

A. Nikitenko, Imperial College H⁺ Workshop 27-30th September 2010 Uppsala

October 2009: 182 Institutions with about 3110 scientists and engineers ~ 2000 Signing Authors (including students)

CMS Detector

CMS Detector in the Underground Cavern

7 TeV operations since March 30

About **3.9pb⁻¹** delivered by LHC and **~3.6pb⁻¹** of data collected by CMS. Overall data taking efficiency **>90%**.

Good performance of CMS in coping with 4 orders of magnitude increase in instantaneous luminosity. Since ICHEP we have recorded another **3.0pb⁻¹** of data: **2.9pb⁻¹ validated for physics** in total (86% of the recorded data)

Sub-detectors operational status

	MUON- CSC	MUON- DT	MUON- RPC	HCAL BARREL	HCAL ENDCAP	HCAL FORWAR D	ECAL BARREL	ECAL END- CAP	PRE- SHOWE R	STRIP TRACKE R	PIXEL TRACKE R	
Series1	98.5	99.8	98.8	99.9	100	99.9	99.3	98.9	99.8	98.1	98.2	

Trigger and DAQ

- L1 rate 45 kHz
- HLT menu for 6x10³¹ is prepared , will run till the end of year accumulating in total ~ 30 pb⁻¹
- Transfer to T0: ~ 300 MB/s; Rate of Stream A: 200-400 Hz; event size after compression: ~ 250 kB.

Data Processing, Transfer and Analysis

Maximum: 1,407 MB/s, Minimum: 81.49 MB/s, Average: 539.83 MB/s, Current: 243.98 MB/s

=> Distributed data analysis at T2 exploiting grid computing

The whole Offline and Computing organization + GRID infrastructure performing well.

Scheduled = 9886 Running = 17986

Test of computing model: Jobs accessing CMS data now

CMS is well-described in simulation e.g. Tracker

Using complementary methods: conversions, nuclear interactions, multiple scattering etc Material uncertainty today better than 10% → Systematics uncertainties on physics quantities related to material budget <1%.

H⁺ analyses

T. Plehn et al., hep-ph/0312286 used in CMS PTDR 2006

- All variety of reco objects used:
 - high p_T leptons, τ_{had} and b-tagging, jets and E_T^{\text{miss}}
- Backgrounds:
 - tt~, W+jets, QCD multi-jets

Muons

tt->WbH⁺b->µvbτvb analysis uses high p_T muon from W for trigger. W, Z, tt[~] analyses use "Tight muons": good quality tracks from a combined fit of the hits in the tracker and muon system, requiring signal in at least two muon stations.

"Tight muons"

- Tight muon: is "global" AND "tracker" muon, χ_{gl.trk}²< 10, > 0 muon hits, > 1 matched muon segments, > 10 trk. Hits, >0 pixel hits, ip_{xy} < 2 mm, p_T > 3 GeV
 - "tracker muon" : inside-out approach
 - "global muon": outside-in approach+global fit

trigger and ID efficiency from J/ ψ -> $\mu\mu$

Electrons

tt->WbWb->evbjjb candidate

tt->WbH⁺b-> $evb\tau vb$ analysis uses hight p_T electrons from W for trigger

Electron reconstruction

- High p_T electrons are "ECAL driven":
 - start by high ECAL super cluster and extrapolate toward innermost tracker layers
 - pair of hits are selected within a window around the expected position (r-phi and rz planes)
 - pre-selections using $\Delta \eta$, $\Delta \phi$, H/E

Electron reco efficiency: Data / MC

Electron selections (in W->ev analysis)

- identificaions: based on cluster shape, cluster-track matching simple cuts ($\Delta \eta_{in}, \Delta \phi_{in}, \sigma_{inim}$, H/E)
- Isolation in cone 0.3: cuts on $\Sigma p_T^{trk}/p_T^e$, $\Sigma E_T^{ECAL}/p_T^e$, $\Sigma E_T^{HCAL}/p_T^e$
 - tracks and ECAL energy associated with electron are excluded from sums.
- γ conversion rejection: no inner missing trk. hits; no close by tracks

Fake rate for electrons and muons

Jet->"electron" mis. ID using jet events and electron candidates not matched with leading E_T jet pions -> "tight" muon Mis. ID using K⁰-> $\pi^+\pi^-$

Jets (I)

Three methods of jet reconstruction: using calorimeter: calo jets using tracker and calorimeter+e/µ: JPT jets using PF objects: PF jets

Jets (II)

- Jet response vs p_T^γ from γ+jet data

 JPT and PF gives higher response than calo jets
 - smaller energy corrections needed

Jets (III)

Jet energy resolution from di-jet events JPT and PF have better resolution than calo jets

- Three methods of Et^{miss} measurement in CMS
 - using calorimeter + μ s: calo MET
 - using tracks and calorimeter + μs: tcMET
 - using particle flow objects: pfMET

Missing E_T for evens with real E_T^{miss}

tcMET and pfMET gives better performance than calo MET

τ reconstruction and identification

Off-line τ–jet reco and ID

Reconstruction of τ-jet using

- Particle Flow objects; PF Tau
- track corrected calo jet; TC Tau

Identification

- basic selections based on isolation criteria for PF and TC Taus
- advanced ID based on reconstruction of τ decay modes using PF objects
 - Hadron Plus Strip (HPS)
 - Tau Neural Classifier (TaNC)

Fake rate and efficiency vs $p_T^{\tau-jet}$

- Shrinking signal cone recovers 3-prong τs at p_T^{τ-jet} < 30 GeV by price of increased bkg. rate
- "advanced" τ ID provides better S/B ratio

Data and MC for fake rate vs $p_T^{\tau-jet}$

- Fake rate is higher in data than in MC for all algorithms
 - need more understanding

B-tagging

CMS b-tagging algorithms

- Track counting
 - high efficiency; use 2nd track 3d ip significance
 - high purity; use 3rd track 3d ip significance
- Jet probability
 - use 3d ip significance of all tracks
 - use four most displaced tracks
- Secondary vertex based on 3D flight path significance
 - use >= 2 track vertex
 - use >= 3 track vertex
- Lepton (e, μ) taggers

Signs of Impact parameter and of vertex decay length are defined according to jet direction

Data vs MC for b-tagging observables

B-tagging efficiency

Extract f_b^{tag} , f_b^{untag} from fit of $p_{t\mu}^{rel}$ for b-tagged (untag) jets with muons

• in general good agreement between ϵ_b^{data} and ϵ_b^{MC}

Fake rate

$$R_{light} = \varepsilon_{MC}^{mistag} / \varepsilon_{MC}^{-}$$

• $\varepsilon_{data}^{mistag}/\varepsilon_{MC}^{mistag} = f(p_T^{jet}, \eta^{jet})$ slightly less than 1.

How QCD "e"+jets is defined from data:

- Fit function to isolation distribution in non-isolated (QCD dominated) region
- Extrapolate to isolated (W-like) region

Missing E_T in tt~->lbjjb analysis

W+jets, W->eν, μν

- QCD backgroundis obtained from the fit
- tt~ is substracted using Monte-Carlo

Leading jet E⊤ distribution in W events

conclusions

- After twenty years spent on the design, R&D, prototyping, construction, assembly and commissioning CMS is recording high energy collisions.
- Preparation of the experiment, the offline and computing systems, and physics analysis work flows has allowed very rapid extraction of quality physics results.
- Looking forward for the Charged Higgs boson analyses with data !

BACK UP

- tt~, W+jets
- QCD multi-jets

tt~: Golden Dilepton Candidate

