Responsibilities shared by the following Institute:
♦ Universita’ del Piemonte Orientale, Alessandria, Italy
♦ INFN-Cagliari and Universita’ di Cagliari, Italy
♦ INFN-Torino and Universita’ di Torino, Italy

Outline

• **Aim of the project**
• **Detector description**
• **Status**
• **Integration issues**
• **Installation planning**
Aim of the ALICE ZDC

during H.I. runs:
- **Event characterization:**
 - Magnitude of impact parameter \rightarrow **Centrality of the collision**
 - Orientation of impact parameter \rightarrow **Reaction plane orientation**
- **Absolute luminosity**
 - by measuring the rate of **mutual e.m. dissociation** in the neutron channel

during pA runs:
- **Centrality of the collision**
 - by measuring the energy of gray and black nucleons (slow nucleons)

during pp runs:
- **diffractive events**
 - Relative luminosity ?
The ZDC detector is made by two sets of calorimeters, located at opposite sides with respect to the IP2.

- Approximately 116 meters away from IP2, where the two LHC beams circulate in two different pipes.
- Each set of detectors consists of:
 - 2 hadronic “spaghetti” calorimeters
 - one for spectator neutrons (ZN), placed at 0° with respect to LHC axis
 - one for spectator protons (ZP), positioned externally to the outgoing beam pipe.
 - two forward EM calorimeters (ZEM), placed at ~7 m from IP2, on RB24 side, covering the pseudorapidity range $4.8 < \eta < 5.7$.
ZDC location

EM ZDC

INTERACTION POINT

DIPOLE CORRECTOR

QUADRUPOLES

D1 DIPOLE SEPARATOR

VACUUM CHAMBER

NEUTRON ZDC

PROTON ZDC

not in scale

7 m

116 m
• In H.I. collisions ZN detects all the spectator neutrons, while ZP accepts ~70% of the spectator protons depending on the beam optics.
ZN detector description

Passive material: W-alloy
\[\rho = 17.6 \text{ g/cm}^3 \]
44 grooved slabs, each of them 1.6 mm thick, stacked to form a parallelepiped 7.2x7.2x100 cm\(^3\).

Active material: quartz fibers
pure silica core, fluorinated silica cladding and a hard polymer coat with a diameter of 365, 400 and 430 \(\mu\text{m}\) respectively. The numerical aperture is 0.22.

- Fibres placed 0\(^\circ\) with respect to LHC axis
- Distance between fibres = 1.6 mm
- Fibers out from the rear face of the calorimeter directly coupled to PMTs
- One out of two fiber sent to a photomultiplier (PMTc)
- The remaining fibers sent to four different photomultipliers (PMT1 to PMT4), forming four independent towers.
- The chosen PMT is the Hamamatsu R329-02

rough detection of the beam position
ZP detector description

Passive material: brass
\[\rho = 9.0 \text{ g/cm}^3 \]
30 grooved slabs, each of them 4 mm thick, stacked to form a parallelepiped 22.8x12x150 cm\(^3\).

Active material: quartz fibers
pure silica core, fluorinated silica cladding and a hard polymer coat with a diameter of 550, 600, 630 \(\mu\)m respectively. The numerical aperture is 0.22

- Fibres placed 0° with respect to LHC axis
- Distance between fibres = 4 mm
- Fibers out from the rear face of the calorimeter directly coupled to PMTs
- One out of two fiber sent to a photomultiplier (PMTc)
- The remaining fibers sent to four different photomultipliers (PMT1 to PMT4), forming four independent towers.
- The chosen PMT is the Hamamatsu R329-02

25 January 2007
Physics performance

- Energy resolution: ~11% for one spectator neutron of 2.7 TeV

- Linearity of the response as a function of the number of spectator nucleons
 → tested at SPS with the In beam

- Position reconstruction of the centroid of the spectator neutrons

25 January 2007
M. Gallio - Joint LHC Machine-Experiment Workshop
ZDC integration in the tunnel

- Aperture from D1 to ZP: maximize spectator protons acceptance in the ZP
- Minimize the amount of material in front of the ZDCs
- Enough space between the two beam pipes for the ZN

![Diagram of ZDC integration in the tunnel](image)
Beam pipe layout

Minimization of material in front of ZDCs
- Possible thin window for spectator protons
- No flanges at the recombination chamber
- Optimization of the design of the vacuum supports

95 mm between beam pipes
- ZN (movable)
- Bakeout system

Thin window?
Recombination chamber
ZN
ZP
Movable support
Space for machine luminosity monitor

25 January 2007
ZN and ZP at garage position
ZDC platform requirements

- ZP and ZN can be vertically moved independently
 - ZN normally at garage position (20 cm lower than beam plane) during p-p runs
 - ZP may be used in p-p runs to select diffractive events

- The precision on the ZDC positioning is required to be $\leq 250 \ \mu m$
 - value comparable with the smallest error in the reconstruction of the centroid of the spectator neutrons spot

- Interference with the LHC vacuum chamber
 - 3 mm clearance between beam pipes and calorimeters
 - anti-collision switches will be used
ZDC operation

Garage position
(20 cm below the beam level)
At injection: to protect the calorimeters from possible beam losses
Whenever data taking is not needed to minimise the absorbed dose

Data taking position
(at beam level)

Injection:
The ZDC are at garage position

When collisions are established or during the ADJUST mode:
The ZDC are positioned at the theoretical beam level
- Vertical fine adjustment to center the two calorimeters at the actual beam level
ZDC trigger

• e.m. dissociation trigger (L0)
 analog signal from ZN PMTc on RD26 side (2nd anode output)
 send to trigger rack C23 and discriminated to select at least one spectator neutron

 “Normally” NOT FEASIBLE
 (latency problems)

• Centrality trigger (L1) and e.m. dissociation trigger (L1)
 . 3 centrality triggers:
 – ZDC_Minimumbias
 – ZDC_SemiCentral
 – ZDC_Central
 . mutual e.m. dissociation
 – ZDC_Special: one spectator neutrons detected on both side of IP
ZDC status

- All the four hadronic calorimeters (ZN1, ZN2, ZP1, ZP2) assembled and ready to be mounted on the movable platforms
 - All tested with hadron beams (50 – 200 GeV)

- One of the two ZEM assembled

- The commercial electronic modules for trigger and readout procured; work in progress on the readout card
 - We use the same readout card of the dimuon trigger system with some modification in the FPGA programming

- Movable platforms already assembled at Point2
 - Motors and control systems being installed on the platforms
 - Commissioning of the servocontrols in progress
Integration issues

- More space needed (15 cm on the IP side) to allow the integration of the fibres transmitting the laser light to ZP for monitoring
 - Changes due to modifications with respect to the original project
 - On going discussions with the integration team

- Compatibility of ZN with the converter of the LHC luminometer (BRAN) during H.I. runs
 - energy resolution
 - precision on the reconstruction of the centroid
Additional 15 cm requested

150 [area requested by XZOC Collab.]

100 [area for XZOC Safety components]
Compatibility with BRAN (1)

- Technology for LHC luminometer in IR2 chosen recently (CdTe detector)
- BRAN needs a Cu converter
- LHC luminometer is foreseen to work in p-p runs
- LHC luminometer may be used in H.I. runs if compatible with ZN
Compatibility with BRAN (2)

- The compatibility depends on the amount of converter necessary for the luminosity monitor

- We simulated the BRAN as a Cu converter, positioned 1.1 m before the front face of ZN

- Various thicknesses were considered

First results show that:
- ZN energy resolution still acceptable for 3 cm converter
- \(~11\%\) for a single 2.7 TeV neutron
The insertion of the converter upstream of the ZN calorimeter does not affect the centroid resolution.

In case of 1 spectator neutron, centroid resolution $\rightarrow \sim 2 \text{ mm}$

In case of 30 spectator neutrons (mean multiplicity in Pb-Pb minimum bias events), centroid resolution $\rightarrow \sim 0.7 \text{ mm}$
Installation planning

• Cables to be pulled
 – in the tunnel (LHC campaign): March 2007
 • Signal cables (~215 m low-loss CK50) for ZN and ZP
 • HV cables (~ 30 m) for ZN and ZP
 – in the ALICE cavern: March/April 2007 (tbc)
 • Signals from ZEM, delay cables and trigger cables

• Platform assembled with the hadronic calorimeters to be installed into the tunnel
 – on the right side (LSS2R) : 9/4 – 13/4 2007
 – on the left side (LSS2L) : 7/5 – 11/5 2007
Red cables: signal cables from ZDC
Green cables: signal cables from ZEM
Blue cable: cable for L0 trigger
Purple cables: delay lines
On surface commissioning

- Check of vertical movement of the platforms
 - Check of loads
- Check of integration of the PMT monitoring system
- Dummy beam pipes needed to precalibrate the anticollision switches
In “situ” commissioning

- Check connections
- Test calorimeter movement
- Final calibration of anticollision switches
 – when beam pipes available
- Test PMT HV
- Test PMT with laser light
- Measurement of the single photoelectron peak with cosmic rays
Backup slides
ZDC as a luminosity monitor (1)

- During H.I. runs ZDC can measure the rate $\frac{dN}{dt}^{\text{ED}}$ of the mutual e.m. dissociation in the neutron channel σ^{ED}

 $\frac{dN}{dt}^{\text{ED}} = L \sigma^{\text{ED}}$

- Accuracy of the absolute luminosity measurement
 - 10% for $(1n-1n)$ correlated emission cross-section
 - 2% for the sum of mutual $1n$ and $2n$ emission (LMN)

 $(1n-1n) + (1n-2n) + (2n-1n) + (2n-2n)$

 $\sigma_{\text{LMN}} = 1378 \text{ mb}$ RELDIS code (Pshenichnov et al.)

- Trigger can be counted but ZDC cannot be readout without a L0 trigger signal
• Experimental considerations

- All the emitted neutrons fall in the ZN acceptance
 \(p_T \) of the neutrons produced in the decay of the GDR
 \(p_T < 250 \) MeV/c

 neuron spot very well contained

- Energy resolution (~11\% for a single 2.7 TeV neutron)
 allows clean separation of 1n-2n-3n contribution

- The e.m. dissociation is relatively background free (\(\sigma^{ED} \sim Z^2 \))
ZDC as a luminosity monitor (3)
ZDC as a luminosity monitor (4)

• During pp runs ZP can be used to tag leading protons produced in diffractive events

• ZP acceptance $\neq 0$ for leading protons in the range $2<p_z<4.5\,\text{TeV}$ emitted at very small angles ($<150\,\mu\text{rad}$)

• Careful simulation has to be done
Reaction Plane Estimate

- Spectator neutrons (2.76 TeV) on one side of I.P. generated
 - Fermi momentum distribution taken into account Fermi
 - transverse Pb beam divergence (30 μrad)
 - beam transverse size at I.P. = 16 μm.
- Random reaction plane azimuth (ϕ_{RP}) assigned to each event
- Directed flow of spectator neutrons v_1 introduced

- We use as an estimator of the event plane resolution the mean cosine of the angular difference $<\cos(\phi_{ZDC} – \phi_{RP})>$
 where ϕ_{ZDC} is the event plane azimuth from spectator neutrons reconstructed centroid

-> Study of Event Plane resolution vs Neutron Multiplicity for $v_1 = 5\%, 10\%, 20\%$
Event Plane Resolution

\[\langle \cos(\psi_{DC} - \phi_{RP}) \rangle \]

- \(v_1 = 20\% \)
- \(v_1 = 10\% \)
- \(v_1 = 5\% \)

Neutron Multiplicity vs Impact Parameter (fm)

The plot shows the relationship between neutron multiplicity and impact parameter (fm) with shaded areas indicating different values. The legend indicates the significance of different values at 20%, 10%, and 5%.
Comparison between 2x2 and 4x4 ZN segmentation - 1

Centroid Resolution (mm) vs Neutron Multiplicity

- 2x2 segmentation
- 4x4 segmentation

PMT configurations:
- PMT 1,3,9,11
- PMT 2,4,10,12
- PMT 5,7,13,15
- PMT 6,8,14,16
- PMT c
Comparison between 2x2 and 4x4 ZN segmentation - 2

2x2 segm
Full marker

4x4 segm
Open marker

-> Small difference, why ?
Transverse Pb beam divergence at IP2: 30 μrad

This value depends on the LHC beam parameters:
- transverse normalised emittance ε_n
- twiss function β^*
- relativistic gamma factor γ

$\vartheta_{RMS} = \sqrt{\frac{\varepsilon_n}{\beta^* \cdot \gamma}}$

- $\varepsilon_n = 1.5$ μm rad
- β^* at IP2 = 0.5 m
- $\gamma = 2963.5$

→ Event plane resolution is dominated by the bias due to beam divergence
Long low-loss cables used to transmit the analogic signals from PMTs to counting rooms