command:

advixe-python $APM/analyze.py <project dir> --config gen9
--out-dir <project_dir> [--options]

u31313@s001-n004: /opt/intel/inteloneapi/advisor/latest/perfmodelss$ 1s
analyze.py collect.py debug.so environ.py oa wrapper.so shared.so toml

compute stats.py dot graph.so helpers run oa.py template tree.so

intel) |

accelerators
analyze impl.so collect impl.so

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

RUN_OA.PY: WHAT IS RUNNING BEHIND?

run_oa.py

python collect.py —a gen

thon analyze.py —a gen
OR use directly advixe-cl Py yze.py-ag

ADVISOR ADVISOR
PROFILING PROFILING TOOL

T00L
MARK-UP ADVISOR:
APPLICATION POLICY INTEL GPU

(6 -0 s APPLIED PERFORMAN

MODEL
OUTPUTS

1dV UOYIAd

CE MODELS

OFFLOAD ADVISOR OUTPUT OVERVIEW

= report.html: Main reportin HTML format
= preport.csvandwhole app metric.csv: Comma-separated CSV files

= program_tree.dot: A graphical representation of the call tree showing the offloadable
and accelerated regions

= program_tree.pdf: A graphical representation of the call tree
Generated if the DOT(GraphViz*) utility is installed
1:1 conversion from the program_tree.dot file

= JSON and LOG files that contain data used to generate the HTML report and logs, primarily
used for debugging and reporting bugs and issues

Copyright © 2019, Intel Corporation. All rights reserved. intel
*QOther names and brands may be claimed as the property of others.

WANT TO AVOID DEPENDENCY CHECKING ?

= Dependency adds a lot of time to the collection and you might want to remove it.
= Add the option —c basic for the collection:

advixe-python <ADV_INSTALL_DIR>/perfmodels/run_oa.py <path_to result_dir>
-config gen9 -c basic --out-dir <path_to result dir> [--options] -- <app>

= Add the option --assume-parallel for the analysis:

advixe-python $APM/analyse.py <project _dir> --assume-parallel --config
gen9 [--options] -- <app_binary> [app_options]

Copyright © 2019, Intel Corporation. All rights reserved intE|) |

*QOther names and brands may be claimed as the property of others.

HARDCORE VERSION (BUT MORE CONTROL)

* You might want to run the command lines independently to tweak the parameters

A good startis to use run_oa.py script with --dry-run to see the list of command
lines and retrieve the cache configuration of the target accelerator.

* The next command will output the different command lines for doing separate
analyses without running advisor collection.

 advixe-python <ADV_INSTALL DIR>/perfmodels/run_oa.py
<path_to result dir> --dry-run -config gen9 -c basic --out-dir
<path_to result dir> [--options] -- <app>

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

HARDCORE VERSION (BUT MORE CONTROL)

 We start with the survey

 advixe-cl --collect=survey --auto-finalize --stackwalk-
mode=online --static-instruction-mix --project-dir=./0a_report
= my_app

 The survey times your application and run some static analysis on the binary
without impact on the application’s performance.

 Sampling
e Binary static analysis

» Static code analysis (compiler and debug infos)

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

HARDCORE VERSION (BUT MORE CONTROL)

 We continue with the trip count and cache simulation

 advixe-cl --collect=tripcounts -return-app-exitcode -flop -stacks -auto-
finalize -ignore-checksums -enable-data-transfer-analysis -track-heap-
objects -profile-jit -cache-sources -enable-cache-simulation -cache-
config=1:8w:32k/1:64w:512k/1:16w:8m --project-dir=./0a_report - my_app

e The tripcounts with —flop and —cache-simulation counts:
* The number of iterations in your loops
 The number of operations

* Evaluate the data transfers between memory subsystems configured with —cache-config

This analysis has usually =~10x speeddown

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

HARDCORE VERSION (BUT MORE CONTROL)

 Optional step: Dependency analysis

 advixe-cl --collect=dependencies --loops="total-time>5" --
filter-reductions --loop-call-count-1limit=16 --project-
dir=./0a_report -- my_app

* Detects data dependencies in your loop by checking your memory accesses
* This analysis has an important impact on the performance

* Itis up to the user to define how loops will be selected for this anlysis, here we use —
loops="total-time>5" which select all loops impacting more than 5% of the overall
time

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

HARDCORE VERSION (BUT MORE CONTROL)

* Last step: Generating the report
2 (Cases:

* You ran the dependency analysis:

advixe-python $APM/analyse.py ./oa_report --config gen9 --out-dir
oa_report - my_app

* You didn’t run the dependency analysis
advixe-python $APM/analyse.py ./oa_report --config gen9 --assume-
parallel --out-dir oa_report - my_app

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

UNDERSTANDING THE PERFORMANGE
MODELIZATION

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

THE MECHANISMS BEHIND

First order analytical modeling pillars:

 Compute throughput model

e Memory sub-system model

e Offload data transfer modeling Region X Region Y
Execution time on baseline platform (CPU) _
o ooy e [] |]I

A 4

* Execution time on accelerator. Estimate assuming
bound exclusively by caches/memory

* Offload Tax estimate (data transfer + invoke) |
N\ N\

Final estimated time on target platform (eg GPU) gm Y .

[

X — profitable to Y - too much overhead,
accelerate, t(X) > t(X not accelerable, t(Y)<t(Y’)

A 4

A 4

t region = rnax(tcompute' tmemory subsystem tdata transfer tax tkernel launch

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

GPU ROOFLINE ANALYSIS

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

INTEL" GEN9 MEMORY HIERARCHY

= Intel® Graphics Compute Architecture uses the same |
DRAM W|th the CPU H‘-Each EU:

Intel® Processor Graphics Gen9

= Level-3 (L3) data cache: slice-shared asset

= Shared Local Memory (SLM): a dedicated structure |
within the L3 that supports the work-group local ot Sbw,/
memory address space '}

LT IROETT IR

interface unit connects the entire architecture e v Local Mem S
interfaces to the rest of the SoC components " '

= Graphics Technology Interface (GTI): a dedicated " ol

Each CPU Core: :
R: 32B/cyc
W: 32B/eyc

" The rest of SoC memory hierarchy includes the large rng cloc
Last-Level Cache (LLC, which is shared between CPU -

and G PU)’ POssl bly S bedded DRAM and fi na”y the A view of the SoC chip level memory hierarchy and its theoretical peak bandwidths
system DRAM for the compute architecture of Intel processor graphics gen9

Copyright © 2019, Intel Corporation. All rights reserved. intE|) |

*QOther names and brands may be claimed as the property of others.

FIND EFFECTIVE OPTIMIZATION STRATEGIES

GPU Roofline Performance Insights

¥ L3; GTI (Memory) = || * Guidance «

= Highlights poor performing loops

= Shows performance ‘headroom’ for each loop

— Which can be improved
— Which are worth improving

= Shows likely causes of bottlenecks = o
= . —| Matrix2<float> L0471GB|
Self Performance: 8.02 GFLOPS
Self L3 Arithmetic Intensity: 0.23 FLOP/Byte
— Memory bound vs. compute bound Seif L3 Avithmetic Intensity OP/Byte

Self Memory Traffic: 9.169 GB FLOP/Byte (Arithmetic Intensity)

= Suggests next optimization steps

Copyright © 2019, Intel Corporation. All rights reserved. intel
*QOther names and brands may be claimed as the property of others.

HOW TO RUN?

The Roofline model on GPU is a technical preview feature and is not available by default. To enable it:

export ADVIXE_EXPERIMENTAL=gpu-profiling

To run the GPU Roofline analysis in the Intel® Advisor CLI:

Run the Survey analysis with the - -enable-gpu-profiling option:

advixe-cl -collect=survey --enable-gpu-profiling --project-dir=<my_project_directory> --search-dir
src:r=<my_source_directory> -- ./myapp [app_parameters]
Run the Trip Counts and FLOP analysis with - -enable-gpu-profiling option:

advixe-cl -collect=tripcounts --stacks --flop --enable-gpu-profiling --project-
dir=<my_project_directory> --search-dir src:r=<my_source_directory> -- ./myapp [app_parameters]

Generate a GPU Roofline report:
advixe-cl --report=roofline --gpu --project-dir=<my_project_directory> --report-output=roofline.html

Open the generated roofline.html in a web browser to visualize GPU performance.

Copyright © 2019, Intel Corporation. All rights reserved. intE|) |

*QOther names and brands may be claimed as the property of others.

ROOFLINE ANALYSIS ON INTEL" GPU

Y Default: GTI (Memory) v

A Guidance v

Sd0149

=] =

.--"335.69 GFLOPS (41.8).x"

) ! SP Vector Add-Péak: 219.84 GFLOPS’
B e R e fr

-

,—":V' DP Vector FMA Peak: 108.62 GFLOPS?

Matrix2<float>

Self Performance: 8.02 GFLOPS

Self GTI Arithmetic Intensity: 4.56 FLOP/Byte
Self Elapsed Time: 0.268 s

Self Memory Traffic: 0.471 GB

PO T Yt (T Tee e oy

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

4

7

10

LEGAL NOTIGES & DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from
the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance.

Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results,
visit

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs
and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of
risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether
referenced data are accurate.

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon, Movidius and others are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation.

Copyright © 2019, Intel Corporation. All rights reserved.
*QOther names and brands may be claimed as the property of others.

http://www.intel.com/performance

32

BACKUP

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel Confidential — For use under NDA only

THE MECHANISMS BEHIND 2/2

We minimize the total time spent in this loop hierarchy by varying offload strategies U (offload/non-offload,
#threads for each component loop; of loopnest)

Ob]eCtlve functlon : Tall = min (Zi Ti + taata transfer + tinvoke T Tcpu)
U={ufi,ufz,.}
(TComp_only()
Reject loopnests for which L This is effectively “balance”
T (x86) / T oy (x86+”X”) < 1.0 Ti = max { My, only (k) M{‘ (throughput) model
1. e M?*) =
L l ; BW

Under algorithmic constraints (Dependencies and TripCount/Granularity)

33 Intel Confidential — For use under NDA only { lm%

