CP violation in the neutrino sector: Recent long-baseline experiments results

Grzegorz Żarnecki

HEP seminar 17.01.2019

Outline

Introduction: CP violation, neutrino oscillations

Current leading long-baseline experiments:
 T2K and NOvA

- Future experiments: DUNE and Hyper-Kamiokande
- Summary

CP violation

- CP symmetry combination of charge (C) and parity (P) symmetry.
- Violation of CP implies that there is a difference between particles and antiparticles.
- CP violation is one of Sakharov's conditions for an explanation of the observed imbalance of matter and antimatter abundance in the in the Universe.
 - Discovered in quark sector.
- In neutrino sector it may be manifested in different oscillation probabilities (for neutrinos and antineutrinos).

Neutrino oscillations: basic idea

• The flavour states v_{α} , are superposition of mass eigenstates v_{i} :

$$|
u_{lpha}
angle = \sum_{i} U_{lpha i} |
u_{i}
angle$$

• v_i are eigenstates of Hamiltonian and propagate for a time t as:

where
$$E_{
m i}=\sqrt{p^2+m_{
m i}^2}$$
 $|
u_{
m i}(t)
angle=e^{-iE_{
m i}t}\,|
u_{
m i}(0)
angle$ (for vacuum)

Neutrino oscillations: two flavors approximation

 For two flavor approximation the probability of flavor conservation may be expressed as:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{\mu} & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{e} \\ \nu_{\mu} & \cos\theta \end{pmatrix} = \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\cos\theta \\ -\cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\cos\theta \\ -\cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\cos\theta \\ -\cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\cos\theta \\ -\cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} & -\cos\theta \\ -\cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{\mu} &$$

Neutrino oscillations: flavor-mass mixing

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Super-K, K2K, MINOS, OPERA NOvA, T2K

Super-K, SNO, KamLAND

DChooz, RENO, Daya Bay, NOvA, T2K

- c_{ij} , $s_{ij} cos\theta_{ij}$, $sin\theta_{ij}$
 - θ_{ij} mixing angles, δ_{CP} CP violation (CPV) phase
 - Long-baseline experiments are sensitive to Δm_{32}^2 , θ_{23} , θ_{13} and δ_{CP} .

Three flavor $v_{\mu} \rightarrow v_{e}$ appearance probability

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &\approx 4c_{13}^{-2} s_{13}^{-2} s_{23}^{-2} \sin^{2} \Delta_{31} \bigg(1 + \frac{2a}{\Delta m_{31}^{2}} \Big(1 - 2s_{13}^{2} \Big) \bigg) \quad \text{Leading including matter} \\ &+ 8c_{13}^{-2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta_{\rm e} - s_{12} s_{13} s_{23}) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \quad \text{CP} \\ &- 8c_{13}^{-2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta_{\rm e} \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \quad \text{CP violating} \\ &+ 4s_{12}^{-2} c_{13}^{-2} (c_{12}^{-2} c_{23}^{-2} + s_{12}^{-2} s_{23}^{-2} s_{13}^{-2} - 2c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta_{\rm e} \Big) \sin^{2} \Delta_{21} \quad \text{Solar} \\ &- 8c_{13}^{-2} s_{13}^{-2} s_{23}^{-2} (1 - 2s_{13}^{-2}) \frac{aL}{4E} \cos \Delta_{32} \sin \Delta_{31} \quad \text{Matter effect} \\ &c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij} \\ &\Delta_{ij} = \Delta m_{ij}^{2} \frac{L}{4E} \end{split}$$

replace δ_{c} by $-\delta_{c}$ and a by -a for $P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})$

The impact of CP violation

- If $\delta_{CP} = 0$ or π then the CP symmetry is conserved. $P(\nu_{\mu} \rightarrow \nu_{e}) = P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ (in vacuum)
- If $\delta_{CP} = -\pi/2$ then $P(\nu_{\mu} \rightarrow \nu_{e}) > P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
- If $\delta_{CP} = +\pi/2$ then $P(\nu_{\mu} \rightarrow \nu_{e}) < P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

Outline

· Introduction: CP violation, neutrino oscillations

 Current leading long-baseline experiments: T2K and NOvA

- Future experiments: DUNE and Hyper-Kamiokande
- Summary

T2K experiment

T2K

- T2K is a long-baseline neutrino experiment. Two near detectors (INGRID, ND280) are used to study beam ~280 m from the source in J-PARC.
- Super-Kamiokande is used as the far detector.
- Started taking data in 2010, ν_e appearance discovered in 2013.
- Active contribution of Warsaw Neutrino Group (NCBJ, UW & PW):
 - Cross-section measurements
 - ND280 upgrade
 - Data taking and detector expert shifts
 - ND280 input to oscillation analysis
 - Reflectivity measurements at the PMTs in Super-K
 - Studies on oscillation analysis expanding Super-K FV

T2K beam

Beam may be used in FHC (neutrino) mode or RHC (anti-neutrino) mode.

Neutrino charged current interactions at T2K

- Off-axis strategy enhances oscillation effect and CCQE interactions.
- Around T2K beam peak (~600 MeV), mostly CCQE and resonant reactions occur.
- $\delta OA~1 mrad (0.057^{\circ}) \rightarrow \delta E/E~2\%$ at far detector

On-axis near detector: INGRID

- Cross-shaped detector composed of 16 Fe/scintillator and 1 scintillator modules.
- Monitors beam's direction, profile and intensity.

Off-axis near detector: ND280

FGD1: scintillator layers

- ND280 is a multipurpose detector used to constrain the off-axis flux and neutrino interaction models used in the oscillation analysis.
- CC interactions are measured in the tracker, made of two FGDs (fine grained detectors – scintillators) and three gaseous TPCs.
- FGDs serve as targets and provide good vertex and track resolution.
- Magnetic field allows for charge and momentum measurement.
- Energy loss in the TPCs allows for particle identification.

ND280 data fitting

- Several samples of events:
 - For neutrino and antineutrino modes
 - Different reaction types (pion/track multiplicity)
 - C and O target nuclei

Antineutrino mode

Neutrino mode

Data/MC ratio distribution in ND280 prior and after the data fit.

Systematic uncertainty on the predicted SK event rate w/o and with ND280 fit. Total syst.

	error (%)		
Selection	Pre	Post	
ν -mode			
$1\text{-ring-}\mu$	15	5	
1-ring- e	17	9	
1 -ring- $e + 1\pi^+$	22	18	
$\overline{\nu}$ -mode			
$1\text{-ring-}\mu$	13	4	
1-ring- e	14	7	

Far detector: Super-Kamiokande

50 kton water Cherenkov detector

- 39 m in diameter, 41 m in height

Over 10000 PMTs measure the Cherenkov

light inside the tank.

Far detector: Super-Kamiokande

- Cherenkov radiation appears when charged particle propagates with velocity v > c/n
- For T2K energy scale most nucleons are under Cherenkov threshold
- Single ring signature of CCQE interaction

Far detector: Super-Kamiokande

• Neutrino beam mode: searching for v_{μ}/v_{e} CCQE (1-ring- μ /e)

$$\begin{array}{c} \nu_{\mu} + n \rightarrow \mu^{\text{-}} + p, \\ \nu_{e} + n \rightarrow e^{\text{-}} + p, \end{array}$$

• or v_e appearance with single pion production (1-ring-e + 1π +).

$$v_e + p \rightarrow e^- + \pi^+ + p$$
 $v_e + n \rightarrow e^- + \pi^+ + n$

• Antineutrino beam mode: searching for $\overline{\nu}_{\mu}/\overline{\nu}_{e}$ CCQE (1-ring- μ /e).

$$\overline{\nu}_{\mu}$$
 + p $\rightarrow \mu^{+}$ + n,
 $\overline{\nu}_{e}$ + p \rightarrow e⁺ + n

Analysis strategy

T2K collected statistics

- 3.43×10^{21} Protons On Target (POT) collected so far.
 - 1.78×10^{21} for neutrino, 1.65×10^{21} for anti-neutrino beam mode.
- Oscillation results based on 3.13×10^{21} POT.
 - 1.49 \times 10²¹ for neutrino, 1.63 \times 10²¹ for anti-neutrino beam mode.

Super-K fit to data

Normal Hierarchy, $\delta = -\pi/2$, $\sin^2\Theta_{23} = 0.528$, $\sin^2\Theta_{13} = 0.0212$

Super-K predicted/observed events

Sample	Predicted				Observed	Systematic uncertainty
	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$		for prediction
ν mode μ-like	272.4	272.0	272.4	272.8	243	5.1%
⊽ mode μ-like	139.5	139.2	139.5	139.9	140	4.5%
ν mode e-like	74.4	62.2	50.6	62.7	75	8.8%
⊽ mode e-like	17.1	19.4	21.7	19.3	15	7.1%
ν mode e-like + $1π$ ⁺	7.0	6.1	4.9	5.9	15	18.4%

Results: $\sin^2(\Theta_{23})$ vs δ_{CP}

- CP-conserving values excluded at 2σ level
 - $δ_{CP}$ = 0 excluded at 3σ level
- Normal Hierarchy preferred (89%)
 - Best fit: $\delta_{\text{CP}} = -1.885 \; (-0.6\pi)$ for NH

T2K's future

- Upgrade of ND280 for T2K Phase-II (2021-2026)
 - SuperFGD
 - High angle TPCs
 - Reduction of systematic errors to ~4%
- Upgrade of Super-K
 - Dissolving gadolinium
 - Enhance neutron detection capability
 - Improve antineutrino detection

T2K's future

- Plan to double Collected statistics till the 2021 (up to 7.8 E21 POT).
- Plan to improve the analysis:
 - New samples
 - Joint fit beam + atmospheric neutrinos
- Aiming for 20 E21 POT in 2026 (T2K Phase-II)

NOvA experiment

- NOvA is a long-baseline neutrino oscillation experiment in the United States. It started taking data in 2014.
- Neutrino beam is produced at Fermilab.
- Near and Far detector are functionally identical and situated 810 km apart, both 14 mrad off-axis.

NuMI beam

- Fermilab's Neutrinos at the Main Injector (NuMI) beam.
- Beam may be used in neutrino or antineutrino mode.

NOvA detectors

- Both detectors are based on the same detection technique.
- Layers of plastic cells with alternating horizontal and vertical orientation with liquid scintillator inside.

NOvA event topologies

Extrapolation to Far Detector

Extrapolation to Far Detector

Extrapolation to Far Detector

NOvA collected statistics

Far detector fit to data

Allowed δ_{CP} values

(NH, UO)

NOvA's future

- Running until ~2025
- >3 σ sensitivity to mass hierarchy (in case of NH and maximal CP violation) for allowed range of θ_{23} by 2025.
- >2σ sensitivity to CP violation in both hierarchies (in case of maximal CP violation) by 2025.

Outline

· Introduction: CP violation, neutrino oscillations

Current leading long-baseline experiments:
 T2K and NOvA

- Future experiments: DUNE and Hyper-Kamiokande
- Summary

- Unprecedentedly large sample of neutrino interactions.
- A massive liquid argon time-projection chambers located almost a mile underground at the far site.
 - Four 17 000 tons modules.

Research Facility

- >5 σ sensitivity to CPV over a wide range of δ_{CP}
- Definitive determination of mass hierarchy

Lande Lander Lan

- Next generation underground water Cherenkov detector. It will serve as a far detector of a long baseline experiment (with the same baseline of 295 km) for the upgraded J-PARC beam.
 - 260 kton
 - 74 m in diameter, 60 m in height
 - High sensitivity PMTs

- Intermediate Water Cherenkov
 Detector ~km from the beam source
- Aims to measure neutrino interactions at many off-axis angles.
- Water in the tank will be enhanced with Gd to tag neutrons.

Hyper-Kamiokande

- Neutrino oscillation physics
 - 5σ sensitivity to CPV for broad range of δ_{CP}
 - ~4σ sensitivity to mass hierarchy by combination of beam and atmnu
- Both DUNE and Hyper-K will have broad physics program (MeV to TeV scale)
 - Nucleon decay
 - Precision measurement of solar neutrinos
 - Measurement of SN neutrinos

Comparison of current and future experiments

	T2K	NOvA	DUNE	Hyper-K
Baseline [km]	295	810	1300	295
Beam energy peak [GeV]	0.6	2	2.5-3	0.6
setup	off-axis	off-axis	on-axis	off-axis
Near Detector	Multi-purpose magnetized (FGD, TPC, ECal)	Extruded plastic cells filled with liquid scintillator	Multi-purpose (LAr TPC, magnetized HPGAr TPC w/ ECal, scint tracker)	Multi-purpose magnetized (SuperFGD, TPC, ECal) + Intermidiate
Far Detector	Water Cherenkov 50 kton	Extruded plastic cells filled with liquid scintillator 14 kton	Liquid Argon TPC 4 × 17 kton	Water Cherenkov 260 kton
Expected sensitivity to CPV	will reach >3σ	will reach >2σ	will reach >5σ	will reach >5σ
timescale	2010-2026	2014-~2025	~2025-	~2027-

Summary

- The CP symmetry in neutrino sector can be studied by comparing the oscillation probabilities for neutrinos and antineutrinos.
- Current T2K data indicates CP violation at the 2σ confidence level, while NOvA results are consistent with CP conservation. Normal Hierarchy is favored.
 - New oscillation results at Neutrino 2020?
- The T2K collaboration is preparing for T2K phase-II (2021-2026). NOvA will be operational till ~2025.
- DUNE and Hyper-Kamiokande are expected to be operational in the mid 2020s and reach 5σ sensitivity to CPV after a few years of data taking.

Super-K fit to data

neutrino beam mode

anti-neutrino beam mode

Off-axis beam kinematics

Bi-probability plots

Bi-probability results

Decay channels of neutrino parents

Tabela 2.1: Kanały rozpadów cząstek-rodziców neutrin, rozpady dla cząstek ujemnych są symetryczne ładunkowo [7].

Kanał rozpadu	Prawdopodobieństwo rozpadu (%)
$\pi^+ \to \mu^+ \nu_\mu$	99.9877
$\pi^+ \to e^+ \nu_e$	$1.23 \cdot 10^{-4}$
$K^+ \to \mu^+ \nu_\mu$	63.55
$K^+ \to \pi^0 \mu^+ \nu_\mu$	3.353
$K^+ \to \pi^0 e^+ \nu_e$	5.07
$K_L^0 o \pi^- \mu^+ \nu_\mu$	27.04
$K_L^0 \to \pi^- e^+ \nu_e$	40.55
$\mu^+ \to e^+ \bar{\nu}_\mu \nu_e$	100

What happens when matter appears?

- The additional term in the Hamiltonian is a result of different scattering of ν_e and $\nu_{\mu,\tau}$ neutrinos (and antineutrinos).
- v_e may scatter via CC and NC interaction
- $v_{\mu,\tau}$ may scatter only via NC interaction

