Charged Higgs Bosons in extended (non-SUSY) Higgs Models

Andrew Akeroyd

NExT Institute, University of Southampton, England

- Four versions (I,I',II,II') of the Two Higgs Doublet Model
- Differences in the phenomenology of charged Higgs bosons (H^{\pm})
- Search channels yet to be simulated in Models I,I',II'
- ullet Higgs Triplet Model (HTM) and doubly charged scalars $(H^{\pm\pm})$
- Production of $H^{\pm\pm}$ at hadron colliders
- ullet Searches for $H^{\pm\pm}$ at Tevatron and simulations at LHC

cHarged 2010, Uppsala University, Sweden, 27-30 Sep 2010

The four versions of the Two Higgs Doublet Model (2HDM)

Four versions of 2HDM with natural flavour conservation (no FCNCs induced by scalars at tree-level)

- All four models I,I',II,II' have the same scalar potential
- The models have different couplings to fermions
- Couplings $H^{\pm} \to f\overline{f} \sim \tan\beta$ or $1/\tan\beta$ ($\tan\beta = v_2/v_1$).

The four versions of the Two Higgs Doublet Model (2HDM)

- Type II is structure found in MSSM
- Much attention given to H^{\pm} of Type II
- ullet I will discuss some distinctive phenomenology of H^\pm
- in Types I, I' and II'
- I will not discuss "inert 2HDM" (see talks at this workshop)
- Convenient program for phenomenology is "Two-Higgs-Doublet

Model Calculator" (2HDMC) Eriksson/Rathsman/Stal arXiv:0902.0851

Fermionic couplings of H^{\pm} in the four versions of the 2HDM

First detailed study of H^\pm phenomenology in Barger/Hewett/Phillips 90

$$\mathcal{L}_{H^{\pm}} = -\left\{ \frac{\sqrt{2}V_{ud}}{v} \left(m_u X P_L + m_d Y P_R \right) dH^{+} + \frac{\sqrt{2}m_\ell}{v} Z_{\overline{\nu_L}} \ell_R H^{+} + H.c. \right\}$$

	X	Y	Z
Type I	$\cot \beta$	$\cot eta$	$\cot \beta$
Type II	$\cot \beta$	- $ aneta$	- $ an eta$
Type I'	$\cot \beta$	$\cot eta$	- aneta
Type II'	$\cot \beta$	- $ aneta$	$\cot eta$

Main points of H^{\pm} phenomenology in 2HDM (Model I)

- Phenomenology has been studied quite thoroughly
 (included in the Higgs Hunters Guide 1990)
- ullet Branching ratios for fermionic decays are independent of tan eta:

$$H^\pm o au
u \sim 70\%$$
, $H^\pm o cs \sim 30\%$ for $m_{H^\pm} < m_t + m_b$

- Coupling to all fermions $(1/\tan\beta)$ is very small for $\tan\beta >> 1$ ("fermiophobic")
- ullet H^\pm can avoid constraints from flavour physics (e.g. $b \to s \gamma$) and so could be light
- Other decays (if open) such as $H^{\pm} \to A^0 W^*$ can be dominant

Searches for $e^+e^- \rightarrow H^+H^-$, $H^\pm \rightarrow A^0W^*$ by DELPHI (2004) and OPAL (2008)

Main points of H^{\pm} phenomenology in 2HDM (Model I')

- Received very little attention until 2009 Barger 90, AGA/Stirling 95, Park 06
- Suppressed couplings to quarks $(1/\tan \beta)$
- H^{\pm} can avoid constraints from flavour physics and be light, and have sizeable coupling to leptons $(\tan \beta)$
- Production processes that rely on couplings to quarks
 will be ineffective
- Large branching ratio $H^{\pm} \to \tau \nu$ even for $m_{H^{\pm}} > m_t + m_b$

Comparison of branching ratios of H^{\pm} in 2HDM (Models I' and II)

Logan/Maclennan 09: see also Aoki et al 09, Su et al 09, Goh et al 09

Main points of phenomenology of H^{\pm} in 2HDM (Model II')

- Received very little attention until 2009
- ullet Like Model II , H^\pm can contribute sizeably to low-energy processes like $b \to s \gamma$
- $m_{H^\pm} <$ 300 GeV would require some additional New Physics to cancel H^\pm contribution to $b \to s \gamma$
- Main distinctive feature is sizeable branching ratio for $H^\pm \to cb$ for $m_{H^\pm} < m_t + m_b$

Comparison of branching ratios of H^{\pm} in 2HDM (Models II' and II)

Logan/Maclennan 10; see also Aoki et al 09

Distinctive signatures of H^{\pm} which have not been simulated

At LHC:

• Model I,II Decay $H^{\pm} \to A^0 W^{\pm}$ (from various production channels)

Kanemura/Moretti/Mukai/Santos/Yagyu 09

• Model I' $\tau\tau\tau\nu$ (other production channels suppressed) Aoki et al 09

$$q\overline{q} \to H^{\pm}A^{0}/H^{\pm}H^{0}; H^{\pm} \to \tau^{\pm}\nu, A^{0}/H^{0} \to \tau^{+}\tau^{-}$$

ullet Model II' $H^\pm \to cb$ in decay of top quark AGA 95, Logan/Maclennan 10

$$q\overline{q} \rightarrow t\overline{t}$$
; $t \rightarrow Wb$, $t \rightarrow H^{\pm}b$; $H^{\pm} \rightarrow cb$

Doubly Charged Higgs bosons $H^{\pm\pm}$

TeV scale models of neutrino mass generation

Many models for neutrino mass generation!

Models with a signature accessible to High Energy Colliders

(Tevatron/LHC) are phenomenologically appealing

One such model is: Higgs Triplet Model (HTM)

Konetschny/Kummer 77, Schechter/Valle 80, Cheng/Li 80

Distinctive signature:

Doubly charged Higgs boson: $H^{\pm\pm}$

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I=1,Y=2 Higgs triplet

$$\Delta = \begin{pmatrix} \delta^{+}/\sqrt{2} & \delta^{++} \\ \delta^{0} & -\delta^{+}/\sqrt{2} \end{pmatrix}$$

Higgs potential invariant under $SU(2)_L \otimes U(1)_Y$: $m^2 < 0$, $M_{\Delta}^2 > 0$

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\operatorname{Tr}(\Delta^{\dagger}\Delta)$$

$$+\lambda_i$$
 (quartic terms) $+\frac{1}{\sqrt{2}}\mu(\Phi^T i\tau_2\Delta^{\dagger}\Phi) + h.c$

Triplet vacuum expectation value:

$$<\delta^0>=v_\Delta\sim \mu v^2/M_\Delta^2$$
 $(v_\Delta<5~GeV~{\rm to~keep}~\rho\sim1)$

Neutrino mass in Higgs Triplet Model (HTM)

No additional (heavy) neutrinos: $\mathcal{L} = h_{ij}\psi_{iL}^TCi\tau_2\Delta\psi_{jL} + h.c$ $\psi_{iL}^T = (\nu_i, \ell_i); i = e, \mu, \tau$

Neutrino mass from triplet-lepton-lepton coupling (h_{ij}) :

$$h_{ij}\left[\sqrt{2}\,\bar{\ell}_i^c P_L \ell_j \delta^{++} + (\bar{\ell}_i^c P_L \nu_j + \bar{\ell}_j^c P_L \nu_i) \delta^{+} - \sqrt{2}\,\bar{\nu}_i^c P_L \nu_j \delta^{0}\right] + h.c$$

Light neutrinos receive a Majorana mass: $\mathcal{M}^{\nu}_{ij} \sim v_{\Delta} h_{ij}$

$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

$$(V_{\text{PMNS}} = V_{\ell}^{\dagger} V_{\nu}; \text{ take } V_{\ell} = I \text{ and } V_{\nu} = V_{\text{PMNS}})$$

Decay channels for $H^{\pm\pm}$ and H^{\pm}

Decays of $H^{\pm\pm}$:

- $\Gamma(H^{\pm\pm} \to \ell_i^{\pm}\ell_j^{\pm}) \sim |h_{ij}|^2$; $\Gamma(H^{\pm\pm} \to W^{\pm}W^{\pm}) \sim v_{\Delta}^2$
- In HTM: $h_{ij}v_{\Delta} \sim \mathcal{M}_{ij}^{\nu}$

$$\Gamma(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}) > \Gamma(H^{\pm\pm} \to W^{\pm}W^{\pm}) \text{ for } v_{\Delta} < 10^{-4} \text{ GeV}$$

• $H^{\pm\pm} \to H^{\pm}W^*$ suppressed if $m_{H^{\pm\pm}} \sim m_{H^{\pm}}$

Tevatron searches have only been performed for $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$

Decays of H^{\pm} :

- $\Gamma(H^{\pm} \to \ell_i^{\pm} \nu) > \Gamma(H^{\pm} \to W^{\pm} Z, tb)$ for $v_{\Delta} < 10^{-4}$ GeV
- If $h_{ij} > h_{electron}$ then $v_{\Delta} < 10^{-4} \; {\rm GeV}$
- ightarrow leptonic decays $H^{\pm\pm}
 ightarrow \ell_i^{\pm}\ell_j^{\pm}$ and $H^{\pm}
 ightarrow \ell_i^{\pm}
 u$ dominate

Branching ratios of $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$

 $\mathsf{BR}(H^{\pm\pm} \to \ell_i^{\pm}\ell_j^{\pm})$ depends on relative values of h_{ij}

$$\Gamma(H^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim \frac{m_{H^{\pm\pm}}}{8\pi} |h_{ij}|^2$$

In HTM h_{ij} is directly related to neutrino mass matrix

$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

Prediction for BR $(H^{\pm\pm} o \ell_i^{\pm} \ell_j^{\pm})$ determined by: Chun, Lee, Park 03

- Neutrino mass hierarchy (normal, inverted)
- Neutrino mass matrix parameters (masses, angles, phases)

HTM prediction in the plane $[BR(H^{\pm\pm}\to e^{\pm}e^{\pm}), BR(H^{\pm\pm}\to e^{\pm}\mu^{\pm})]$

White region is ruled out by neutrino oscillation data AGA/Aoki/Sugiyama 07

Production of $H^{\pm\pm}$ at Hadron Colliders (Tevatron and LHC)

Production of $H^{\pm\pm}$ at Hadron Colliders

First searches at a Hadron collider in 2003 CDF,D0

$$\mathcal{L} = i \left[\left(\partial^{\mu} H^{--} \right) H^{++} \right] \left(g W_{3\mu} + g' B_{\mu} \right) + h.c$$

- ullet $\sigma_{H^{++}H^{--}}$ is a simple function of $m_{H^{\pm\pm}}$ Barger 82, Gunion 89, Raidal 96
- ullet $\sigma_{H^{++}H^{--}}$ has no dependence on h_{ij}

Strategy of most recent search by Tevatron

- $H^{\pm\pm}$ decays via h_{ij} to same charge $ee, \mu\mu, \tau\tau, e\mu, e\tau, \mu\tau$
- Four leptons $(\ell^+\ell^+\ell^-\ell^-)$ from pair production of $H^{++}H^{--}$
- For $H^{\pm\pm} \to e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$, sufficient to search for

three leptons of high momentum with two leptons

having the same charge

→ Six distinct signatures

$$e^{\pm}e^{\pm}e^{\mp}$$
, $e^{\pm}e^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\pm}e^{\mp}$, $e^{\pm}\mu^{\pm}\mu^{\mp}$, $\mu^{\pm}\mu^{\pm}e^{\mp}$ and $\mu^{\pm}\mu^{\pm}\mu^{\mp}$

- Only $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ has been searched for (1.1 fb⁻¹ of data)
- \bullet Tevatron currently has 7 fb⁻¹, and expects 9 \to 12 fb⁻¹

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Mass limit $m_{H^{\pm\pm}} > 150$ GeV, assuming BR $(H^{\pm\pm} \to \mu^\pm \mu^\pm) = 100\%$

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Two same-sign $\mu^{\pm}\mu^{\pm}$

Two same-sign $\mu^{\pm}\mu^{\pm}$ and third μ^{\mp}

Single $H^{\pm\pm}$ production via $qq' \to H^{\pm\pm}H^{\mp}$

Ongoing searches assume $q\overline{q} \rightarrow \gamma, Z \rightarrow H^{++}H^{--}$, but...

$$\mathcal{L} = ig \left[\left(\partial^{\mu} H^{+} \right) H^{--} - \left(\partial^{\mu} H^{--} \right) H^{+} \right] W_{\mu}^{+} + h.c..$$

- ullet $\sigma_{H^{\pm\pm}H^{\mp}}$ is a function of $m_{H^{\pm\pm}}$ and $m_{H^{\pm}}$ Barger 82, Dion 98
- Similar magnitude to $\sigma(p\overline{p} \to H^{++}H^{--})$ for $m_{H^{\pm\pm}} \sim m_{H^{\pm}}$

Impact of
$$qq' o H^{\pm \pm} H^{\mp}$$

Current searches are already sensitive to $qq' \rightarrow H^{\pm\pm}H^{\mp}!$

- $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ search is sensitive to $H^{\pm\pm}H^{\mp}$ for $H^{\pm}\to\ell^{\pm}\nu$
- \rightarrow Define inclusive cross section for $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ search:

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$$
 AGA, Aoki 05

- ullet Enables larger values of $m_{H^{\pm\pm}}$ to be probed in $\ell^\pm\ell^\pm\ell^\mp$ channels
- Not yet included in searches at the Tevatron

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$$

Summary for $qq' \rightarrow H^{\pm\pm}H^{\mp}$

- $\sigma(qq' \to H^{\pm \pm}H^{\mp})$ can be as large as $\sigma(q\overline{q} \to H^{++}H^{--})$
- ullet Can enhance the discovery potential for $H^{\pm\pm}$ in 3ℓ search channels
- (Best?) Production process for H^{\pm} of HTM at hadron colliders
- Now receiving attention as a main production mechanism for $H^{\pm\pm}$
- Recently simulated at LHC Han 08, Del Aguila 08
- Not included in Pythia (frequently used by experimentalists)
- Convince Tevatron to include it in next search for $H^{\pm\pm}$?

Light $H^{\pm\pm}$ and decay $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ at LHC

Simulations by Azuelos et al 05, Hebbeker et al 06, Hektor et al 07, Han et al 07

- ullet Discovery for $m_{H^{\pm\pm}} <$ 400 GeV with 1 fb $^{-1}$
- Precise measurements of BR $(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm})$ possible for $\ell=e,\mu$
- Sensitivity to BR $(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}) \sim 1\%$ for $\ell = e, \mu$

Large Event Numbers for $H^{\pm\pm}$:

$m_{H^{\pm\pm}}$ (GeV)	N_{pair} (30 fb ⁻¹)	N_{pair} (300 fb ⁻¹)	N_{incl} (300 fb ⁻¹)
200	1500	15000	42000
300	300	3000	8400
400	90	900	2500

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$$

Optimising discovery potential of $H^{\pm\pm}$ at LHC

→ Signature which is sensitive to both production mechanisms

$$q\overline{q} \rightarrow H^{++}H^{--}$$
 and $qq' \rightarrow H^{\pm\pm}H^{\mp}$

 4ℓ signature: only $H^{++}H^{--}$ contributes

- CMS (2007): $\mu^{+}\mu^{+}\mu^{-}\mu^{-}$
- ATLAS (2005): $4\ell \ (\ell = e, \mu)$

 $3\ell \ (\ell^{\pm}\ell^{\pm}\ell^{\mp})$ signature: $H^{\pm\pm}H^{\mp}$ contributes

- ullet Del Aguila/Aguilar-Saavedra (2008): 3ℓ ($\ell=e,\mu$)
- ightarrow probes larger values of $m_{H^{\pm\pm}}$ (extra leptons vetoed)
- AGA, Chiang, Gaur (2010): $\geq 3\ell$ ($\ell = e, \mu$) (as done at Tevatron)

Possible future topics?

Encourage CMS/ATLAS to simulate $\geq 3\ell$ ($\ell=e,\mu$) signature in order to improve sensitivity to $m_{H^{\pm\pm}}$

- Compare discovery potential of Tevatron and low energy run ($\sqrt{s}=7$ TeV) of LHC
- Exclusive final states (e.g. $e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$)
- Decay channels $H^{\pm\pm} \to e^{\pm} \tau^{\pm}, \mu^{\pm} \tau^{\pm}, \tau^{\pm} \tau^{\pm}$
- After discovery: separate the contributions from

$$q\overline{q} \rightarrow H^{++}H^{--}$$
 and $qq' \rightarrow H^{\pm\pm}H^{\mp}$

Conclusions

- Four different versions of the Two Higgs Doublet Model
- ullet Phenomenology of H^\pm differs in each model
- Some search channels yet to be simulated
- $H^{\pm\pm}$ arises in some models of neutrino mass generation (e.g. Higgs Triplet Model)
- $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ is a distinctive signature
- $H^{\pm\pm}$ produced via $pp \to H^{++}H^{--}$ and $pp \to H^{\pm\pm}H^{\mp}$
- ullet Three-lepton signal $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ optimal channel for detection
- Much to simulate in the phenomenology of $H^{\pm\pm}$

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Selection	Preselection	Isolation	$\Delta \phi < 2.5$	Like sign	Third muon
	S1	S2	S3	S4	S5
$Z/\gamma^* o \mu^+\mu^-$	69181 ± 4642	58264 ± 3910	4936 ± 333	5.3 ± 1.6	< 0.01
Multijet	4492 ± 120	194 ± 18	18 ± 2	6.3 ± 0.8	0.2 ± 0.1
$Z/\gamma^* ightarrow au^+ au^-$	328 ± 25	269 ± 21	20 ± 3	< 0.01	< 0.01
$tar{t}$	38 ± 3	20 ± 1	14 ± 1	0.03 ± 0.01	< 0.01
WW	40 ± 3	34 ± 2	20 ± 1	< 0.01	< 0.01
WZ	19 ± 1	16 ± 1	11 ± 1	2.95 ± 0.20	1.62 ± 0.11
ZZ	10 ± 1	9 ± 1	5 ± 1	0.63 ± 0.05	0.47 ± 0.03
Total background	74108 ± 4644	58806 ± 3910	5024 ± 333	15.2 ± 1.8	2.3 ± 0.2
$M_{H^{\pm\pm}}=$ 140 GeV	20.5 ± 2.7	18.5 ± 2.4	16.3 ± 2.1	11.6 ± 1.5	10.1 ± 1.3
Data	72974	58763	4558	16	3

Signal is defined as $\mu^+\mu^+\mu^-$ or $\mu^-\mu^-\mu^+$

Current status of Tevatron searches

	ee	$e\mu$	$\mu\mu$	e au	μau	au au
21	> 133 GeV	> 113 GeV	> 136 GeV	X	X	×
31			> 150 GeV	> 114 GeV	> 112 GeV	
41				> 114 GeV	> 112 GeV	

- \bullet > 150 GeV limit uses 1.1 fb⁻¹
- \bullet Other limits use 0.24 fb⁻¹ or 0.35 fb⁻¹
- \bullet Run II has accumulated \sim 7 fb $^{-1}$
- Expect up to 12 fb^{-1} by 2011
- ullet Sensitivity to $m_{H^{\pm\pm}} \sim$ 250 GeV in $ee, e\mu, \mu\mu$ channels

Limits on h_{ij}

Presence of $H^{\pm\pm}$ would lead to lepton-flavour-violating decays

Many limits exist for h_{ij} (assuming $m_{H^{\pm\pm}} < 1~{
m TeV}$): Cuypers/Davidson 98

- BR $(\mu \to eee) < 10^{-12} \to |h_{\mu e}h_{ee}| < 10^{-7}$ 1988; no forthcoming experiment
- ullet BR $(au o\ell_i\ell_j\ell_k)<10^{-8} o|h_{ au i}h_{jk}|<10^{-4}$ Limits from ongoing B factories
- BR $(\mu \to e \gamma) < 10^{-11} \to \sum_i |h_{\mu i} h_{e i}| < 10^{-6}$ sensitivity to BR \sim 10 $^{-13}$ from 2010

All constraints can be respected with suitably chosen h_{ij}

Provide valuable probes of virtual effects of $H^{\pm\pm}$