Charged Higgs phenomenology in the Aligned Two-Higgs-Doublet Model

Martin Jung in collaboration with A.Pich and P.Tuzón

Instituto de Física Corpuscular - IFIC, CSIC-UVEG, Valencia

M. Jung Motivation Models

 H^{\pm} in A2HDM

'henomenolog

Outline

Motivation

Models

Phenomenology

Conclusions

 H^{\pm} in A2HDM

M. Jung

Motivation

Last few years shift of focus: CKM mechanism main source of (low energy) CP violation ✓

Concentration on new physics

- Direct search is being performed at the LHC
- Flavour physics complementary tool
 - High sensitivity, even beyond LHC reach
 - But: Flavour data still compatible with SM
 Flavour Puzzzle

 H^{\pm} in A2HDM

M. Jung

Tensions

Present tensions in the global CKM fit:

- $\sin 2\beta_{B \to \tau \nu}$ vs. $\sin 2\beta|_{B \to J/\psi K^{(*)}}$
- ► (ε_K, depending on inputs and statistical treatment)

Tensions in the neutral B systems:

- Phase in B_s → J/ψφ (however: 2.xσ →~ 1σ recently)
- Like-sign dimuon charge asymmetry

Not discussed here:

. . .

- |V_{ub}| exclusive vs. inclusive
- Pattern of $B \rightarrow \pi K \ CP$ asymmetries
- Neutrino physics
- Astrophysical constraints

 $R(B\to \tau\nu)$ °⊽ E H^{\pm} in A2HDM

M. Jung

Why 2HDM?

EW symmetry breaking mechanism unknown yet:

- 1HDM minimal and elegant, but "unlikely" (SUSY, GUTs, Strings, ...)
- ► 2HDM:
 - "next-to-minimal"
 - ρ-parameter "implies" doublets (see however e.g. Andrew's talk)
 - simple structure, but interesting phenomenology
 - Iow-energy limit of more complete NP models

affects all of the mentioned tensions (if new CPV sources present)

H^{\pm} in A2HDM

M. Jung

Lots of 2HDMs...

General 2HDM:

$$-\mathcal{L}_{Y}^{q} = \bar{Q}_{L}^{\prime}(\Gamma_{1}\phi_{1}+\Gamma_{2}\phi_{2}) d_{R}^{\prime} + \bar{Q}_{L}^{\prime}(\Delta_{1}\widetilde{\phi}_{1}+\Delta_{2}\widetilde{\phi}_{2}) u_{R}^{\prime} + \text{h.c.}$$

 Γ_i, Δ_i : Independent 3×3 coupling matrices

Flavour problem: generic couplings imply huge NP scale

Most common solution: Applying a discrete Z_2 symmetry:

- Eliminates two couplings, hence tree-level FCNCs
- Different charge assignments lead to "Type I,II,X,Y"
- \blacktriangleright Only one new parameter in the flavour sector: $\tan\beta$
- Type II SUSY-motivated: Bulk of analyses (Recently: El Kaffas et al. '07, GFitter '08, CKMfitter '09, UTfit '09)
- However: no new source of CP violation and problems beyond tree-level (see e.g. Tobias' talk)

Models/frameworks without \mathcal{Z}_2 symmetry:

• Type III:
$$Y'_{ij} \sim \sqrt{\frac{m_i m_j}{v^2}}$$
, e.g. Mahmoudi/Stål '09

 H^{\pm} in A2HDM

M. Jung

Beyond Z_2

► Aligned two-Higgs-doublet model (Pich/Tuzón '09): Alignment $\Gamma_2 = \xi_d e^{-i\theta} \Gamma_1$, $\Delta_2 = \xi_u^* e^{i\theta} \Delta_1$ leads to

$$-\mathcal{L}_{Y,H^{\pm}}^{q} = \frac{\sqrt{2}}{v} H^{+}(x) \bar{u}(x) \left[\varsigma_{d} V M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d(x) + \text{h.c.}$$

with complex, observable parameters $\varsigma_{u,d,l}$, implying:

- No FCNCs at tree-level
- New sources for CP violation
- Only three complex new parameters (unlike Type III)
- Z₂ models recovered for special values of ς'_is
- Radiative corrections symmetry-protected, of MFV-type
- 2HDM with MFV (D'Ambrosio et al. '02):
 - EFT framework, unknown couplings
 - Spurion formalism with flavour-blind phases: can be used to arrive at the A2HDM (1st term in series)
 - Recently: Expansion around Type II (as '02 as well) with phases and decoupling (2xBuras et al. '10).
 See also Paradisi/Straub, Kagan et al., Botella et al., Feldmann/MJ/Mannel, Colangelo et al., all '09
- ▶ BGL models (Branco et al. '96), Ferreira/Silva '10, ...

 H^{\pm} in A2HDM

M. Jung

General Strategy

Problem twofold:

- Understand SM hadronic process
- Determine NP influence

In the process:

- Perform UT analysis independent of NP considered
- Choose statistical treatment (RFit in CKMfitter, GFitter and A2HDM plots)
- ▶ Determine hadronic inputs
 ▶Theory input (Lattice, QCD sum rules, *χ*PT,...)
- Determine overall compatibility and parameter ranges for scenario considered

Usually publications differ in all these steps

In the following: Mostly A2HDM, comments on differences

 H^{\pm} in A2HDM

M. Jung

Leptonic decays

Leptonic decays affected on tree-level by charged Higgs:

$$rac{\Gamma(P^+_{ij}
ightarrow l^+
u_l)_{
m full}}{\Gamma(P^+_{ij}
ightarrow l^+
u_l)_{
m SM}} = |1 - \Delta_{ij}|^2$$

i, j: valence quarks of the meson under consideration and

$$\Delta_{ij} = \left(\frac{m_{P_{ij}^{\pm}}}{M_{H^{\pm}}}\right)^2 \varsigma_l^* \frac{\varsigma_u m_{u_i} + \varsigma_d m_{d_j}}{m_{u_i} + m_{d_j}}$$

- Impact large due to helicity suppression in SM
- Results in circles in the complex Δ_{ij} -plane
- NP influence decreases for lighter mesons
- Comparison:
 - ▶ Type II: $\Delta > 0$ or $\sim 0 \rightarrow \Gamma_{\rm full} \lesssim \Gamma_{SM}$ ($\Delta \sim 2$ excluded)
 - Assuming decoupling: $\Delta \sim$ 0, $B \rightarrow \tau \nu$ used in UT fit
 - Type III, A2HDM: $\Gamma_{NP} > \Gamma_{SM}$ possible w/o large $|\Delta|$

 H^{\pm} in A2HDM

M. Jung

Semileptonic decays of pseudoscalar mesons

- ▶ Helicity suppression absent in SM
 ▶Smaller relative influence of NP (m_ℓ suppression)
- Extraction of CKM elements unaffected
- ► Form-factor dependence, hence more involved
- Scalar form-factor affected through

$$ilde{f}_0(t) \,=\, f_0(t) \, \left(1 + \delta_{ij} \, t
ight) \,, \quad \delta_{ij} \,\equiv\, - rac{\varsigma_l^*}{M_{H^\pm}^2} \, rac{\varsigma_u m_{u_i} - \varsigma_d \, m_{d_j}}{m_{u_i} - m_{d_j}}$$

Example $B \to D\tau\nu$:

- Type II: m_b term dominant (tan β² enhanced)
- A2HDM: Both terms relevant
- In both cases: Helps excluding second (real) solution
- For details, here and in the following: MJ/Pich/Tuzón '10

H[±] in A2HDM M. Jung Motivation Models Phenomenology Conclusions

Combination of (semi-)leptonic constraints

 H^{\pm} in A2HDM

M. Jung

Motivation Models

Phenomenology

- Only combinations $\delta_{u/dl} = \varsigma_{u,d} \varsigma_l^* / M_{H^{\pm}}^2$ constrained
- ► Resulting "bananas" exclude the second real solution (with δ_{dl} help needed)
- $\delta_{dl} \lesssim 0.1$, δ_{ul} constraint weaker (but see later)
- Projection on Type II: δ_{dl} translates to tan $\beta \lesssim 0.1 \frac{M_{H^{\pm}}}{GeV}$

$b ightarrow s\gamma$

Famous for NP-sensitivity:

- FCNC process, loop-induced already in the SM
- H^{\pm} effects expected to be large (tops in the loop)
- BR calculated to ~NNLO (NLO) in the SM (2HDM) (Misiak et al.(many!) '07, Ciuchini et al. '97, Ciafaloni et al. '97, Borzumati/Greub '98, Degrassi/Slavich '10)
- Experimental accuracy \sim 7%, thanks to B-factories

• Type II:
$$\varsigma_u \varsigma_d^* = -1$$
: mainly limit on M_H

► A2HDM: $\zeta_{u,d}$ independent \rightarrow more freedom $|\zeta_u \zeta_d| \lesssim 20$ limit, but locally much stronger

M. Jung Motivation Models Phenomenology Conclusions

 H^{\pm} in A2HDM

Constraints from mixing

Large effects expected in top loops: Effects in $\Delta m_{d,s}, \phi_{d,s}, \epsilon_K$

Also: Possible effects in $b \rightarrow s$ with new phase (A2HDM) $B_s \rightarrow J/\psi\phi, B_d \rightarrow J/\psi K$ not necessarily "golden"

Kaon mixing:

- \blacktriangleright Two SM amplitudes relevant \rightarrow no NP phase needed
- Recent updates: improved non-perturbative corrections [Buras et al. '08,'10] and NNLO in η_{ct} [Brod/Gorbahn '10]

Completely different phenomenology:

- Type II: Basically no effect
- MFVfb: dito, tiny effect from \mathcal{O}_{LR}^2
- ► A2HDM: Releatively strong limit on |ζ_u| through O_{VLL}

M. Jung Motivation Models Phenomenology Conclusions

 H^{\pm} in A2HDM

Mixing in the B system

Effects are again very different for the different scenarios:

- ▶ In Type II neither $\phi_{d,s}$ nor $\Delta m_{d,s}$ affected (sizably)
- In MFVfb large effects expected, again via \mathcal{O}_{LR}^2 :
 - $S_q = S_0(x_t) T_q$ with $T_q \sim 64\pi^2 m_b m_q / M_H^2$ $\succ S_{\psi\phi}$ can take any value with $\mathcal{O}(1)$ coefficient
 - $T_d^{T_s} = m_d / m_s \sim \% \rightarrow \text{small effect (right direction)}$
- A2HDM: large (sizable) effect in $\Delta m_{d,s}$ ($\phi_{d,s}$) possible:
 - $\mathcal{O}(1)$ effect for $\mathcal{O}_{\textit{VLL}}$ w/o phase $o \Delta_{d,s}$
 - ▶ 10 40% effect for \mathcal{O}_{SLL} with weak phase $\rightarrow \phi_{d,s}$
 - Both contributions universal for q = d, s : Δ_d ≃ Δ_s ↓Δm_s/Δm_d still usable in UT fit

 H^{\pm} in A2HDM

M. Jung

Projections

Models with \mathcal{Z}_2 symmetry are limits of the A2HDM:

H[±] in A2HDM M. Jung

Motivation Models Phenomenology Conclusions

2.0

2.0

Conclusions and outlook

Conclusions:

- 2HDMs active field, new developments
- Type II: best constrained, but no effect in $\phi_{d,s}$
- MFVfb:
 - EFT framework, systematic expansion
 - Buras et al. '10: Expansion around Type II, decoupling
 - $S_{J/\psi\phi}(A^b_{sl})$ can be explained, softens tension $\epsilon_K S_{J/\psi K}$
- A2HDM:
 - New CPV possible with sufficient FCNC suppression(!)
 - Rich phenomenology, only three new flavour-parameters
 - Present tensions can be addressed; moderate enhancement of A^b_{sl} possible

Outlook:

- Interesting times: New data expected from LHC(b), SuperB (!), BES-III, NA-62,...
- ► A2HDM: Analysis of neutral Higgs effects in progress...
- In 2 years the limits might change into determinations

 H^{\pm} in A2HDM

M. Jung

Public protests about to change the picture?

M. Jung Motivation Models Phenomenology Conclusions

 H^{\pm} in A2HDM

Backupslides

Radiative corrections in the A2HDM

 H^{\pm} in A2HDM

Models

Conclusions

- Neutron EDM in the A2HDM
- Experimental data used
- Hadronic inputs

Radiative corrections in the A2HDM

Symmetry structure forces the (one-loop) corrections to be of the form [MJ/Pich/Tuzon '10, Cvetic et al. '98]

$$\mathcal{L}_{\text{FCNC}} = \frac{C(\mu)}{4\pi^2 v^3} \left(1 + \varsigma_u^* \varsigma_d\right) \times \\ \times \sum_i \varphi_i^0(x) \left\{ \left(\mathcal{R}_{i2} + i \,\mathcal{R}_{i3}\right) \left(\varsigma_d - \varsigma_u\right) \left[\bar{d}_L \, V^{\dagger} M_u \, M_u^{\dagger} \, V M_d \, d_R\right] - \\ - \left(\mathcal{R}_{i2} - i \,\mathcal{R}_{i3}\right) \left(\varsigma_d^* - \varsigma_u^*\right) \left[\bar{u}_L \, V M_d \, M_d^{\dagger} \, V^{\dagger} M_u \, u_R\right] \right\} + \text{h.c.}$$

- Vanish for \mathcal{Z}_2 symmetry
- FCNCs still strongly suppressed
- See also Braeuninger et al. '10, Ferreira et al. '10

H[±] in A2HDM M. Jung Motivation Models Phenomenology

Conclusions

One-loop contributions to neutron EDM have the structure

$$\begin{array}{ll} d_u & \propto & e \, (m_u/(4\pi\nu)^2) |V_{ui}|^2 (m_i/M_{H^\pm})^2 \\ d_d & \propto & e \, (m_d/(4\pi\nu)^2) |V_{id}|^2 (m_i/M_{H^\pm})^2 \end{array}$$

 Under control (see also Buras et al. '10, Batell/Pospelov '10,... (incomplete list))
 Two-loop diagrams important (Weinberg operator), but also sensitive to UV-completion
 Work in progress M. Jung Motivation Models Phenomenology Conclusions

 H^{\pm} in A2HDM

Observables

Observable	Value	Motivation
$ g_{RR}^{S} _{\tau \to \mu}$	< 0.72 (95% CL)	Models
$\operatorname{Br}(\tau \to \mu \nu_{\tau} \bar{\nu}_{\mu})$	$(17.36 \pm 0.05) imes 10^{-2}$	Phenomeno
${ m Br}(au o { m e} u_ au ar{ u_e})$	$(17.85\pm0.05) imes10^{-2}$	<i>c</i>
${ m Br}(au o \mu u_ au ar u_\mu)/{ m Br}(au o {f e} u_ au ar u_e)$	0.9796 ± 0.0039	Conclusions
${ m Br}(B o au u)$	$(1.73\pm0.35) imes10^{-4}$	
${ m Br}(D o \mu u)$	$(3.82\pm0.33) imes10^{-4}$	
${ m Br}(D o au u)$	$\leq 1.3 imes 10^{-3}$ (95% CL)	
${ m Br}(D_s o au u)$	$(5.58\pm0.35) imes10^{-2}$	
${ m Br}(D_s o \mu u)$	$(5.80\pm0.43) imes10^{-3}$	
$\Gamma(K o \mu u) / \Gamma(\pi o \mu u)$	1.334 ± 0.004	
$\Gamma(au o K u)/\Gamma(au o \pi u)$	$(6.50\pm0.10) imes10^{-2}$	
log C	0.194 ± 0.011	
${ m Br}(B o D au u)/BR(B o D\ell u)$	0.392 ± 0.079	
$\Gamma(Z ightarrow bar{b})/\Gamma(Z ightarrow$ hadrons)	0.21629 ± 0.00066	
${ m Br}(ar{B} ightarrow X_s\gamma)_{E_\gamma>1.6{ m GeV}}$	$(3.55\pm0.26) imes10^{-4}$	
$\operatorname{Br}(\bar{B} \to X_c e \bar{\nu}_e)$	$(10.74 \pm 0.16) imes 10^{-2}$	
$\Delta m_{B_{a}^{0}}$	$(0.507 \pm 0.005) \ { m ps}^{-1}$	
$\Delta m_{B_{e}^{0}}$	$(17.77 \pm 0.12) \ { m ps}^{-1}$	
<i>ϵ_K</i>	$(2.228\pm0.011) imes10^{-3}$	

 H^{\pm} in A2HDM

M. Jung

Hadronic Inputs I

Motivation
Models
Phenomenology
Conclusions
Conclusions

Parameter	Value	Comment
f _{Bs}	$(0.242 \pm 0.003 \pm 0.022)~{ m GeV}$	Our average
f_{B_S}/f_{B_d}	$1.232\pm 0.016\pm 0.033$	Our average
f _{De}	$(0.2417 \pm 0.0012 \pm 0.0053)~{ m GeV}$	Our average
f_{D_s}/f_{D_d}	$1.171 \pm 0.005 \pm 0.02$	Our average
f_K/f_π	$1.192\pm 0.002\pm 0.013$	Our average
$f_{B_s} \sqrt{\hat{B}_{B_s^0}}$	(0.266 \pm 0.007 \pm 0.032) GeV	
$f_{B_d} \sqrt{\hat{B}_{B_s^0}} / (f_{B_s} \sqrt{\hat{B}_{B_s^0}})$	$1.258 \pm 0.025 \pm 0.043$	
β _K	$0.732 \pm 0.006 \pm 0.043$	
V _{ud}	0.97425 ± 0.00022	
λ	0.2255 ± 0.0010	$(1 - V_{ud} ^2)^{1/2}$
$ V_{\mu b} $	$(3.8 \pm 0.1 \pm 0.4) \cdot 10^{-3}$	$b \rightarrow u l \nu$ (excl. + incl.)
A	$0.80 \pm 0.01 \pm 0.01$	$b \rightarrow c l \nu$ (excl. + incl.)
$\bar{\rho}$	$0.15 \pm 0.02 \pm 0.05$	Our fit
$\bar{\eta}$	$0.38 \pm 0.01 \pm 0.06$	Our fit

Table: Input values for the hadronic parameters. The first error denotes statistical uncertainty, the second systematic/theoretical.

H[±] in A2HDM

Hadronic Inputs II

Parameter	Value	Comment
$\bar{m}_u(2 \text{ GeV})$	(0.00255 ^{+ 0.00075} _{- 0.00105}) GeV	
$\bar{m}_d(2 \text{ GeV})$	$(0.00504 \stackrel{+ 0.00096}{- 0.00154})$ GeV	
$\bar{m}_s(2 \text{ GeV})$	(0.105 + 0.025 - 0.035) GeV	
$\bar{m}_c(2 \text{ GeV})$	(1.27 + 0.07) = 0.11 GeV	
$\bar{m}_b(m_b)$	(4.20 + 0.17 - 0.07) GeV	
$\bar{m}_t(m_t)$	$(165.1 \pm 0.6 \pm 2.1)$ GeV	
$\delta_{em}^{K\ell 2/\pi\ell 2}$	-0.0070 ± 0.0018	
$\delta_{em}^{\tau K2/K\ell2}$	0.0090 ± 0.0022	
$\delta_{em}^{\tau \pi 2/\pi \ell 2}$	0.0016 ± 0.0014	
$\rho^2 _{B\to Dl\nu}$	$1.18 \pm 0.04 \pm 0.04$	
$\Delta _{B \to DI\nu}$	0.46 ± 0.02	
$f_{+}^{K\pi}(0)$	0.965 ± 0.010	
Ē ^L ,SM	$-0.42112 {}^{+0.00035}_{-0.00018}$	
κ_{ϵ}	0.94 ± 0.02	
Ē ^R ,SM	$0.07744 {}^{+ 0.00006}_{- 0.00008}$	

Table: Input values for the hadronic parameters. The first error denotes statistical uncertainty, the second systematic/theoretical.

H^{\pm} in A2HDM

M. Jung