

Introduction

H⁺ search strategies at 14 TeV

H⁺ search strategies at 7 TeV

Conclusion

Search strategies for charged Higgs bosons in ATLAS

A. Ferrari On behalf of the ATLAS Collaboration

H+ 2010 Workshop, Uppsala, 27-30 September 2010

Introduction

.

Search strategies for charged Higgs bosons in ATLAS

Introduction

H⁺ search strategies at 14 TeV

H⁺ search strategies a 7 TeV

Conclusion

H⁺ search strategies at 14 TeV

•
$$H^+
ightarrow au_{had}
u$$

•
$$H^+ \rightarrow tb$$

3 H^+ search strategies at 7 TeV • $H^+ \rightarrow c\bar{s}$ • $H^+ \rightarrow \tau_{lep}\nu$

Introduction

H⁺ search strategies at 14 TeV

H⁺ search strategies a 7 TeV

Conclusion

Introduction

. 1

 $H^+ \text{ search strategies at 7 TeV}$ $H^+ \to c\bar{s}$ $H^+ \to \tau_{lep}\nu$

4 Conclusion

1.1

Introduction

H⁺ search
 strategies at
 14 TeV

H⁺ search strategies at 7 TeV

Conclusion

Introduction

- In the Standard Model (SM), only 1 doublet of Higgs scalars is responsible for the electroweak symmetry breaking: there is only one neutral Higgs boson h⁰.
- Other so-called 2HDM models, in particular MSSM, predict the existence of 2 complex Higgs doublets... hence 5 physical states: H⁺, H⁻, h⁰, H⁰, A⁰.
- The tree level MSSM Higgs sector is fully determined by two independent parameters only: m_{H+} and tan β.

This presentation gives an overview of the ATLAS search strategies for charged Higgs bosons:

- in the high-mass range (above m_t): $\sqrt{s} = 14 \text{ TeV}$ and $\int \mathcal{L} dt > 1 \text{ fb}^{-1}$.
- in the low-mass range (below m_t): $\sqrt{s} = 7$ TeV and $\int \mathcal{L} dt = 1$ fb⁻¹.

Introduction

Search strategies for charged Higgs bosons in ATLAS

Introduction

H⁺ search strategies at 14 TeV

 $H^+ \rightarrow \tau_{had}$ $H^+ \rightarrow tb$

H⁺ search
 strategies at
 7 TeV

Conclusion

2 H⁺ search strategies at 14 TeV

- $H^+
 ightarrow au_{had}
 u$
 - $H^+ \rightarrow tb$

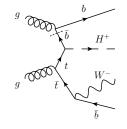
 $H^+ \text{ search strategies at 7 TeV}$ $H^+ \to c\bar{s}$ $H^+ \to \tau_{leo}\nu$

4 Conclusion

12

Introduction

 H^+ search strategies at 14 TeV $H^+ \rightarrow \tau_{had} \nu$


 $H^+ \rightarrow H$ H^+ search

strategies at 7 TeV

Conclusion

Search for heavy charged Higgs bosons

All results are from CERN-OPEN-2008-020. Production: $gb \rightarrow tH^+$ and $gg \rightarrow tbH^+$

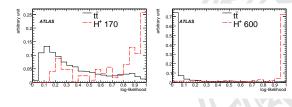
Results are presented for two processes:

- $gg/gb \rightarrow t[b]H^+ \rightarrow bqq[b]\tau_{had}\nu$
- $gg/gb \rightarrow t[b]H^+ \rightarrow t[b]tb \rightarrow b\ell\nu[b]bqqb$

Introduction

 H^+ search strategies at 14 TeV $H^+ \rightarrow \tau_{had} \nu$ $H^+ \rightarrow \psi$

H⁺ search
 strategies at
 7 TeV


Conclusion

$H^+ \rightarrow \tau_{had} \nu$: event selection

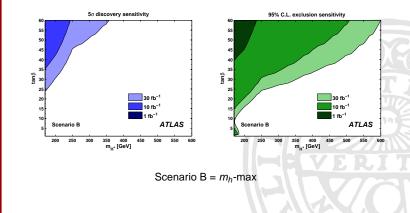
In order to select $gg/gb \rightarrow t[b]H^+ \rightarrow bqq[b]\tau_{had}\nu$:

- Triggers: E_T^{miss} (possibly with multi-jets) + tau,
- One τ -jet with $p_T > 50$ GeV and $E_T^{miss} > 40$ GeV,
- At least three additional jets, one of them *b*-tagged,
- Veto on e/μ with $p_T > 7$ GeV,
- Reconstruction of a *W* boson and a top quark. Only the $t\bar{t} \rightarrow b\bar{b}(qq')(\tau_{had}\nu)$ background survives.

Uncorrelated likelihood approach with 5 variables: $p_T(\tau)$, E_T^{miss} , $\Delta \phi(\tau, E_T^{miss})$, $\sum p_T(jets)$ and $p_T(\tau)/p_T(jet_{non-top}^{hardest})$.

Introduction

 H^+ search strategies at 14 TeV $\mu^+ \rightarrow \tau_{had} \nu$ $\mu^+ \rightarrow \psi$


H⁺ search strategies at 7 TeV

Conclusion

$H^+ \rightarrow \tau_{had} \nu$: sensitivity

Discovery and exclusion contours:

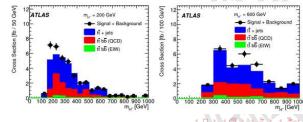
Systematic and statistical uncertainties are included. The systematic uncertainty is 44% for the signal, 10% for the background.

Introduction

 H^+ search strategies at 14 TeV $H^+ \rightarrow \tau_{had} \nu$ $H^+ \rightarrow tb$

H⁺ search strategies at 7 TeV

Conclusion


$H^+ \rightarrow tb$: event selection

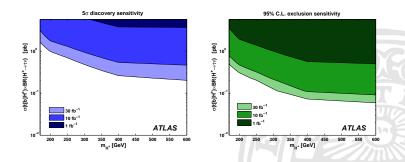
In order to select $gg/gb \rightarrow t[b]H^+ \rightarrow b\ell\nu[b]bqqb$:

- Triggers: lepton + E_T^{miss} , or multi-jets + E_T^{miss} ,
- One e/μ with $p_T > 25/20$ GeV and $|\eta| < 2.5$,
- At least 5 jets with $p_T > 20$ GeV and $|\eta| < 5$,
- At least 3 *b*-tagged jets with $|\eta| <$ 2.5,
- Reconstruction of a leptonic W boson,
- Combinatorial likelihood L to discriminate between correct and wrong combinations of all objects.

Uncorrelated likelihood approach with 5 variables: $\eta_{b_{H^+}}$,

 $\sum w_b$, $< \mathcal{L} >$, $\Delta R(b_{H^+}, b_t b_t)$, $p_T(b_{non-top}^{softest})/p_T(b_{non-top}^{hardest})$.

Introduction


 H^+ search strategies at 14 TeV $H^+ \rightarrow \tau_{had} \nu$ $H^+ \rightarrow tb$

H⁺ search strategies at 7 TeV

Conclusion

$H^+ \rightarrow tb$: contribution to H^+ sensitivity

No discovery or exclusion power was extracted for this channel on its own, but it contributes to the combined ATLAS sensitivity for charged Higgs bosons.

Model-independent contours, with systematic and statistical uncertainties.

Introduction

H⁺ search strategies at 14 TeV

 $\begin{array}{l} H^+ \text{ search} \\ \text{strategies at} \\ \textbf{7 TeV} \\ H^+ \rightarrow c \\ H^+ \rightarrow \tau_{\log} \nu \end{array}$

Conclusion

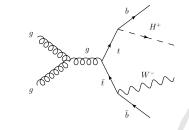
Introduction

 H^+ search strategies at 14 TeV • $H^+ \rightarrow \tau_{had} \nu$ • $H^+ \rightarrow tb$

3 H^+ search strategies at 7 TeV • $H^+ \rightarrow c\bar{s}$ • $H^+ \rightarrow \tau_{lep}\nu$

4 Conclusion

Introduction


H⁺ search
 strategies at
 14 TeV

 $\begin{array}{c} H^+ \text{ search} \\ \text{strategies at} \\ \textbf{7 TeV} \\ H^+ \rightarrow c\bar{s} \\ H^+ \rightarrow \tau_{kp}\nu \end{array}$

Conclusion

Search for light charged Higgs bosons

All results are from ATL-PHYS-PUB-2010-009. Production: $t\bar{t} \rightarrow b\bar{b}WH^+$

Results are presented for two processes:

- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}\ell\nu c\bar{s}$
- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}\ell\nu\tau_{lep}\nu$

Introduction

H⁺ search
 strategies at
 14 TeV

 $\begin{array}{l} H^+ \text{ search} \\ \text{strategies at} \\ \textbf{7 TeV} \\ \textbf{H}^+ \rightarrow \textbf{cs} \\ H^+ \rightarrow \tau_{lep}\nu \end{array}$

Conclusion

$H^+ \rightarrow c\bar{s}$: pre-selection cuts

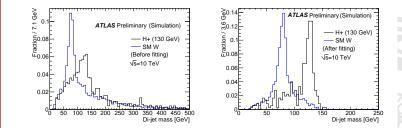
We want to select $t\bar{t} \rightarrow b\bar{b}W(l\nu)H^+(c\bar{s})$ events:

- Single lepton trigger,
- Exactly one electron/muon with $p_T > 20 \text{ GeV}$ and $|\eta| < 2.5$,
- At least four jets with p_T > 20 GeV and |η| < 2.5 (the jet energy is better measured in the central region),
- Two of the four leading jets are b-tagged,
- $E_T^{miss} > 20 \text{ GeV}.$

The two non-*b* tagged leading jets are assigned to the dijet system from H^+ (or from *W* in the case of SM $t\bar{t}$ semileptonic events).

Introduction

H⁺ search
 strategies at
 14 TeV


 H^+ search strategies at 7 TeV $H^+ \rightarrow c\bar{s}_{H^+} \rightarrow \tau_{kp}\nu$

Conclusion

$H^+ \rightarrow c\bar{s}$: dijet mass fitter

The dijet mass distributions have a large width and it can be difficult to separate the signal from the background.

More information (and a better dijet mass resolution) are gained by fully reconstructing $t\bar{t}$ semileptonic events.

Kinematical fit with constraints on the $t\bar{t}$ reconstruction: covered by Un-ki Yang's talk.

Introduction

H⁺ search
 strategies a
 14 TeV

 H^+ search strategies at 7 TeV $H^+ \rightarrow c\bar{s}_{H^+} \rightarrow \tau_{im}\nu$

Conclusion

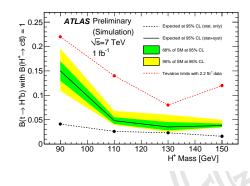
$H^+ \rightarrow c\bar{s}$: cut flow table

Assuming an integrated luminosity of 1 fb⁻¹ and $\mathcal{B}(t \rightarrow bH^+) = 10\%$ for the signal:

Process Expected number of events		
FIUCESS		
	no cut	all cuts
$H^+ \rightarrow c\bar{s}$, 90 GeV	$9.5 imes 10^3$	156
$H^+ ightarrow car{ extsf{s}}$, 110 GeV	$9.5 imes 10^{3}$	152
$H^+ ightarrow car{ extsf{s}}$, 130 GeV	$9.5 imes10^3$	104
$H^+ ightarrow car{ extsf{s}}$, 150 GeV	$9.5 imes 10^{3}$	60
tt, not all had	87.4×10^{3}	1430
Single top, Wt	$5.7 imes 10^{3}$	18
Single top, t	$20.4 imes 10^3$	33
Single top, $s(e\nu)$	448	1
Single top, $s(\mu\nu)$	448	1
Wbb + jets	$5.6 imes 10^{3}$	9
$W \rightarrow e\nu$ + jets	39.2×10^3	2
$W ightarrow \mu u$ + jets	38.7×10^3	3
$W \rightarrow \tau \nu$ + jets	$39.0 imes 10^3$	0

Introduction

H⁺ search
 strategies at
 14 TeV


 H^+ search strategies at 7 TeV $\mu^+ \rightarrow c\bar{s}_{\mu^+} \rightarrow \tau_{\mu\sigma}\nu$

Conclusion

$H^+ ightarrow c ar{ extsf{s}}$: upper limits on $\mathcal{B}(t ightarrow b H^+)$

With no signal beyond SM, a binned maximum likelihood method is used to find the upper limit on $\mathcal{B}(t \rightarrow bH^+)$ at 95% CL. Systematic uncertainties are taken into account.

(GeV)	90	110	130	150
Expected upper limit $\mathcal{B}(t \rightarrow bH^+)$ (stat. only)	4.0%	2.5%	2.3%	1.5%
Expected upper limit $\mathcal{B}(t \rightarrow bH^+)$ (stat + syst)	14.8%	4.7%	3.4%	3.7%

Introduction

H⁺ search
 strategies at
 14 TeV

 H^+ search strategies at 7 TeV $H^+ \rightarrow c\bar{s}$ $H^+ \rightarrow \tau_{kep}\nu$

Conclusion

$H^+ \rightarrow \tau_{lep} \nu$: new tools for dilepton $t\bar{t}$ events

• The $t\bar{t} \rightarrow b\bar{b}WH^+$ events with $(p^{H^+} + p^b)^2 = m_{top}^2$ $W \rightarrow \ell \nu_\ell \& H^+ \rightarrow \tau^+ \nu \rightarrow l^+ \nu \bar{\nu} \nu$ $(p^{\ell^-} + p^{\bar{\nu}_\ell})^2 = m_W^2$ give 6 constraints for 8 variables. $(p^{\ell^-} + p^{\bar{\nu}_\ell} + p^{\bar{b}})^2 = m_{top}^2$ $m_{T2}^{H^+}$ is the maximum of $(p^{H^+})^2$ $(p^{\bar{\nu}_\ell})^2 = 0$ subjected to these constraints. $\vec{p}_T^{H^+} - \vec{p}_T^{J^+} + \vec{p}_T^{\bar{\nu}_\ell} = \vec{p}_T^{miss}$ By construction, $m_{T2}^{H^+} \ge m_{H^+}$: possible discrimination between H^+ and W bosons, based on their masses.

• $\cos \theta_{\ell}^* \simeq rac{4 \, \rho_b \cdot \rho_\ell}{m_t^2 - m_W^2} - 1$ is also discriminative.

 $t
ightarrow bH^{\pm}
ightarrow rac{b}{b} au (
ightarrow \ell
u)
u
eq t
ightarrow bW^{\pm}
ightarrow b\ell
u$

- p_b and p_ℓ can be chosen in the laboratory frame,
- No knowledge about the momentum of ν_{ℓ} is required.

Introduction

H⁺ search strategies at 14 TeV

 H^+ search strategies at 7 TeV $^{H^+} \rightarrow c\bar{s}$ $^{H^+} \rightarrow \tau_{kp}\nu$

Conclusion

$H^+ \rightarrow \tau_{lep} \nu$: event selection

We want to select $t\bar{t} \rightarrow b\bar{b}W(l\nu)H^+(l\nu)$ events:

- Single lepton trigger,
- Two oppositely charged leptons with $p_T > 10 \text{ GeV}$ and $|\eta| < 2.5$,
- One of the charged leptons with $p_T > 20$ GeV,
- At least two jets with $p_T > 15$ GeV and $|\eta| < 5.0$,
- The two jets having the highest *b*-weights are assumed to come from top quark decays.

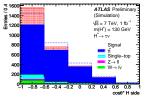
There is a four-fold ambiguity in assigning leptons and *b*-jets to their parents:

- For events with a clear incorrect pairing (unphysical $m_{T2}^{H^+}$ or $\cos \theta_l^*$), the other solution gives the correct *l-b* pairs and the smallest $\cos \theta_l^*$ are assigned to H^+ ,
- For the other events, the pair with the largest cos θ^{*}_l value is assigned to W and its partner pair to H⁺.

くロト く得たく ヨト・モー

Introduction

H⁺ search strategies at 14 TeV


 H^+ search strategies at 7 TeV $H^+ \rightarrow c\bar{s}$ $H^+ \rightarrow \tau_{kp}\nu$

Conclusion

$H^+ \rightarrow \tau_{lep} \nu$: cut flow table

To isolate di-lepton $t\bar{t}$ events with H^+ (presumably):

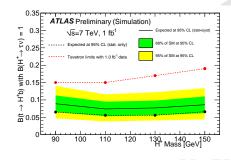
- *b*-weight > 4.3,
- $E_T^{miss} > 50 \text{ GeV},$
- $\cos \theta_{l}^{*} < -0.6$.

Assuming $\int \mathcal{L} dt = 1$ fb⁻¹ and $\mathcal{B}(t \to bH^+) = 10\%$:

Process	Expected number of events		
	no cut	all cuts	
$H^+ ightarrow au u$, 90 GeV	2.5×10^{3}	282	
${\it H}^+ ightarrow au u$, 110 GeV	$2.5 imes 10^3$	330	
$H^+ ightarrow au u$, 130 GeV	$2.5 imes 10^3$	326	
$H^+ ightarrow au u$, 150 GeV	$2.5 imes 10^3$	284	
tt, not all had	87.3×10^{3}	1194	
Single top, Wt	$5.7 imes 10^3$	55	
Single top, t	20.4×10^{3}	43	
Single top, s	$0.9 imes 10^3$	3	
Wbb + jets	8.7×10^{3}	12	
Zbb + jets	$2.8 imes 10^4$	11	
$W ightarrow \ell u$ + jets	3.2×10^7	4	
$Z \rightarrow \ell \ell$ + jets	$3.1 imes10^{6}$	42	
・< ロト < 合 > < 言			

Introduction

H⁺ search strategies at 14 TeV


 H^+ search strategies at 7 TeV $H^+ \rightarrow c\bar{s}$ $H^+ \rightarrow \tau_{kp}\nu$

Conclusion

 $H^+ \rightarrow \tau_{lep} \nu$: upper limits on $\mathcal{B}(t \rightarrow bH^+)$ With no signal beyond SM, $\mathcal{B} = \frac{N_{obs} - N_{bg}}{2 \times \sigma_{t\bar{t}} \times \mathcal{L}_{int} \times \epsilon_{sig}}$.

The 95% CL upper limit are then extracted, based on pseudo-experiments taking into account uncertainties on N_{obs} , N_{bg} and ϵ_{sig} .

Mass	Expected upper limit on $\mathcal{B}(t \rightarrow bH^+)$	
(GeV)	without systematics	with systematics
90	6.5%	8.9%
110	5.6%	7.4%
130	5.6%	7.4%
150	6.6%	8.6%

Search strategies

for charged Higgs bosons in ATLAS

Introduction

H⁺ search strategies at 14 TeV

H⁺ search strategies a 7 TeV

Conclusion

Introduction

 $H^+ \text{ search strategies at 14 TeV}$ $• H^+ → τ_{had}ν$ $• H^+ → tb$

 $H^+ \text{ search strategies at 7 TeV}$ $H^+ \to c\bar{s}$ $H^+ \to \tau_{lep}\nu$

Introduction

H⁺ search
 strategies at
 14 TeV

H⁺ search strategies at 7 TeV

Conclusion

Conclusion

The search for charged Higgs bosons in ATLAS has just started! During the early data-taking period (2010-2011), light charged Higgs bosons are searched for in $t\bar{t}$ events:

• $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}\ell\nu c\bar{s}$

•
$$t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}\ell\nu\tau_{lep}\nu$$

Several other channels (not presented here) are also considered:

- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}qq'\tau_{lep}\nu$
- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}qq' \tau_{had} \nu$
- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}\ell \nu \tau_{had} \nu$
- ratio method: search for an apparent violation of lepton universality in top decays due to H⁺ → τν.

Sensitivity studies suggest that ATLAS will bring down the upper limits on $\mathcal{B}(t \rightarrow bH^+)$ from Tevatron + we will learn a lot for (future) heavy charged Higgs boson searches.

イロト (用) (ヨト (ヨト) ヨーのの(