
Intel Confidential – For use under NDA only1

oneAPI
Introduction to offload advisor
Klaus-Dieter Oertel
Intel IAGS

oneAPI@CERN 24-Mar-2020

Intel Confidential – For use under NDA only2

2

Offload Advisor
▪ Identify opportunities for offload to an accelerator

Vectorization Advisor
▪ Add and optimize vectorization

Roofline Analysis
▪ Optimize CPU/GPU code for memory and compute

Threading Advisor
▪ Add effective threading to unthreaded applications

Flow Graph Analyzer
▪ Create and analyze efficient flow graphs

Intel® Advisor (Beta)

Design Assistant – Design for Modern Hardware

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AGENDA

▪ Introduction to Offload Advisor

▪ Command line tips

▪ Understanding the performance modelization

▪ GPU Roofline Analysis

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Introduction to OFFLOAD ADVISOR

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel OFFLOAD Advisor (BETA)
▪ Starting from a baseline binary (running on CPU):

▪ Helps defining which sections of the code should run on a given accelerator

▪ Provides performance projection on accelerators (currently gen9 and gen11)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Modeling Flows supported: NOW

6

Baseline HW (Programming model) Target HW

1. CPU
measured

(C,C++,Fortran, Py) CPU +
measured

GPU
estimated

1.a CPU
measured

(DPC++, OCL, OMP,
“target=host”)

CPU +
measured

GPU
estimated

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Modeling Flows supported: NOW + Coming Soon

7

Baseline HW (Programming model) Target HW

1. CPU
measured

(C,C++,Fortran, Py) CPU +
measured

GPU
estimated

1.a CPU
measured

(DPC++, OCL, OMP,
“target=host”)

CPU +
measured

GPU
estimated

2 CPU+iGPU
measured

(C, C++, Fortran, DPC++,
OCL, OMP)

CPU +
measured

GPU
estimated

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FROM Your CPU Application, you wonder:
▪ How your code might perform on an accelerator ?

▪ What might be limiting your performance on the

accelerator ?

▪ What should you offload ?

▪ What are the bad candidates for offload and Why ?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Top Offloaded in depth
▪ Provides a detailed description of each loop interesting for offload

▪ Timings (total time, time on the accelerator, speedup)

▪ Offload metrics (offload taxe, data transfers)

▪ Memory traffic (DRAM, L3, L2, L1), trip count

▪ Highlight which part of the code should run on the accelerator

This is where you will
use DPCPP or OMP
target for offload

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Non Offloaded in depth
▪ Explains why Advisor doesn’t recommend a given loop for offload

▪ Dependency issues

▪ Not profitable

▪ Total time is too small

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

PROGRAM TREE

The program tree offers another view of the proportion of code that can be offloaded
to the accelerator.

Target = CPU
Target = GPU,
Accelerated

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

COMMAND LINE TIPS

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ The only strict requirement for compilation and linking is full debug information:

-g: Requests full debug information (compiler and linker)

▪ Offload Advisor supports any optimization level, but the following settings are
considered the optimal requirements:

-O2: Requests moderate optimization

-no-ipo: Disables inter-procedural optimizations that may inhibit Offload Advisor to
collect performance data (Intel® C++ & Fortran Compiler specific)

Before you start to use Offload Advisor

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ To set up the Intel® Advisor Beta environment, run one of the shell script:

source <ONEAPI_INSTALL_DIR>/setvars.sh

or

source <ADV_INSTALL_DIR>/env/vars.sh

▪ This script sets all required Intel Advisor environment variables, including APM,
which points to <ADV_INSTALL_DIR>/perfmodels

▪ This is the location of the Offload Advisor scripts in the Intel® Advisor Beta
installation directory

Source Offload Advisor

The performance modeling functionality is
available on Linux* OS only

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ Easy to collect data and generate output with batch mode:

advixe-python <ADV_INSTALL_DIR>/perfmodels/run_oa.py <project_dir>
--config gen9 --out-dir <project_dir> [--options] -- <app> <app_args>

▪ By default, run_oa.py marks up all regions and only selects the most profitable
ones for analysis

▪ To generate the report.html, uses the following command:

advixe-python $APM/analyze.py <project_dir> --config gen9
--out-dir <project_dir> [--options]

How does it work ?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Run_oa.py: What is running behind?

Advisor
profiling
tool

P
yth

o
n

 A
P

I

Advisor:

Intel GPU
Performan
ce models

Model
Outputs

Advisor
profiling tool

FLOPS/Trip Counts

Traffic Simulation

Offload data
transfer analysis

Survey

*Dependencies

Binary static
analysis

Dynamic
Instrumentation

python collect.py –a gen
OR use directly advixe-cl

python analyze.py –a gen

run_oa.py

Mark-up
policy
applied

Application

(-g -o2)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Offload advisor Output Overview

▪ report.html: Main report in HTML format

▪ report.csv and whole_app_metric.csv: Comma-separated CSV files

▪ program_tree.dot: A graphical representation of the call tree showing the offloadable
and accelerated regions

▪ program_tree.pdf: A graphical representation of the call tree

Generated if the DOT(GraphViz*) utility is installed

1:1 conversion from the program_tree.dot file

▪ JSON and LOG files that contain data used to generate the HTML report and logs, primarily
used for debugging and reporting bugs and issues

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ Dependency adds a lot of time to the collection and you might want to remove it.

▪ Add the option –c basic for the collection:

advixe-python <ADV_INSTALL_DIR>/perfmodels/run_oa.py <path_to_result_dir>
–config gen9 –c basic --out-dir <path_to_result_dir> [--options] -- <app>

▪ Add the option --assume-parallel for the analysis:

advixe-python $APM/analyse.py <project_dir> –-assume-parallel --config
gen9 [--options] -- <app_binary> [app_options]

Want to avoid dependency checking ?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcore version (but more control)

• You might want to run the command lines independently to tweak the parameters

• A good start is to use run_oa.py script with --dry-run to see the list of command
lines and retrieve the cache configuration of the target accelerator.

• The next command will output the different command lines for doing separate
analyses without running advisor collection.

• advixe-python <ADV_INSTALL_DIR>/perfmodels/run_oa.py
<path_to_result_dir> --dry-run –config gen9 –c basic --out-dir
<path_to_result_dir> [--options] -- <app>

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcore version (but more control)

• We start with the survey

• advixe-cl --collect=survey --auto-finalize --stackwalk-
mode=online --static-instruction-mix --project-dir=./oa_report
– my_app

• The survey times your application and run some static analysis on the binary
without impact on the application’s performance.

• Sampling

• Binary static analysis

• Static code analysis (compiler and debug infos)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcore version (but more control)

• We continue with the trip count and cache simulation

• advixe-cl --collect=tripcounts -return-app-exitcode -flop -stacks -auto-
finalize -ignore-checksums -enable-data-transfer-analysis -track-heap-
objects -profile-jit -cache-sources -enable-cache-simulation -cache-
config=1:8w:32k/1:64w:512k/1:16w:8m --project-dir=./oa_report – my_app

• The tripcounts with –flop and –cache-simulation counts:

• The number of iterations in your loops

• The number of operations

• Evaluate the data transfers between memory subsystems configured with –cache-config

• This analysis has usually =~10x speeddown

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcore version (but more control)

• Optional step: Dependency analysis

• advixe-cl --collect=dependencies --loops="total-time>5" --
filter-reductions --loop-call-count-limit=16 --project-
dir=./oa_report -- my_app

• Detects data dependencies in your loop by checking your memory accesses

• This analysis has an important impact on the performance

• It is up to the user to define how loops will be selected for this anlysis, here we use –
loops=“total-time>5” which select all loops impacting more than 5% of the overall
time

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardcore version (but more control)

• Last step: Generating the report

• 2 Cases:

• You ran the dependency analysis:

advixe-python $APM/analyse.py ./oa_report --config gen9 --out-dir
oa_report – my_app

• You didn’t run the dependency analysis
advixe-python $APM/analyse.py ./oa_report --config gen9 --assume-
parallel --out-dir oa_report – my_app

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Understanding the performance
modelization

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The mechanisms behind
First order analytical modeling pillars:

• Compute throughput model

• Memory sub-system model

• Offload data transfer modeling

• Execution time on accelerator. Estimate assuming
bound exclusively by caches/memory

• Execution time on accelerator. Estimate assuming
bound exclusively by Compute

t

Region X Region Y

Y - too much overhead,
not accelerable, t(Y)<t(Y’)

• Offload Tax estimate (data transfer + invoke)

X’ Y’

X – profitable to
accelerate, t(X) > t(X’)

Execution time on baseline platform (CPU)

Final estimated time on target platform (eg GPU)

t region = max(tcompute, tmemory subsystem) + tdata transfer tax + tkernel launch

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

GPU Roofline Analysis

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Gen9 Memory Hierarchy

▪ Intel® Graphics Compute Architecture uses the same

DRAM with the CPU

▪ Level-3 (L3) data cache: slice-shared asset

▪ Shared Local Memory (SLM): a dedicated structure

within the L3 that supports the work-group local

memory address space

▪ Graphics Technology Interface (GTI): a dedicated

interface unit connects the entire architecture

interfaces to the rest of the SoC components

▪ The rest of SoC memory hierarchy includes the large

Last-Level Cache (LLC, which is shared between CPU

and GPU), possibly embedded DRAM and finally the

system DRAM
A view of the SoC chip level memory hierarchy and its theoretical peak bandwidths

for the compute architecture of Intel processor graphics gen9

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Find Effective Optimization Strategies

GPU Roofline Performance Insights

▪ Highlights poor performing loops

▪ Shows performance ‘headroom’ for each loop

– Which can be improved

– Which are worth improving

▪ Shows likely causes of bottlenecks

– Memory bound vs. compute bound

▪ Suggests next optimization steps

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to run?
The Roofline model on GPU is a technical preview feature and is not available by default. To enable it:

export ADVIXE_EXPERIMENTAL=gpu-profiling

To run the GPU Roofline analysis in the Intel® Advisor CLI:

Run the Survey analysis with the --enable-gpu-profiling option:

advixe-cl –collect=survey --enable-gpu-profiling --project-dir=<my_project_directory> --search-dir
src:r=<my_source_directory> -- ./myapp [app_parameters]

Run the Trip Counts and FLOP analysis with --enable-gpu-profiling option:

advixe-cl –collect=tripcounts --stacks --flop --enable-gpu-profiling --project-
dir=<my_project_directory> --search-dir src:r=<my_source_directory> -- ./myapp [app_parameters]

Generate a GPU Roofline report:
advixe-cl --report=roofline --gpu --project-dir=<my_project_directory> --report-output=roofline.html

Open the generated roofline.html in a web browser to visualize GPU performance.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Roofline Analysis on Intel® GPU

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from
the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance.
Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results,
visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs
and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of
risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether
referenced data are accurate.

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon, Movidius and others are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation.

Legal notices & disclaimers

http://www.intel.com/performance

Intel Confidential – For use under NDA only32
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Backup

Intel Confidential – For use under NDA only33

The mechanisms behind 2/2
We minimize the total time spent in this loop hierarchy by varying offload strategies U (offload/non-offload,
#threads for each component 𝑙𝑜𝑜𝑝𝑖 of loopnest)

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 ∶ 𝑻𝒂𝒍𝒍 = min
𝑈={𝑢𝑓1,𝑢𝑓2,..}

(σ𝑖 𝑻𝒊 + 𝑡𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑡𝑖𝑛𝑣𝑜𝑘𝑒 + 𝑇𝑐𝑝𝑢)

𝑻𝒊 = 𝑚𝑎𝑥

𝑇𝑖
𝐶𝑜𝑚𝑝_𝑜𝑛𝑙𝑦

𝑇𝑖
𝑀𝑘_𝑜𝑛𝑙𝑦 𝑀𝑖

𝑘 =
𝑴𝒊

𝒌

𝑩𝑾𝒌

𝑈𝑛𝑑𝑒𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑛𝑑 𝑇𝑟𝑖𝑝𝐶𝑜𝑢𝑛𝑡/𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦)

This is effectively “balance”
(throughput) model

Reject loopnests for which
T (x86) / 𝑻𝒂𝒍𝒍 (x86+”X”) < 1.0

