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CP violation

● CP symmetry – combination of charge (C) and parity (P) 
symmetry.

● Violation of CP implies that there is a difference between 
particles and antiparticles.

● CP violation is one of Sakharov’s conditions for an 
explanation of the observed imbalance of matter and 
antimatter abundance in the in the Universe.
– Discovered in quark sector.

● In neutrino sector it may be manifested in different 
oscillation probabilities (for neutrinos and antineutrinos).
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Neutrino oscillations: basic idea

● The flavour states να, are superposition of mass eigenstates νi:
 

● νi are eigenstates of Hamiltonian and propagate for a time t as:

where

(for vacuum) 
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Neutrino oscillations: two flavors 
approximation

● For two flavor approximation the probability of flavor 
conservation may be expressed as:
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Neutrino oscillations: 
flavor-mass mixing

● cij, sij – cosθij, sinθij

● θij – mixing angles, 
δCP – CP violation (CPV) phase

● Long-baseline experiments are 
sensitive to 
Δmm32, θ23, θ13 and δCP.

Super-K, K2K,  
MINOS, OPERA
NOνA, T2KA, T2K Super-K, SNO,

KamLAND

DChooz, RENO, Daya 
Bay, NOνA, T2KA, T2K

2

unknown mass hierarchy
(m

3
  m≷ m

1, 2
 ?)

CP

CP
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Three flavor ν
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appearance probability 

CP

CP

CP

CPCP



8

The impact of CP violation

● If δCP = 0 or π then the CP symmetry is conserved.
P(νµ → νe) = P(νµ → νe) (in vacuum)

● If δCP = -π/2 then P(νµ → νe) > P(νµ → νe)

● If δCP = +π/2 then P(νπ/2 then P(νµ → νe) < P(νµ → νe)

Matter effects included
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T2K experiment

INGRID

● T2K is a long-baseline neutrino 
experiment. Two near detectors 
(INGRID, ND280) are used to study 
beam ~280 m from the source 
in J-PARC. 

● Super-Kamiokande is used 
as the far detector.

● Started taking data in 2010, νe 
appearance discovered in 2013.

● Active contribution of Warsaw 
Neutrino Group (NCBJ, UW & PW):
– Cross-section measurements
– ND280 upgrade
– Data taking and detector expert 

shifts
– ND280 input to oscillation analysis
– Reflectivity measurements at the 

PMTs  in Super-K
– Studies on oscillation analysis – 

expanding Super-K FV
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T2K beam

Beam may be used in FHC (neutrino) mode or RHC (anti-neutrino) mode.

π+π/2 then P(ν : ud
π-  : du
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Neutrino charged current 
interactions at T2K

  

● Off-axis strategy enhances oscillation effect and CCQE interactions.
● Around T2K beam peak (~600 MeV), mostly CCQE and resonant 

reactions occur.
● δOA~1mrad (0.057°) → δE/E ~2% at far detector
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On-axis near detector: INGRID

● Cross-shaped  detector composed of 16 Fe/scintillator and 1 
scintillator modules.

● Monitors beam's direction, profile and intensity.
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Off-axis near detector: ND280

● ND280 is a multipurpose detector 
used to constrain the off-axis flux 
and neutrino interaction models 
used in the oscillation analysis.

● CC interactions are measured in 
the tracker, made of two FGDs 
(fine grained detectors – 
scintillators) and three gaseous 
TPCs. 

● FGDs serve as targets and provide 
good vertex and track resolution.

● Magnetic field allows for charge 
and momentum measurement.

● Energy loss in the TPCs allows for 
particle identification.

FGD1: scintillator layers

FGD2: 
scintillator +π/2 then P(ν 
water layers
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ND280 data fitting

● Several samples of events:
– For neutrino and 

antineutrino modes
– Different reaction types 

(pion/track multiplicity)
– C and O target nuclei

Data/MC ratio distribution in 
ND280 prior and after the data fit.

Systematic uncertainty on the 
predicted SK event rate w/o and 
with ND280 fit.
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Far detector: Super-Kamiokande
● 50 kton water Cherenkov detector

– 39 m in diameter, 41 m in height

● Over 10000 PMTs measure the Cherenkov 
light inside the tank.
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Far detector: Super-Kamiokande
● Cherenkov radiation appears when charged 

particle propagates with velocity v > c/n
● For T2K energy scale most nucleons are under 

Cherenkov threshold
● Single ring – signature of CCQE interaction

Very good e/µ 
separation 
in Super-K!
~1% mis-id



18

Far detector: Super-Kamiokande

● Neutrino beam mode: searching for νµ/νe CCQE (1-ring-µ/e) 

νµ +π/2 then P(ν n → µ- +π/2 then P(ν p,    
νe +π/2 then P(ν n → e- +π/2 then P(ν p,    

● or νe appearance with single pion production (1-ring-e +π/2 then P(ν 1π+π/2 then P(ν).

νe +π/2 then P(ν p → e- +π/2 then P(ν π+π/2 then P(ν +π/2 then P(ν p  νe +π/2 then P(ν n → e- +π/2 then P(ν π+π/2 then P(ν +π/2 then P(ν n

● Antineutrino beam mode: searching for νµ/νe CCQE (1-ring-µ/e).

νµ +π/2 then P(ν p → µ+π/2 then P(ν +π/2 then P(ν n,    
νe +π/2 then P(ν p → e+π/2 then P(ν +π/2 then P(ν n     
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Analysis strategy

Oscillation parameters

Oscillation Fit

Super-K data

Super-K detector 
modelND280 Fit

systematics
~2x smaller

ND280 data

Cross-section model

Neutrino flux model

ND280 detector 
model

NA61/SHINE 
external data

INGRID & Beam 
monitor data

External cross-section 
data
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T2K collected statistics

● 3.43 × 1021 Protons On Target (POT) collected so far.
– 1.78 × 1021 for neutrino, 1.65 × 1021 for anti-neutrino beam mode.

● Oscillation results based on 3.13 × 1021 POT.
– 1.49 × 1021 for neutrino, 1.63 × 1021 for anti-neutrino beam mode.
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Super-K fit to data
● Fit simultaneously 5 

samples. 
● Oscillation and 

systematic parameters 
are shared between 
them.

neutrino beam 
µ-like sample

neutrino beam 
e-like sample

neutrino beam
e-like +π/2 then P(ν 1π+π/2 then P(ν 
sample

anti-neutrino 
beam
µ-like sample

anti-neutrino 
beam
e-like sample

For the MC distributions above: 
Normal Hierarchy, δ = -π/2, sin²ΘΘ

23
 = 0.528, sin²ΘΘ

13
 = 0.0212
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Super-K predicted/observed events

Sample
Predicted

Observed

δ
CP

 = 0 δ
CP

 = π

ν mode µ-like 272.4 272.0 272.4 272.8 243 5.1%

ν mode µ-like 139.5 139.2 139.5 139.9 140 4.5%

ν mode e-like 74.4 62.2 50.6 62.7 75 8.8%

ν mode e-like 17.1 19.4 21.7 19.3 15 7.1%

ν mode e-like +π/2 then P(ν 1π+π/2 then P(ν 7.0 6.1 4.9 5.9 15 18.4%

Systematic 
uncertainty 

 for prediction
δ

CP
 = -π/2 δ

CP
 = +π/2 then P(νπ/2
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Results: sin²Θ(Θ
23

) vs δ
CP

 

● CP-conserving values 
excluded at 2σ level
– δCP = 0 excluded at 3σ 

level

● Normal Hierarchy 
preferred (89%)
– Best fit: 

δCP = -1.885 (-0.6π) 
for NH
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T2K's future
● Upgrade of ND280 for T2K 

Phase-II 
(2021-2026)
– SuperFGD
– High angle TPCs
– Reduction of systematic errors 

to ~4%

● Upgrade of Super-K
– Dissolving gadolinium
– Enhance neutron detection 

capability
– Improve antineutrino detection

existing tracker
TPC     TPC TPC
      FGD     FGD

(+water)

new tracker

TPC

TPC

SuperFGD

surrounded by TOF

angular
efficiency

now

planned
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T2K's future

● Plan to double Collected statistics till the 2021 (up to 7.8 E21 POT).
● Plan to improve the analysis: 

– New samples
– Joint fit beam +π/2 then P(ν atmospheric neutrinos

● Aiming for 20 E21 POT in 2026 (T2K Phase-II)
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NOvA experiment

● NOvA is a long-baseline 
neutrino oscillation 
experiment in the United 
States. It started taking 
data in 2014.

● Neutrino beam is produced 
at Fermilab.

● Near and Far detector are 
functionally identical and 
situated 810 km apart, both 
14 mrad off-axis.
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NuMI beam

● Fermilab’s Neutrinos at the Main Injector (NuMI) beam.
● Beam may be used in neutrino or antineutrino mode.
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NOvA detectors

● Both detectors are based on the same detection technique.
● Layers of plastic cells with alternating horizontal and vertical 

orientation with liquid scintillator inside.

15
.5

 m

3.9 m
0.3 kton

14 kton
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NOvA event topologies
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Extrapolation to Far Detector
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Extrapolation to Far Detector

ν ν
ND FD
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Extrapolation to Far Detector
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NOvA collected statistics
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Far detector fit to data

ν
µ 
/ ν

µ
 disappearance

ν
e 
/ ν

e
 appearance

4.4 σ evidence 
of electron 
anti-neutrino 
appearance
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Allowed δ
CP

 values

● Normal Hierarchy preferred by 
1.9σ

● NOvA best fit:  

– δCP = 0.0      π

– All values of δCP allowed at 1.1σ 
(NH, UO) 

+π/2 then P(ν1.3
–0.4 

T2K best fit for NH

T2K result
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NOvA’s future

● Running until ~2025
● >3σ sensitivity to mass hierarchy (in case of NH and maximal CP 

violation) for allowed range of θ23 by 2025.

● >2σ sensitivity to CP violation in both hierarchies (in case of maximal 
CP violation) by 2025.
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● A high-performance neutrino detector and 
beamline measurement system a few 
hundred meters downstream of the 
neutrino source. On-axis experiment.
– Unprecedentedly large sample of neutrino 

interactions.

● A massive liquid argon time-projection 
chambers located almost a mile 
underground at the far site.
– Four 17 000 tons modules.

Far site

3D scint tracker GAr TPC w/ ECal LAr TPC

1300 km

ν
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● >5σ sensitivity to CPV over a wide range of δCP

● Definitive determination of mass hierarchy 
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● Next generation underground water 
Cherenkov detector. It will serve as a far 
detector of a long baseline experiment (with 
the same baseline of 295 km) for the 
upgraded J-PARC beam .
– 260 kton
– 74 m in diameter, 60 m in height
– High sensitivity PMTs

● Intermediate Water Cherenkov 
Detector ~km from the beam source

● Aims to measure neutrino 
interactions at many off-axis angles.

● Water in the tank will be enhanced 
with Gd to tag neutrons.
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● Neutrino oscillation physics
– 5σ sensitivity to CPV for broad 

range of δCP 

– ~4σ sensitivity to mass hierarchy 
by combination of beam and atm-
nu

● Both DUNE and Hyper-K will have 
broad physics program 
(MeV to TeV scale)
– Nucleon decay 
– Precision measurement of solar 

neutrinos
– Measurement of SN neutrinos
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Comparison of current and future experiments
T2K NOvA DUNE Hyper-K

Baseline [km] 295 810 1300 295

Beam energy 
peak [GeV]

0.6 2 2.5-3 0.6

setup off-axis off-axis on-axis off-axis

Near Detector

Multi-purpose 
magnetized
(FGD, TPC, 

ECal)

Extruded plastic 
cells filled with 

liquid scintillator

Multi-purpose 
(LAr TPC, 

magnetized 
HPGAr TPC w/ 

ECal, scint 
tracker)

Multi-purpose 
magnetized 
(SuperFGD, 
TPC, ECal)

+π/2 then P(ν Intermidiate

Far Detector
Water 

Cherenkov
50 kton

Extruded plastic 
cells filled with 

liquid scintillator
14 kton

Liquid Argon 
TPC

4 × 17 kton

Water 
Cherenkov
260 kton

Expected 
sensitivity to 

CPV
will reach >3σ will reach >2σ will reach >5σ will reach >5σ

timescale 2010-2026 2014-~2025 ~2025- ~2027-
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Summary

● The CP symmetry in neutrino sector can be studied by 
comparing the oscillation probabilities for neutrinos and 
antineutrinos. 

● Current T2K data indicates CP violation at the 2σ 
confidence level, while NOvA results are consistent with 
CP conservation. Normal Hierarchy is favored.
– New oscillation results at Neutrino 2020?

● The T2K collaboration is preparing for T2K phase-II 
(2021-2026). NOvA will be operational till ~2025.

● DUNE and Hyper-Kamiokande are expected to be 
operational in the mid 2020s and reach 5σ sensitivity to 
CPV after a few years of data taking.



44



45

Super-K fit to data

anti-neutrino beam mode

neutrino beam mode
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Off-axis beam kinematics
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Bi-probability plots
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Bi-probability results
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Decay channels of neutrino parents
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What happens when matter 
appears?

● The additional term in the 
Hamiltonian is a result of 
different scattering of νe 
and νµ,τ neutrinos 
(and antineutrinos).

● νe may scatter via CC and 
NC interaction

● νµ,τ may scatter only via NC 
interaction

e-

e-
ν

e

ν
e

W

e-,p,nν
α
,ν

α

e-,p,n

Z

ν
α
,ν

α

e-

e-ν
e

ν
e

W
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