Charged Higgs production and decay for signature of Inert Dark model (old title)

Simple method \Rightarrow for measuring of properties of Dark Matter particles at ILC for different models of DM

I. F. Ginzburg,

Sobolev Inst. of Mathematics, SB RAS and Novosibirsk State University

Novosibirsk, Russia

Dark matter. Candidates

About 25\% of the Universe is made from Dark Matter (DM). Different candidates for particles of DM have common property: They conserve specific discrete quantum number, we name it D-parity.. Usually particles with new value of D-parity form some family - Dfamily, the lightest from them is DM particle.
MSSM: DM is lightest superparticle, often - fermion, $D \rightarrow R$-parity Inert Dark Model, IDM: DM - Higgs-like scalar, $D \equiv D$-parity We consider first models in which lightest D-particles are - neutral D^{0} - properly DM particle and charged $D^{ \pm}$with identical spin so that main their interaction with ordinary matter is $D^{ \pm} D^{0} W^{\mp}$.
In the estimates we have in mind $M_{D^{ \pm}} \gtrsim 100 \mathrm{GeV}$ (LEP data) and $M_{D^{0}}<M_{D^{ \pm}}<E \equiv \sqrt{s} / 2$ - electron beam energy of ILC

Production. Decay. Signature

Main production channel $e^{+} e^{-} \rightarrow D^{+} D^{-}$
Cross section is $\sim \sigma\left(e^{+} e^{-} \rightarrow \mu \mu\right)$ - huge for ILC.
Than - decay $D^{+} \rightarrow W^{+} D$ with branching close to 1 .
Observable final state (signature)
Two dijets, representing W^{+}and W^{-}
$(2 / 3)^{2} \approx 0.44$ total cross section;
One dijet $+e$ or μ, representing W^{+}and W^{-}
$-2 \times(2 / 3) \times 2[1 / 9(1+0.17)] \approx 0.35$ total cross section
(0.17 is fraction of μ or e from decay of τ)
AND large missing p_{\perp} and energy
Cross sections of SM processes with the same observable final state is typically 2 orders of value ($\sim \alpha$) less, since they include radiation of ν 's or somewhat else.

$M_{D^{ \pm}}>M_{D^{0}}+M_{W}$

Additional signature: effective mass of dijet close to M_{W}. We denote $\Delta\left(s ; s_{1}, s_{2}\right)=\sqrt{s^{2}+s_{1}^{2}+s_{2}^{2}-2 s s_{1}-2 s s_{2}-2 s_{1} s_{2}}$. In the rest frame of D^{+}the energy and momentum of $W^{ \pm}$from decay $D^{+} \rightarrow D W^{+}$are

$$
E_{W}^{r}=\frac{M_{D^{+}}^{2}+M_{W}^{2}-M_{d^{0}}^{2}}{2 M_{D^{+}}}, \quad p^{r}=\frac{\Delta\left(M_{D^{+}}^{2}, M_{W}^{2}, M_{D^{0}}^{2}\right)}{2 M_{D^{+}}}
$$

In the lab system energy of $D^{ \pm}$is equal to beam energy E and velocity of $D^{ \pm}$is $v=\sqrt{1-M_{D^{ \pm}}^{2} / E^{2}}, \quad \gamma=E / M_{D^{ \pm}}$。

Denoting W escape angle in D^{+}rest frame relative to direction of D^{+}motion in the lab system by θ and $c=\cos \theta$ we have energy of W^{+}in the lab system $E_{W}^{L}=\gamma\left(E_{W}^{r}+c v p^{r}\right)$. W's are distributed within interval $E(-)=\gamma\left(E_{W}^{r}-v p^{r}\right), E(+)=\gamma\left(E_{W}^{r}+v p^{r}\right)$.
The end point values $E(\pm)$ give two equations for determination of masses $D^{ \pm}$and D^{0}.
The distribution of these dijets in energy is uniform. $d N(E) \propto d E$ since there is no correlation between escape angle of W in the rest frame of $D^{ \pm}$and production angle of $D^{ \pm}$.
For scalars it is evident, for fermions there is dependence on the $D^{ \pm}$ spin direction. It results in correlations like those in Z-peak

After determining of $M_{D^{ \pm}}$, cross section of $e^{+} e^{-} \rightarrow D^{+} D^{-}$process is calculated precisely with QED for each D-particle spin value. It allows to determine spin of D particles via measuring of cross sections (typically $\sigma\left(e^{+} e^{-} \rightarrow D^{+} D^{-}\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$
is about $1 / 4$ if $D^{ \pm}-$scalar, it is about 1 if $D^{ \pm}-$fermion)

Observation of process $e^{+} e^{-} \rightarrow D^{+} D^{-} \rightarrow D^{0} D^{0} j j \ell+\nu^{\prime}$ s allow to determine sign of charge of 2-jets $W=q \bar{q}$ in each separate case. It allows to study charge and polarization asymmetries (like at Z-peak) for checking on more detail properties of D-particles.

If $M_{D^{ \pm}}<M_{D^{0}}+M_{W}$,

single decay channel is $D^{+} \rightarrow D^{0} W^{*}$, where W^{*} means dijet ($q \bar{q}$) or $\ell \nu$ system having effective mass $M^{*}<M_{W} .\left(M^{*}<M_{D^{+}}-M_{D^{0}}\right)$. All above results are valid for each separate value M^{*} with the change in all equations $M_{W} \rightarrow M^{*}$.
The energy and M^{*} distributions for each pair of dijets are independent from each other.

If $M_{D^{ \pm}} \gg M_{D^{0}}+M_{W}$,

proper width of $D^{ \pm}$is large enough (for scalars

$$
\frac{\Gamma\left(D^{+} \rightarrow D^{0} W^{+}\right)}{M_{D^{+}}}=\frac{\alpha}{2 \sin ^{2} \theta_{W}} \frac{\left(p^{r}\right)^{3}}{M_{W}^{2} M_{D^{ \pm}}}
$$

(This ratio >0.1 at $M_{D^{ \pm}} \gtrsim 500 \mathrm{GeV}$). In this case the energy and M^{*} distribution of dijets will be convolution of uniform distribution for narrow $D^{ \pm}$with Breit-Wigner mass distribution. One can hope that the measuring of violation of the observed energy distribution from uniform will allow to determine both mass of $D^{ \pm}$and its width.

Axial D-particle D^{A}

For scalar D-particles, the pseudoscalar D^{A} also exists, it has interaction $Z D^{A} D^{0}$.
Therefore the process $e^{+} e^{-} \rightarrow Z \rightarrow D^{0} D^{A} \rightarrow D^{0} D^{0} Z$ has only cross section of the same order as $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$and observable either dilepton ($e^{+} e^{-}$or $\mu^{+} \mu^{-}$) or dijet with effective mass equal to M_{Z} (with accuracy to Z width).
Almost entire above discussion is valid in this case.
The observation of these dilepton or dijet with large missed energy and p_{\perp} gives good signature of DM.

If $M_{D^{ \pm}}>M_{D^{A}}+M_{W}$

cascade processes like

$$
e^{+} e^{-} \rightarrow D^{+} D^{-} \rightarrow D^{A} W^{+} D^{0} W^{-} \rightarrow D^{0} Z W^{+} D^{0} W^{-}
$$

become possible. In this case the energy distribution for W -produced di-jets will be sum of distributions of the first case types and additional signature in the form of dilepton pair also exist.

SUMMARY

In many models of DM the process $e^{+} e^{-} \rightarrow D^{+} D^{-}$must be studied.

SUMMARY (continuation)

If particle D^{A} having parity opposite to that of D^{0} exists, the process $e^{+} e^{-} \rightarrow D^{0} D^{A} \rightarrow D^{0} D^{0} Z$ must be studied. The signature: di-jet or dilepton, representing Z plus large missing p_{\perp} and energy with cross section close to main cross section of $e^{+} e^{-}$ annihilation

Masses of D^{A} and DM candidate D^{0}
will be determined via end points of energy distribution of Z representing di-jet or dilepton.

Spin

will be determined via (even rough) measuring of total cross section

