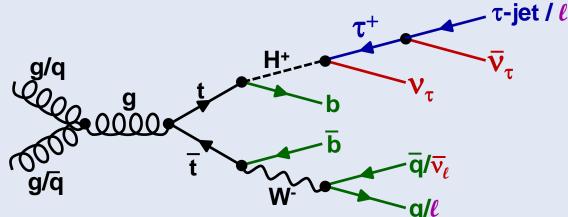


Systematics in charged Higgs boson searches in CMS

Lauri Wendland Helsinki Institute of Physics

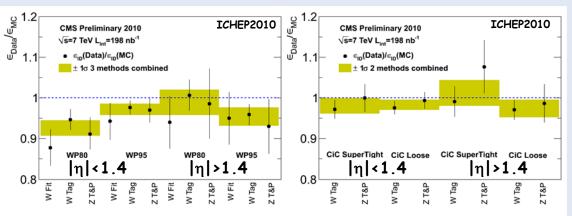
for the CMS Collaboration


Charged10 conference, Uppsala, Sweden

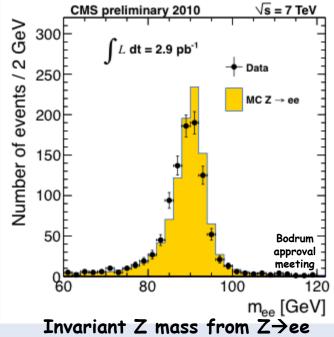
Sources of systematic uncertainties affecting charged Higgs boson searches

HELSINKI INSTITUTE OF PHYSICS

- Cross-section
- Luminosity measurement
- Lepton systematics
 - e/mu reconstruction
 - e/mu ID efficiency
 - e/mu fake rate
- Hadr. tau decay systematics
 - tau-jet energy scale
 - tau ID efficiency
 - tau fake-rate
- Jet/MET energy scale
- b-tagging
 - b-tag efficiency
 - b-mistag


Charged Higgs boson searches are at the top of the food chain: need to consume the whole systematics "menu"!

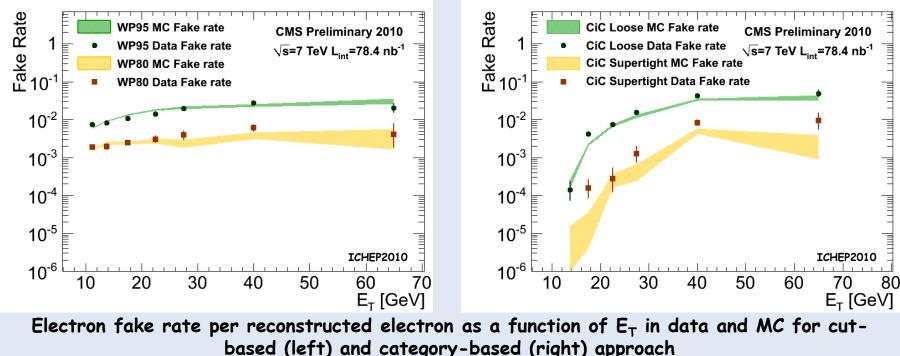
The most important backgrounds will be measured from data to minimize the influence of the systematic uncertainties



- W and Z selections are used to measure electron ID efficiency for high $p_{\rm T}$ electrons
- Z→ee selection:
 - Tag: identified (isolated) electron
 - Probe: 1 em. calorimeter supercluster
 - Mass window 60 < M_{ee} < 120 GeV/c²
- From the Z→ee analysis one can estimate ~3 % for electron reconstruction and identification uncertainty

Electron selection efficiency ratio between data and MC for cut-based (left) and category-based (right) approach

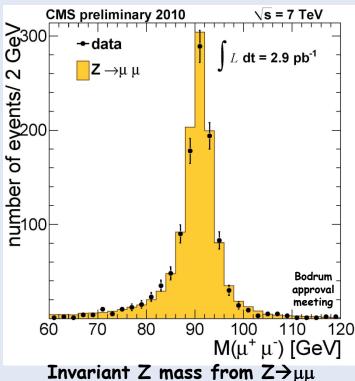
Lauri A. Wendland for the CMS collaboration: "Systematics in charged Higgs boson searches in CMS"



ICHEP, ∫L=198 nb⁻¹ CMS PAS EWK-10-002

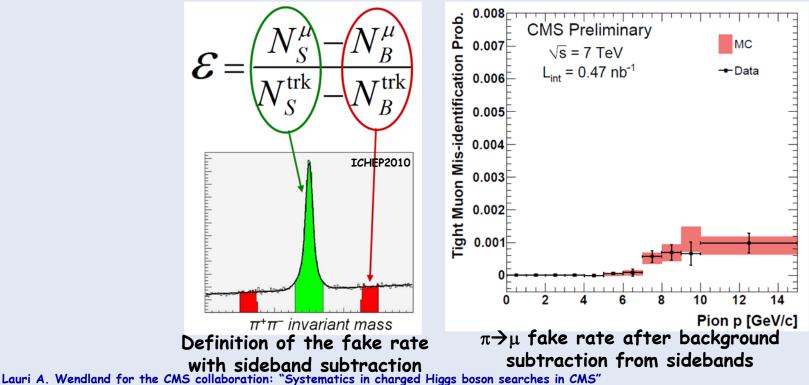
ICHEP, ∫L=78 nb⁻¹

- Event selection:
 - Single jet trigger with raw jet E_T>15 GeV
 - Require small MET in the event
 - Reconstruct electrons outside the jet that was triggered



CMS PAS EWK-10-002 CMS PAS MUO-10-002

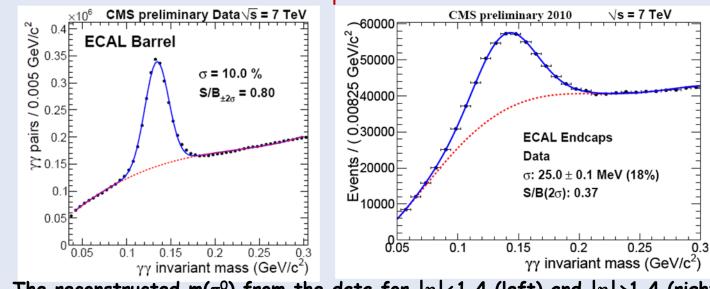
- Muon reconstruction and identification are studied with inclusive muons with p_T >15 GeV/c
 - Evaluate matching of inner track with muon clusters
 - Evaluate matching of muon track with inner track
 - Evaluate identification cuts from MC
 - Results agree within a statistical uncertainty of 2.5-3 %
- Z mass peak in $Z \rightarrow \mu\mu$ decay:
 - Select two oppositely charged muons with $p_T\!\!\!\!>\!\!20~GeV/c$
 - Require tight quality cuts from one muon (tag) and looser from the other (probe)
 - Require 60 < $M_{\mu\mu}$ < 120 GeV/c²
- From the $Z \rightarrow \mu\mu$ analysis one can estimate ~3 % for the uncertainty of muon reconstruction and identification efficiency


Muon fake rate systematics

JL=0.47 nb⁻¹

CMS PAS MUO-10-002

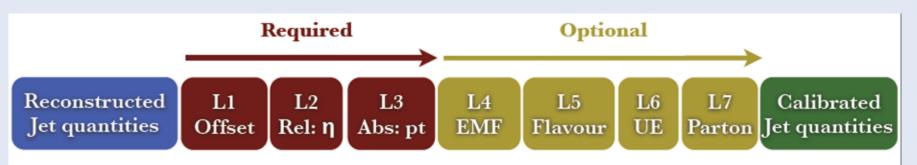
- Select $\pi/K/p$ tracks from identified K_S, ϕ , and Λ resonances (MinBias trigger)
- Measure the probability for $\pi/K/p \rightarrow \mu$ fake rate
 - Decay in flight and punch-through probability
 - Require tracker track to match with muon track; good track quality
- Data (ϵ =1.0±0.2 × 10⁻⁴) agrees well with MC (ϵ =1.0±0.2 × 10⁻⁴)



.∫L=123 nb⁻¹

CMS PAS EGM-10-003

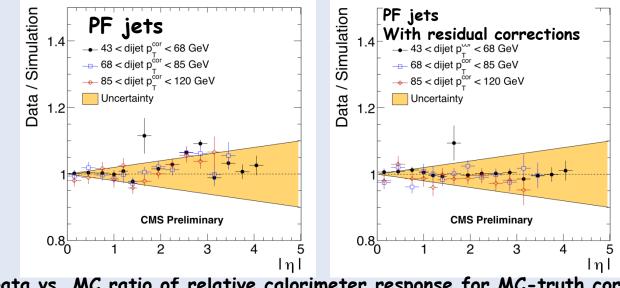
- The energy scale is evaluated from π^0 and η decays
 - Absolute energy scale obtained from test-beam results
- Systematic uncertainty estimated from comparing the mass of π^{0} and η obtained from data against MC
 - Evaluated separately for the barrel (| η |<1.4) and endcap (| η |>1.4) parts
 - Pseudorapidity cut: barrel 0.5 % / endcap 1.3 %
 - E_T cut variation: barrel 0.6 % / endcap 1.7 %
 - Energy corrections: barrel 0.4 % / endcap 0.5 %
 - Combined: barrel 0.9 % / endcap 2.2 %


The reconstructed $m(\pi^0)$ from the data for $|\eta| < 1.4$ (left) and $|\eta| > 1.4$ (right) Lauri A. Wendland for the CMS collaboration: "Systematics in charged Higgs boson searches in CMS"

Jet energy scale

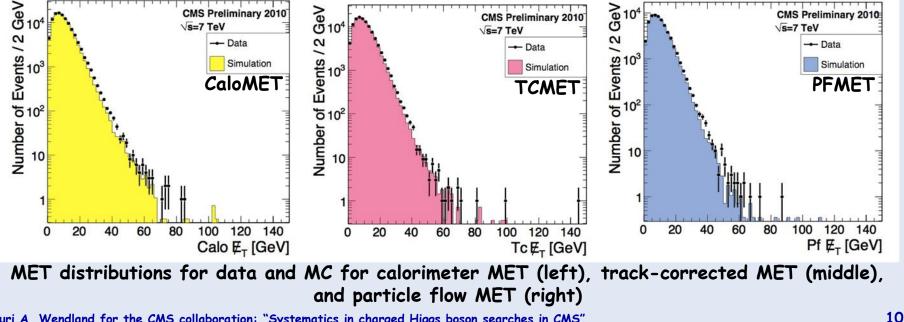
- - all based on the anti- $k_{\rm T}$ clustering algorithm; typical cone size is 0.5
- Factorized jet energy scale approach used:

- Incremental improvements; allows for clear identification and understanding of systematics
- Two correction methods available:
 - MC-truth based (p_T^{reco} / p_T^{gen})
 - In-situ (di-jet p_T balance method)
 - Currently the majority of CMS physics analyses use MC-truth based approach
 - In-situ subcorrections will replace MC-truth based subcorrections one by one once they become available


Jet energy scale (II)

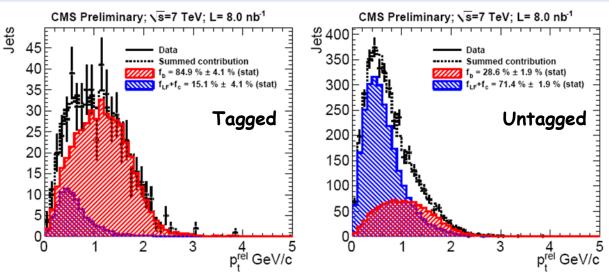
.∫L=73 nb⁻¹

CMS PAS JME-10-003


- Data vs. MC agreement can be improved by applying residual corrections
- Current CMS physics analyses use as jet energy scale uncertainty
 - 10 % + 2 % x $|\eta|$ for calorimeter jets (obtained from MC)
 - 5 % + 2 % x $|\eta|\,$ for JPT and PF jets (obtained from MC)
- Absolute scale will be obtained from γ +jet events once enough data is available; first look indicates that the taken uncertainty is quite conservative

Data vs. MC ratio of relative calorimeter response for MC-truth corrected PF jets. Residual corrections have been applied in the right plot.

- Inclusive di-jets (p_T >25 GeV/c and $|\eta|$ <3)
- Three MET algorithms evaluated
 - Calorimeter jet based type II corrected MET (CaloMET)
 - Track-corrected MET (TCMET)
 - Particle Flow MET (PFMET)
- Conservative estimate of systematic uncertainty ~10 %

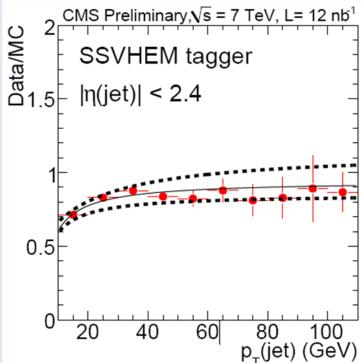

.∫L=8 nb⁻¹

CMS PAS BTV-10-001

- Event selection for b-tagging efficiency measurement:
 - Require jet p_T>30 GeV/c
 - Require one muon (p_T >5 GeV/c) in the event
 - b-tagging algorithm: impact parameter or secondary vertex based
 - Require matching of the muon to good tracks in b-jet
- Efficiency measurement method:
 - Construct templates based on muon $p_{\mathsf{T}}{}^{\mathsf{rel}}$ for b-jets and for light+charm jets
 - Apply maximum likelihood fit to events that have passed/not passed the b-tag

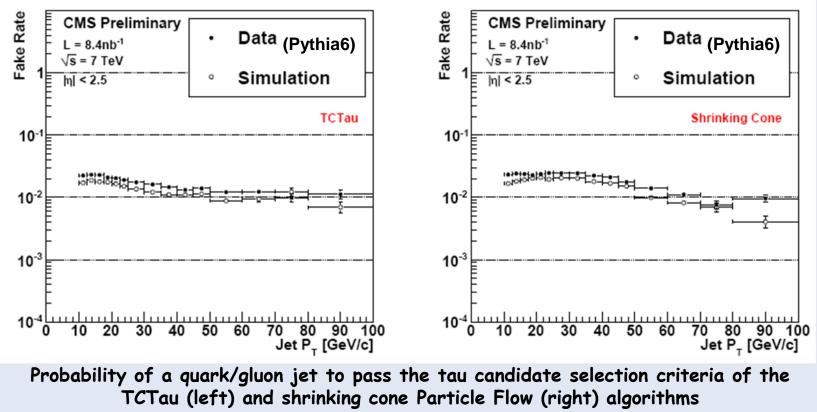
to obtain fraction of b-jets and non-b-jets

- Calculate efficiency from the fractions
- Systematic uncertainty of 19 % obtained for most b-tagging working points


Fit of the muon p_T^{rel} distributions to b- and udsc-templates for events that pass (left) or fail (right) the b-tagging algorithm TCHPM

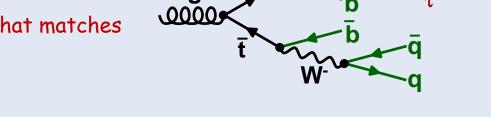
CMS PAS BTV-10-001

- The b-mistag rate is evaluated from tracks with negative impact J parameter or from secondary vertices with negative decay lengths $\varepsilon^{\text{mistag}} = \varepsilon^{\text{neg. tags}} \ast \varepsilon^{\text{MC mistag}} / \varepsilon^{\text{MC neg. tags}}$
- Sources of systematic uncertainty for $\epsilon^{MC \text{ mistag}} / \epsilon^{MC \text{ neg. tags}}$:
 - b- and c-fractions: ±20 % (rel.)
 - gluon fraction (PDF): ±20 % (rel.)
 - Long lived ${\rm K0}_{\rm S}$ and Λ decays: ±10-20 % (rel.)
 - Photon conversions and nuclear interactions: ±5 % (rel.)
 - Mismeasured tracks: ±50 % (rel.)
 - Sign flip: 0.5-2 % (abs.)
- Systematic uncertainty for mistagging found to be: 3 % / 6-12 % / 40-60 % for operating point of 10 % / 1 % / 0.1 % of light flavors passing the b-tag


Mistag rate comparison between data and MC for secondary vertex based b-tagging

CMS PAS PFT-10-004

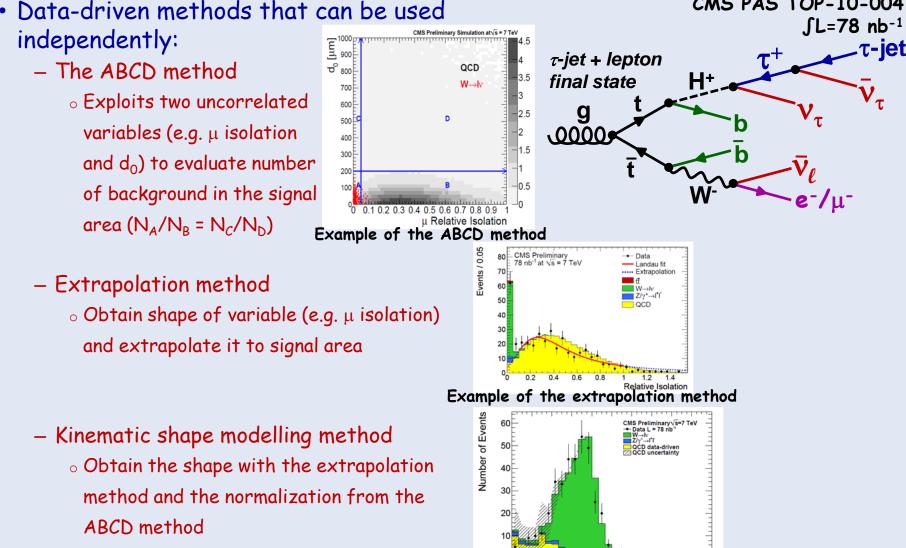
- No study published so far quotes systematics for tau jets
- Based on the jet→tau fake rate study, 20-40 % disagreement found between MC and data
 - Not a problem, since the fake rate will be measured from the data


QCD multi-jet background measurement for the fully hadronic final state

-iet

- Measurement strategy:
 - Require Tau20Trk15 + MET20 trigger
 - QCD multi-jets still dominate after this requirement
 - Take as offline tau jet the jet that matches with the HLT object
 - Apply jet $\rightarrow \tau$ fake rate
 - Obtained from single jets

H+


Fully hadronic

final state

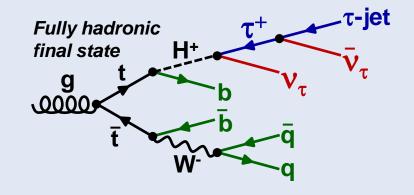
g

- Apply rest of event selection and correct for bias from ttbar / W+jets events (bias evaluated with MC)
- See Alexandros' talk for more details

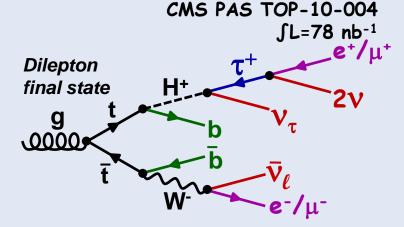
40 60 80 100 120 140 160

180 200

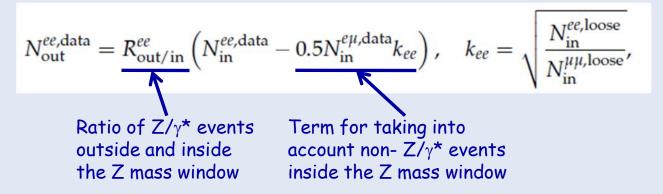
Lauri A. Wendland for the CMS collaboration: "Systematics in charged Hipps MET) obtained with kinematic shape modelling



Electroweak backgrounds measurement: fully hadronic final state



- The hadronic ttbar and W+jets backgrounds can be measured from data with the μ+jet events by replacing the reconstructed muon with a simulated τ jet (embedding)
 - Such approach removes the jet energy scale uncertainty from the systematics
- Event selection:
 - require one isolated muon
 - require veto on other muons and isolated electrons
 - apply cut on MET
 - require at least 3 hadronic jets
- No mass requirements → no need to separate the ttbar and W+jets events



Z/γ*→ee or μμ background measurement for the di-lepton final state

- Measurement strategy:
 - Use standard dilepton event selection, but require that the invariant mass is within 15 GeV/c² of the Z mass
 - Obtain from MC the ratio of Z/ γ^{\star} events outside and inside the Z mass window
 - Apply correction for non-Z/ γ^{\star} events within the Z mass window

• Obtained number of Z/γ^* outside the Z mass window:

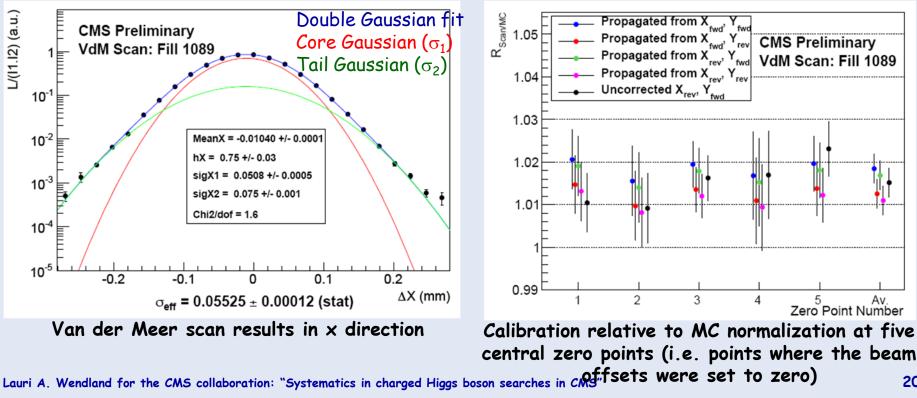
• A conservative estimate of the systematic uncertainty of this method is 50 %

- Detector calibration effects and change of R when selections are tightened

Summary

Cross-section uncertainties	1/ 9/	
 ttbar cross-section 	16 %	
 W/Z + jets cross-sections 	100 %	estimate
 QCD multi-jet cross-sections 	100 %	estimate
 Luminosity measurement 	11 %	EWK-10-004
 Underlying event 	10 %	QCD-10-010
• Electrons		
 reconstruction and identification efficiency 	~3 %	ICHEP, 198 nb ⁻¹
– fake rate '	~5 %	ICHEP, 78 nb ⁻¹
• Muons		
 reconstruction and identification efficiency 	~3 %	EWK-10-002, 198 nb ⁻¹
– fake rate	negligible	MUO-10-002, 0.47 nb ⁻¹
 Electromagnetic calorimeter energy scale 	0.9/2.2 %	EGM-10-003, 123 nb-1
 Jet energy scale 	5-10 %	JME-10-003, 73 nb ⁻¹
• Missing E _T	~10 %	JME-10-004, 11.7 nb ⁻¹
 tau-jets energy scale 	n.a.	to be determined
 tau-jet reconstruction and identification efficiency 	~10 %	estimate
• jet→tau fake-rate	20-40 %	PFT-10-004, 8.4 nb ⁻¹
 b-tagging 		
 b-tagging efficiency 	19 %	BTV-10-001, 8 nb ⁻¹
 b-mistag rate 	3-60 %	BTV-10-001, 12 nb ⁻¹
5	0 00 /0	2
 Work ongoing on background measurements from data 		

BACKUP SLIDES



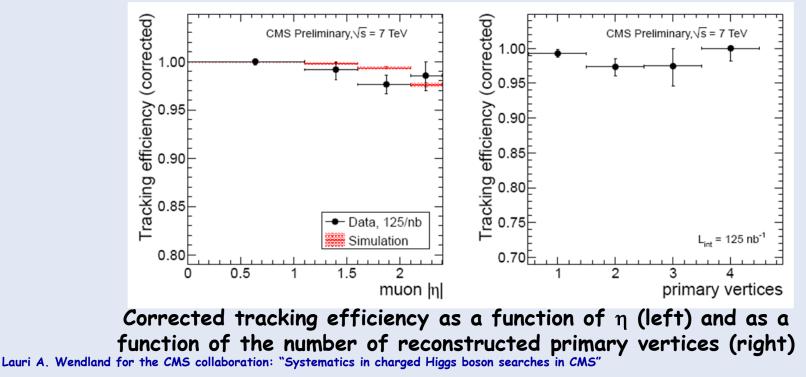
CMS PAS EWK-10-004

- The size and shape of the interaction region are measured by recording the relative interaction rate as a function of the transverse beam separations (S. Van der Meer scans).
- The beam intensities are measured with Fast Beam Current transformers (measure current in each 25 ns bunch)

CMS PAS EWK-10-004

		Double gaussian might not describe		
Error	Value (%)	accurately the actual beam shape. Estimated by replacing the double		
Beam Background	0.1			
Fit Systematics	1.0	Gaussian fit with a spline fit.		
Beam Shape	3.0			
Scale Calibration	2.0	Inaccuracy of methods to		
Zero Point Uncertainty	2.0	determine the beam offsets		
Beam Current Measurement	10.0	Variation of the beam size		
Total	11.0	Variation of the beam size (emittance growth) during the scans		
Systematic errors on the 2010 CMS calibration scan measurements using the Van der Meer method.				

- Systematics on the beam current measurement are assumed to decrease as the LHC beam currents increase
- Additional scans and better understanding of the error sources is expected to decrease other sources of systematics


Tracking efficiency systematics of isolated muons

.∫L=125 nb⁻¹

CMS PAS TRK-10-002

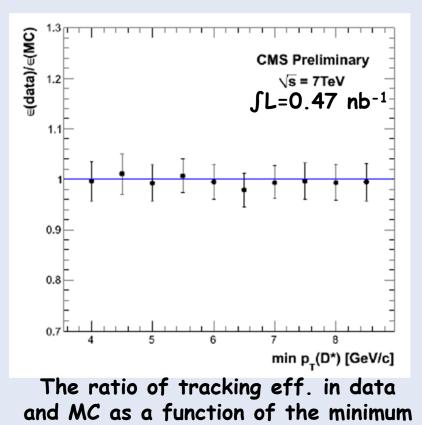
- Tag and probe with isolated muons from J/ψ events
 - Tag muons: global muons passing HLT_Mu3
 - Probe muons: muons reconstructed from muon chambers only
 - Match condition: $\Delta\eta$ < 0.2 and ΔR < 0.5
- Tracking efficiency defined as: true tracking eff. x matching eff.
- Comparison between data and MC yields 1-2 % as systematic uncertainty

Tracking efficiency systematics of non-isolated muons

CMS PAS TRK-10-002 $\int L=9 \text{ nb}^{-1}$

- Selection method (choose b- or c-jets with muons):
 - MinBias trigger
 - Require a good quality muon recoed in the muon stations, $p_T > 5$ GeV/c
 - Require at least two PF jets with E_{T} > 10 GeV/c
 - $_{\odot}\,$ Require one jet to be within ΔR < 0.4 of the muon
 - $_{\odot}$ Require the other jet to pass b-tagging and to be separated ΔR > 1.5 of the muon
- The muon is matched to a good quality track from the tracker
- Tracking efficiency is calculated from passing/failing the muon matching
- Tracking eficiency is corrected for the presence of light quarks and gluons
- Systematic uncertainty estimated with pseudo-experiments as 5.3 %
 - Tracking efficiency of muons from b or c decays assumed to be equal
 - Systematics for muons from light flavored jets estimated to be slightly lower

Tracking efficiency systematics of charged pions


.∫L=0.47 nb⁻¹

CMS PAS TRK-10-002 Measurement is based on comparing the production rate of $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ and $D^0 \rightarrow K^-\pi^+$ decays in the $D^{*+} \rightarrow D^0\pi^+$ chain

 $-\varepsilon_{data}/\varepsilon_{MC} = sqrt(R/R_{PDG})$, where R = N_{K3π}/N_{Kπ} * $\varepsilon_{Kπ}$ / $\varepsilon_{K3π}$

- Event selection:
 - Select tracks with p_{T} 300 MeV/c compatible with the primary vertex
 - Find 4/2 tracks that form a secondary vertex with positive decay length; find also the track of the "slow pion" from the D*+ decay
 - Reconstruct D⁰ and D*+ masses
 - Require $|M(D^0) M(D^{*+})| < 159 \text{ MeV}/c^2$
 - Require $M(K^{-}\pi^{+}\pi^{-}\pi^{+})$ ($M(K^{-}\pi^{+})$) to agree within 10 (25) MeV/c^2 of the PDG value
- Tracking efficiency systematics evaluated by varying the br. fraction and efficiency uncertainty of the 6 subdecay modes
- Obtained uncertainty: 1.4 % (includes 0.5 % from template shapes)

Lauri A. Wendland for the CMS collaboration: "Systematics in charged Higgs boson searches in CMS"

pT of the D* candidate

24