
ATLAS discovery prospects for the charged Higgs in di-lepton ttbar events ($H^+ \rightarrow \tau_{lep} v$ final state)

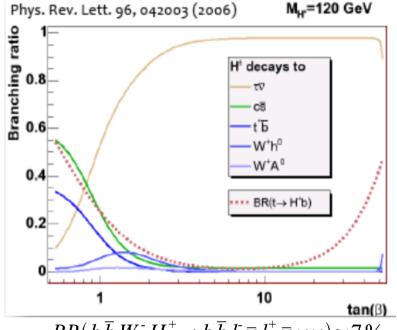
cHarged2010, Uppsala, September 27-30: "Prospects for Charged Higgs Discovery at Colliders"

> Miika Klemetti, McGill University On the behalf of the ATLAS Collaboration

- introduction
- analysis techniques
- systematics and upper limit estimates
- 10 TeV vs 7 TeV MC studies
- results and conclusions

Introduction

 \blacktriangleright *H*⁺ production dominated by top decays


- if both W and H decay fully leptonically, we have two leptons and two b-jets in the final state
- easy to trigger on, low QCD backgrounds
- mass reconstruction difficult due to neutrinos

main backgrounds:

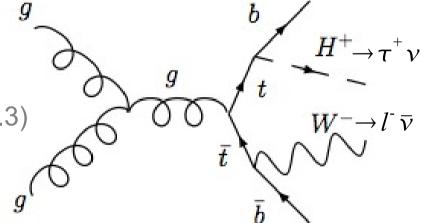
ttbar and single top (mainly tW)

• we present a simple cut based analysis, suitable for early data, that doesn't rely on b-tagging or Missing $E_{\rm T}$

- we should expect to be competitive with current Tevatron results with ~1 fb⁻¹
 - more detail can be found in two public notes:
 - ATL-PHYS-PUB-2010-006
 - ATL-PHYS-PUB-2010-009

 $BR(b\,\overline{b}\,W^{-}H^{+} \rightarrow b\,\overline{b}\,l^{-}\,\overline{\nu}\,l^{+}\,\overline{\nu}\,\nu\,\nu) \approx 7\,\%$

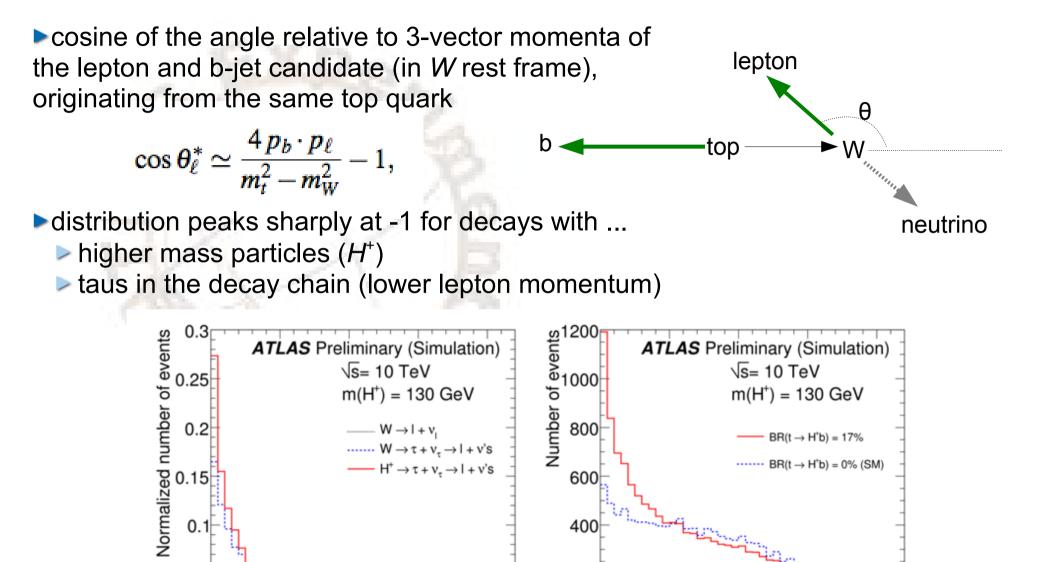
Approximate Tevatron upper limits (D0, 1fb⁻¹):


$m_{H^+} { m ~in~GeV}$	$Max[BR(t \rightarrow bH)]$
90	15%
110	15%
130	17%
150	19%

Basic Selection (ttbar events):

- ▶ two oppositely charged leptons with p_{τ} > 10 GeV, $|\eta|$ < 2.5
 - > p_{T} cuts motivated by trigger rates: 10 GeV single lepton triggers used (e15, mu13 expected to be unprescaled through $L_{inst} = 1e32 \text{ cm}^{-2}\text{s}^{-1}$ running)

offline cut at 20 GeV for leading, 10 GeV for trailing


at least two jets with p_T > 15 GeV, |η| < 5.0
 the two jets with highest b-weights are assumed to come from top quark decays
 demand only one b-tagged jet (b-weight>4.3)

▶ Missing E_{τ} > 50 GeV

Signal Selection ($t \rightarrow bH^+$ events):

- need to take advantage of other approaches to improve signal sensitivity:
 - $\gg W$ helicity angle $(\cos \theta_{i})$
 - generalized transverse mass (M_{T2})

0.05

0₁

-0.5

Miika Klemetti, McGill University

 $\cos(\theta_{l})$

0.5

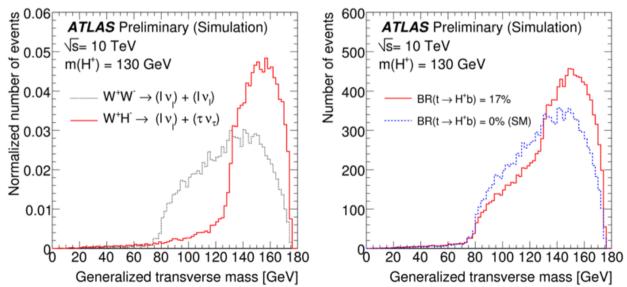
n

200

01

-0.5

0


0.5

 $\cos(\theta_i)$

an event-by-event lower limit for the mass of the unknown particle

- start with eight variables and six constraints
- first use Lagrange multipliers to analytically maximize mass
 - > gives M_{T}^{H} as a function of p_{T}^{H} ,
 - since p_T^H is constrained, use numerical maximization to get the final result

H⁺ mass bound useful if signal is observed

$$(M_T^H)^2 = \left(\sqrt{m_{top}^2 + (\vec{p}_T^{\ H^+} + \vec{p}_T^{\ b})^2} - p_T^b\right)^2 - (p_T^{\ H^+})^2.$$

$$\vec{p}_T^{\ H^+} = \vec{p}_T^{\ miss} + \vec{p}_T^{\ l^+} - \xi(\phi),$$

$$m_{T2}^{\ H^+} = \max \left[M_T^H(\phi)\right].$$

 $H^+ \rightarrow \tau \nu$ channel

 $(p^{H^+}+p^b)^2 = m_{top}^2,$

 $(p^{\ell^-} + p^{\bar{v}_\ell})^2 = m_W^2,$

 $(p^{ar{v}_\ell})^2 = 0,$

 $(p^{\ell^-} + p^{\bar{\nu}_\ell} + p^{\bar{b}})^2 = m_{top}^2,$

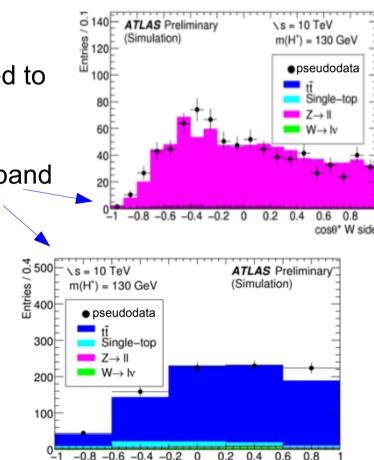
 $\vec{p}_{T}^{H^{+}} - \vec{p}_{T}^{l^{+}} + \vec{p}_{T}^{\bar{v}_{\ell}} = \vec{p}_{T}^{miss}.$

Miika Klemetti, McGill University

Four-fold ambiguity in pairing leptons and b-jets:

- for events with a clear incorrect pairing, the other solution gives the correct I-b pairs; the pair with a smaller cosθ^{*} is assigned to H⁺ (dubbed as the H side)
- for other events, the pair with the largest cos0^{*} value is assigned to W (W side) and its partner pair to H⁺ (H side)

Background sideband normalization:

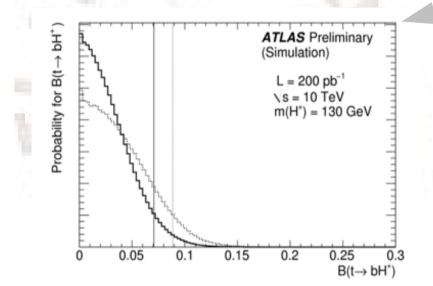

- number of MC events in each sideband is scaled to match data (pseudo-data shown on right)
 - > m(II), Missing E_{T} , b-tag, lepton flavor, $\cos\theta^*$
 - MC/data agreement is checked for each sideband

Fake lepton background rate:

- data driven method as a double check
- tag and probe approach, assuming doubly fake rate is negligible

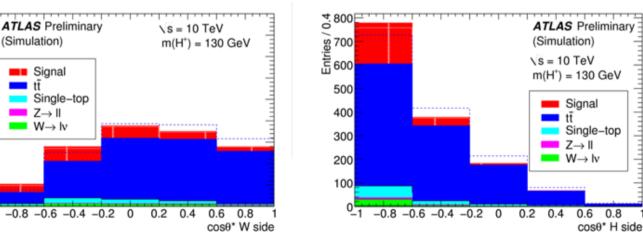
$$\begin{bmatrix} N_{\text{tight}} \\ N_{\text{loose}} \end{bmatrix} = \begin{bmatrix} rr & rf \\ r(1-r) & r(1-f) \end{bmatrix} \begin{bmatrix} N_{\text{real}} \\ N_{\text{fake}} \end{bmatrix}$$

$$N_{\rm fakes} = N_{\rm RF} = \frac{N_{\rm TL} + \frac{r-1}{r} N_{\rm TT}}{r-f}.$$


 $H^+ \rightarrow \tau \nu$ channel

cos0* W side

Systematics & UL setting


 $H^+ \rightarrow \tau \nu$ channel

The 95% C.L. upper limits are extracted from pseudo-experiments taking into account uncertainies on N_{obs} , N_{bq} , and ε_{siq}

$$\mathscr{B} = rac{N_{
m obs} - N_{
m bg}}{2 \times \sigma_{t\bar{t}} \times L_{int} \times \varepsilon_{
m sig}},$$

 $W_{\mathscr{B}}(N_{
m bg}, N_{
m obs}, \varepsilon_{
m sig}) = P(N_{
m bg}) \times P(N_{
m obs}) \times P(\varepsilon_{
m sig}),$

Source	Uncertainty	Effect (in %) on	
	(in %)	N _{bg}	ϵ_{sig}
Normalization	7	7	n/a
Trigger	1	< 1	1
Lepton ID efficiency	1	< 1	1
Lepton fake rate	1	1	1
Lepton energy scale	1	< 1	1
Jet energy scale	7-15	7	4
b-tagging efficiency	4	< 1	4
b-tagging fake rate	10	1	< 1
Total		10	6

Signal count is extracted from the first bin on H^+ side: $\cos\theta_{\perp}^* < -0.6$

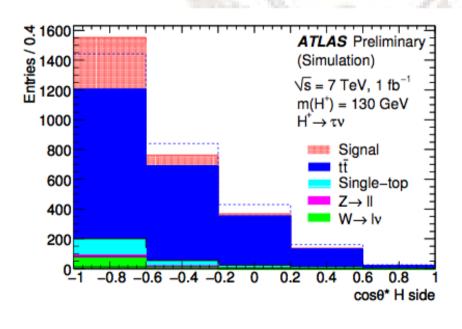
o 4 900⊧

Entries / 0

600Ē

500

400E

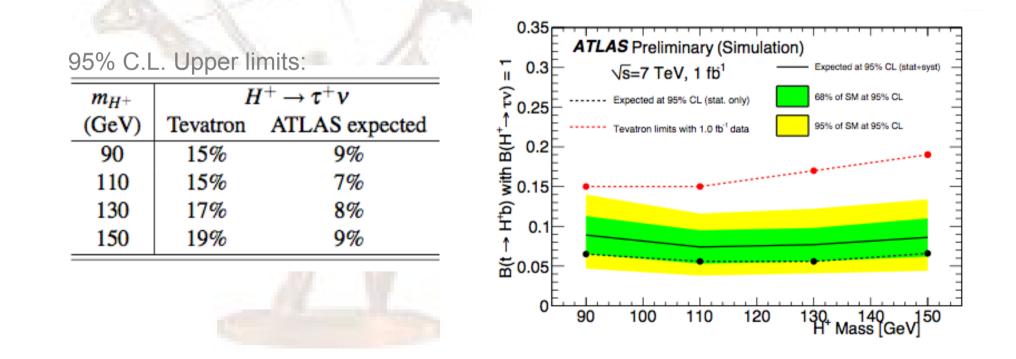

300E

200E

100

<u>0</u>1

- ► Public 10 TeV ATLAS note: ATL-PHYS-PUB-2010-006 ► $H^+ \rightarrow csbar$ and $H^+ \rightarrow \tau v$ channels only
- Public 7 TeV ATLAS note: ATL-PHYS-PUB-2010-009
 - combined note for several Higgs channels
- 7 Tev projections of the latter are based on results of the former note
 - **background cross sections and PDFs are re-scaled for corresponding** \sqrt{s}
 - target luminosity changed from 200 pb⁻¹ to 1 fb⁻¹ (estimated luminosity available after the first year)


Signal sensitivity for $H^+ \rightarrow \tau v$ at 7 TeV

H^+ mass in GeV	90	110	130	150
$\mathscr{B}(t \rightarrow bH^+)$	15%	15%	17%	19%
$\mathscr{S}=N_{\mathrm{sig}}/\sqrt{N_{\mathrm{bg}}}$	12.3	14.4	16.0	15.5

Sample	cross s	sectior	ns for v	various	<u>s LHC</u>	√S	
\sqrt{s} (TeV)	2	7	8	9	10	12	14
W	0.149	0.678	0.786	0.893	1.000	1.213	1.424
WW	0.061	0.597	0.728	0.863	1.000	1.273	1.568
tī	0.005	0.397	0.567	0.768	1.000	1.551	2.214
$gg \rightarrow H$	0.023	0.502	0.654	0.821	1.000	1.393	1.825
$qq \rightarrow qqH$	0.019	0.502	0.657	0.830	1.000	1.405	1.856

► with ~1 fb⁻¹ at $\sqrt{s} = 7$ TeV, prospects for the search of a light charged Higgs in dilepton ttbar events look good: ATLAS results are expected to be competitive with current Tevatron limits

two final state leptons yield a low non-ttbar background rate
 data driven techniques help with background estimation
 cos0^{*}, helps to separate signal from SM ttbar events
 H⁺ mass limit (M_{T2}) available upon signal observation

 $H^+ \rightarrow \tau \nu$ channel