

b reconstruction, efficiency and fake rates in CMS

Jyothsna Komaragiri

on behalf of CMS collaboration 29th September 2010

3rd International Workshop on

Prospects for Charged Higgs Discovery at Colliders

Uppsala

Outline

- Introduction
- b-tagging algorithms
- Validation of b-tagging inputs and discriminators
- Efficiency estimation (Scale factor=Data/Simulation)
- Mis-tag rate estimation (Scale factor=Data/Simulation)
- Conclusions

Reference: CMS Physics Analysis Summary BTV-10-001.

Introduction

Properties of b-hadrons

- The lifetime \sim 1.5 ps ($c\tau$ = 450 μm)
- Decay multiplicity of \sim 5 charged tracks
- Hard b-fragmentation function \Longrightarrow High p_T of decay products, relative to the flight direction of b-hadrons.
- The semi-leptonic decays, branching fraction of \sim 11%

Life time and Lepton signatures

- b-tagging is one of the main ingredients of the high p_T physics program at LHC.
 - Very pure top quark sample
 - Higgs searches
 - SUSY Higgs searches (charged and neutral)
 - Many exotic scenarios

Ingredients

- Jets:
 - Particle Flow jets reconstructed by anti- k_T clustering algorithm with radius parameter ΔR of 0.5
- Tracks:
 - Track quality selection cuts
 - Number of pixel hits > 2
 - Number of total tracker + pixel hits ≥ 8
 - Transverse Impact Parameter |2D IP| < 0.2cm
 - Transverse momentum $p_T > 1 GeV$
 - Normalized $\chi^2 < 5$
 - Longitudinal Impact Parameter: |long IP| < 17cm
 - Distance to jet axis < 0.07
 - Decay length < 5
 - Tracks are associated to the jet if $\Delta R(track, jet) < 0.5$
- Reconstructed Primary vertex

Jyothsna [KIT] - b reconstruction, efficiency and fake rates in CMS

Conclusions

Track selection cuts

Applying all track selection cuts, except on the quantity shown Pixel hits (Left) Total hits (Middle) Transverse IP (Right)

Legend:: red: b , green: charm, blue: light (u,d,s,g)

Track selection cuts

Applying all track selection cuts, except on the quantity shown Track p_T (Left) Normalized χ^2 (Middle) Long IP (Right)

The distributions in simulation agree well with that of data.

Impact Parameter

3D Impact Parameter Value:

All tracks (Left), 1st track (Middle), 3rd track (Right)

Tracks are ordered in the decreasing 3D Impact Parameter significance.

Impact Parameter

3D Impact Parameter Significance:

All tracks (Left), 1st track (Middle), 3rd track (Right)

The distributions in simulation agree well with that of data.

b-tagging algorithms

- Simple taggers are covered in this talk.
- Suitable with early data as no calibration is required.
- The discriminator for these simple taggers consists of
 - reconstructed object:

Tracks

Secondary Vertex

derived from single observable:
 Impact Parameter Significance
 3D Flight Distance Significance

Impact parameter based algorithms

Track Counting

- Tags a b-jet if it finds at least N tracks with the impact parameter significance greater than a threshold, S.
- The discriminating variable is the value of S for the Nth track. Tracks are ordered based on decreasing significance.
 - Track Counting High Efficiency : Discriminator associated with N=2.
 - Track Counting High Purity : Discriminator associated with N=3.

Jet probability

- The jet probability algorithms combine information from all selected tracks in a jet.
- A variant of the above "JetBProbability" considers the case of four displaced tracks.

Track Counting Discriminator

High purity(Right)

Simulation and Data agreement on 5-10% level

Jet Probability Discriminator

combines IP significance of all tracks(Left), with emphasis on four displaced tracks(Right)

same level of Simulation/Data agreement

Introduction Ingredients b-tagging algorithms Efficiency Mis-tagging algorithms	g rate Conclusions
---	--------------------

Simple Secondary Vertex algorithm

- Tags a *b*-jet if a Secondary Vertex (SV) is reconstructed with at least 2 (High Efficiency) or 3 (High Purity) tracks.
- Reconstructed SV has various properties
 - Track multiplicity at SV
 - Vertex mass: Invariant mass of tracks attached to the vertex
 - 3D flight distance significance
 - Angular separation between the jet axis and SV flight direction
- Discriminator is calculated from the 3D flight distance significance.

Secondary vertex properties

Number of tracks at SV (Left) Average no. of tracks vs jet p_T (Right)

The distributions in simulation agree well with that of data.

Secondary vertex properties

Vertex mass is used in "inclusive b" analysis to extract b-purity, CMS BPH-10-009

Secondary vertex discriminators

The distributions in simulation agree well with that of data.

b-tagging efficiency measurements

- Select b-enriched (semileptonic decays of b-hadrons) jets
- The transverse momentum of the muon with respect to the jet direction, μp_T^{rel} is calculated.
- Hard *b* fragmentation \implies high μp_T^{rel} values for *b*-jets
- Divide the data into tagged and non-tagged samples
- From the shapes of b and non-b (c + light flavor jets), one may extract their fractions (f_h^{tag} , f_h^{untag}) with a maximum likelihood fit.
- The fractions and the total yields (N_{tag}^{data} , N_{untag}^{data}) are used to calculate the efficiency:

$$\epsilon_b^{\text{data}} = \frac{f_b^{\text{tag}} \cdot N_{data}^{\text{tag}}}{f_b^{\text{tag}} \cdot N_{data}^{\text{tag}} + f_b^{\text{untag}} \cdot N_{data}^{\text{untag}}}$$

Introduction

Ingredients

b-tagging algorithms

Efficiency

Mis-tag rate

Conclusions

Fits of μp_T^{rel}

Fits of the μp_T^{rel} distributions to $\frac{b}{b}$ and $\frac{light}{b}$ flavor templates for jets containing muons that pass (left) or fail (right) for Track Counting High Purity Tagger

Data/Simulation scale factors are compatible with 1.

Introduction	Ingredients	b-tagging algorithms	Efficiency	Mis-tag rate	Conclusions

Mis-tag rate: Negative taggers

- The mis-tag rate is obtained from tracks with negative impact parameters or secondary vertices with negative decay lengths.
- The negative Imapct Parameters are ordered from the most negative upwards. Ordering on the positive side remains unchanged.
- The mis-tag rate is evaluated as:

$$arepsilon_{ extit{data}}^{ extit{mistag}} = arepsilon_{ extit{data}}^{ extit{-}} \cdot extit{R}_{ extit{light}}$$

 $arepsilon_{data}^-$ is the negative tag rate in data and $R_{light} = arepsilon_{Sim}^{mistag}/arepsilon_{Sim}^-$ is the ratio between the light flavor mis-tag rate and negative tag rate of all jets in the simulation.

Mis-tag rate: Negative taggers

Data/Simulation scale factors are compatible with 1.

Conclusions

- Good agreement between data and simulations is seen for the b-tagging observables indicating that the b-tagging algorithms are well understood.
- Very good results considering the fact that this is the very first iteration without any tuning/optimisation.
- Data driven techniques are exercised to estimate efficiency and mis-tag rate to get the Data/Simulation scale factors.
- Stay tuned for the updated results with more data!!