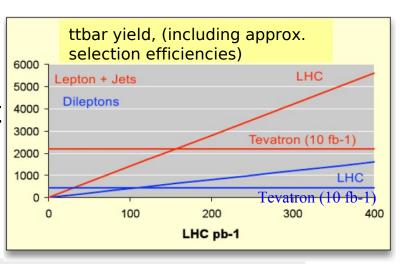
## ttbar in charged Higgs boson events

Martin Flechl (Freiburg)
on behalf of the ATLAS Collaboration
Charged Higgs 2010,
Uppsala, 29/9

Albert-Ludwigs-Universität Freiburg

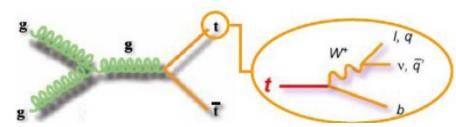


#### **Outline**

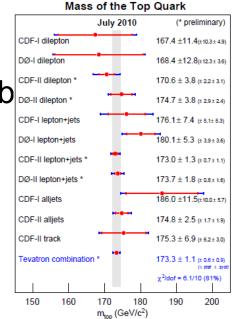

FREBURG

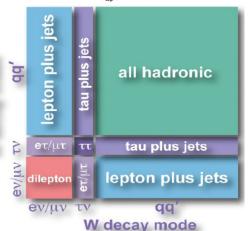
- Characteristics of ttbar events
- Early LHC data: ATLAS ttbar search
- ttbar as a background in H+ studies
- Data-driven ttbar background estimation

## LHC: A top quark factory




- ttbar discovery (1995), after selection:
  - CDF: 56 ttbar events (exp. bkg: ~23±3), mt=176±8±10 GeV
  - D0: 17 ttbar events (exp. bkg: 3.8±0.6), mt=199±21±22 GeV
- Tevatron, total number of ttbar events so far:
  - ≈140k ttbar events
- LHC, total number of ttbar events so far:
  - ≈1000 ttbar events
    - Already competitive to top discovery [and much better S/B, next slides]
- LHC, expected, one good year at low luminosity (14 TeV, 10 fb<sup>-1</sup>):
  - ≈20M ttbar events





## Top and ttbar characteristics

- m<sub>t</sub>: 173.3±1.1 GeV
- $\sigma_{t}$  (LHC prediction 7 TeV): 165+8-11 pb



- Production, dominant at LHC: gg → ttbar
- Decay: ≈100%(?) t → Wb; W → qq/lv
- Classification of ttbar events:
  - 7% dilepton (e/mu) 6.7
  - 35% semi-leptonic (e/mu+qq) 34.6
  - 44% fully hadronic, 14% tau(had)+X





ttbar decay modes

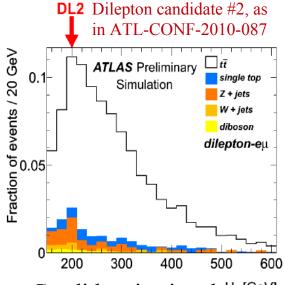
#### ATLAS ttbar searches

- Searches proceed in 3 steps:
  - Test of understanding of backgrounds and collection of first candidate events => L≈300 nb<sup>-1</sup>, see next slides
  - ttbar observation (5σ) => L≈3-10 pb<sup>-1</sup>
  - ttbar cross section and mass measurement => right after observation
- The best S/B ratio is expected in the dilepton and lepton+jets modes
  - Event selection, data and MC distributions and event displays on the following slides

#### ttbar dilepton event selection



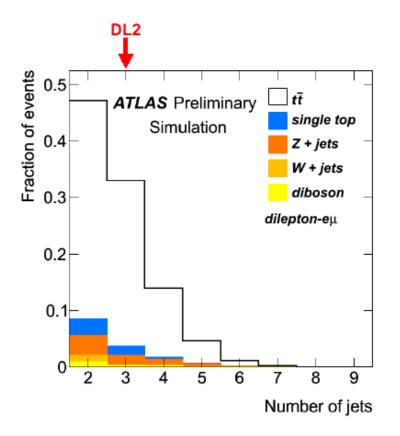
#### Dilepton selection:

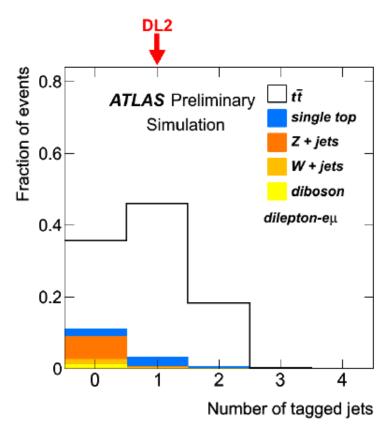

- Lepton trigger
- ==2 leptons, pT>20 GeV
- Leptons: opposite charge
- 2 jets, pT>20 GeV
- ee/μμ: ET(miss)>40/30 GeV;
   |m(II)-m(Z)|>5/10 GeV
- eμ: HT>150 GeV
   (Et sum over leptons, jets)

suppresses:

QCD

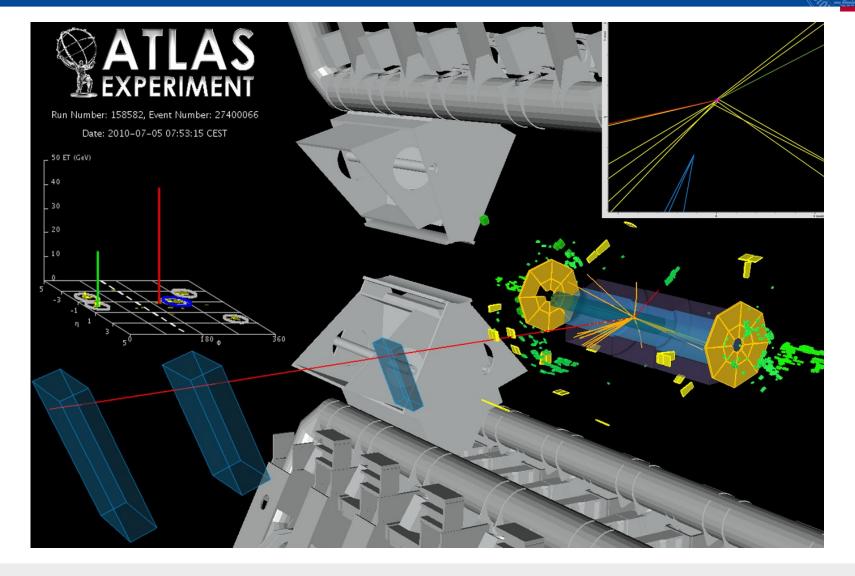
QCD


QCD, Z Z+jets QCD

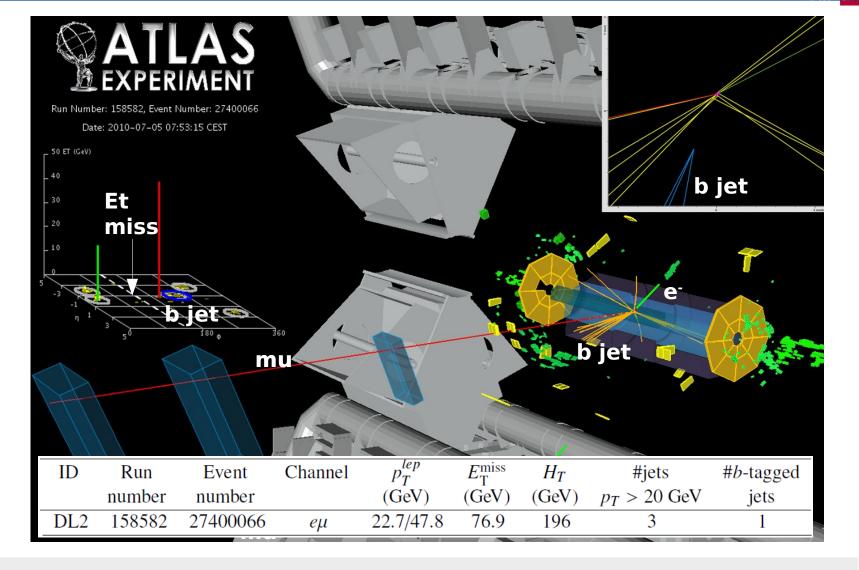



Candidate in signal H<sub>T</sub> [GeV] MC peak; good S/B

## ttbar dilepton events


Plots for events passing the dilepton (e+mu) selection

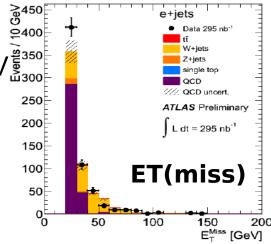


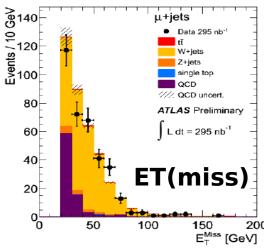



S/B increases a bit with number of jets, and strongly with number of required b tags

# ttbar dilepton candidate

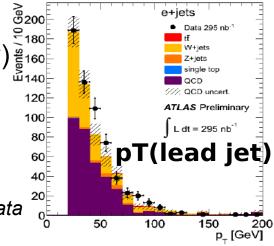


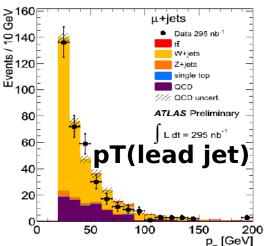

# ttbar dilepton candidate




#### ttbar lepton+jets event selection

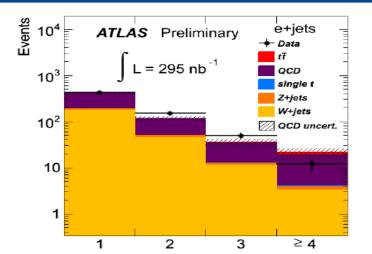


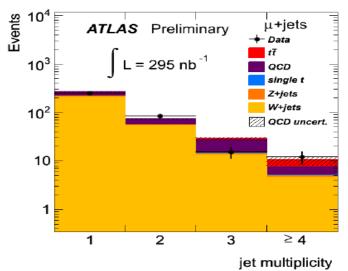

- Lepton (e/mu)+jets
  - Lepton trigger
  - ==1 lepton, pT>20 GeV (350)
  - >=4 jets, pT>20 GeV






- >=1 b-tag (secondary \$\frac{\tilde{9}}{2}\_{180}\$ vertex, 50% efficiency)
- ET(miss)>20 GeV

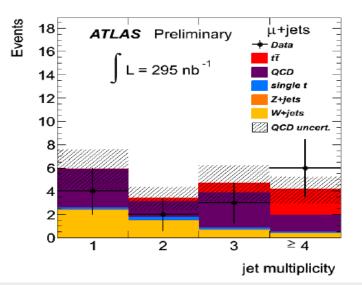

QCD background estimated from data





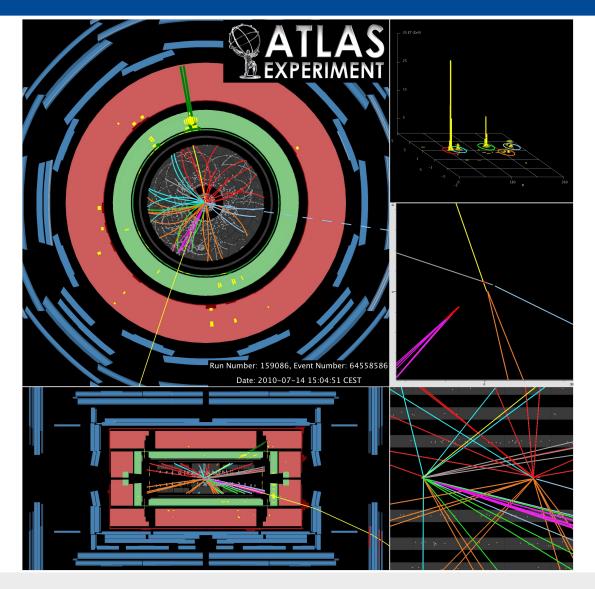


## ttbar leptons+jets events



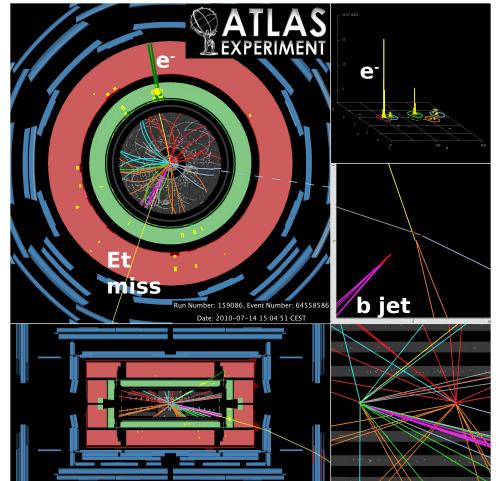










>=1 b-tag

# ttbar lepton+jets candidate



# FREIBURG

# ttbar lepton+jets candidate



Left: primary vertex Right: pile-up vertex

| ID  | Run    | Event    | Channel | $p_T^{lep}$ | $E_{ m T}^{ m miss}$ | $m_T$ | $m_{ m jjj}$ | #jets                  | #b-tagged |
|-----|--------|----------|---------|-------------|----------------------|-------|--------------|------------------------|-----------|
|     | number | number   |         | (GeV)       | (GeV)                | (GeV) | (GeV)        | $p_T > 20 \text{ GeV}$ | jets      |
| LJ5 | 159086 | 64558586 | e+jets  | 79.3        | 43.4                 | 86.7  | 122          | 4                      | 1         |

## ttbar as background to H+ searches

UNI FREIBURG

- Conclusions from simulation studies [3,5]
  - Backgrounds, H+ in ttbar decay searches [σ / fb at 14 TeV]

=>ttbar->lep+X dominates

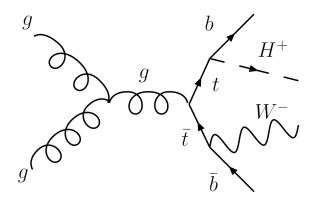
selection:

| tau(had)+jets | presel | final |
|---------------|--------|-------|
| H+(130)       | 79     | 31    |
| tt (>=1 lep)  | 307    | 26    |
| tt (hadr.)    | 21     |       |
| W+jets        | 30     |       |
| Single top    | 17     |       |
| QCD jets      | <1     |       |

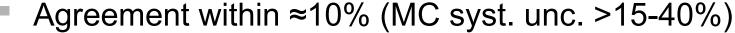
| tau(lep)+jets | presel | final | tau(had)+lep |
|---------------|--------|-------|--------------|
| H+(130)       | 75     | 21    | H+(130)      |
| tt (>=1 lep)  | 1963   | 144   | tt (>=1 lep) |
| tt (hadr.)    |        |       | tt (hadr.)   |
| W+jets        | 173    |       | W+jets       |
| Single top    |        |       | Single top   |
| QCD jets      | < 50   |       | QCD jets     |
|               |        |       |              |

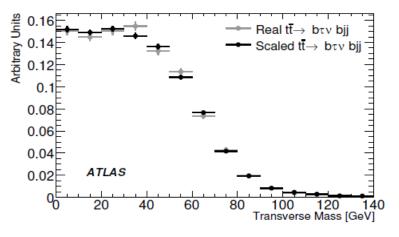
| tau(had)+lep | presel | final |
|--------------|--------|-------|
| H+(130)      | 265    | 20    |
| tt (>=1 lep) | 1730   | 78    |
| tt (hadr.)   |        |       |
| W+jets       | 58     |       |
| Single top   | 38     |       |
| QCD jets     |        |       |

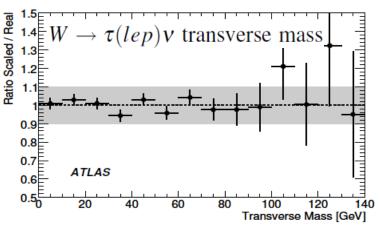
- ttbar composition
  - m<sub>H</sub> =300 GeV, tau(had)+jets
  - Events/30 fb-1, 14 TeV

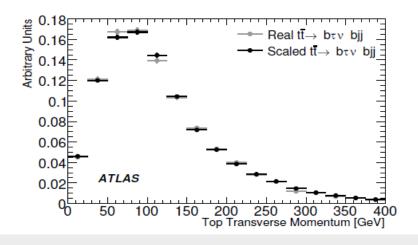

| $W_1$  | $W_2$  | Events   | $W/t_{rec}$ (b) | $\tau$ -Cuts (c) | $p_T^{miss}$ (d) | $\Delta \phi$ (e) |
|--------|--------|----------|-----------------|------------------|------------------|-------------------|
|        |        |          |                 |                  |                  |                   |
| lepton | lepton | 822000   | 3               | 1                | 0                | 0.0               |
| lepton | tau    | 858000   | 436             | 18               | 2                | 1.1               |
| lepton | jet    | 8090000  | 330             | 11               | 2                | 1.6               |
| jet    | tau    | 2690000  | 22000           | 869              | 208              | 0.9               |
| jet    | jet    | 5160000  | 303             | 2                | 0                | 0.0               |
| tau    | tau    | 224000   | 661             | 38               | 3                | 1.8               |
| SU     | JM     | 17700000 | 23800           | 939              | 216              | 5.4               |

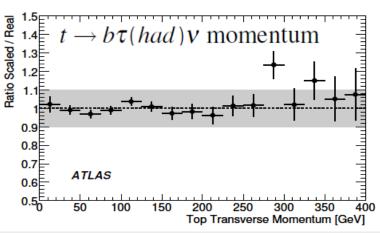
#### **Data-driven ttbar estimation**


- ttbar background expectation:
   large systematic uncertainties (theoretical, experimental)
  - ttbar cross section O(10%)
  - MC generator (e.g. shower and fragmentation models)
  - Detector model (e.g. dead material)
  - Jet, tau energy scale 10-35%
  - b-tagging efficiency O(10%)
  - Luminosity 3-10%
    - Total: 15-40%, depending on H+ selection
- Need to estimate it from data to keep H+ sensitivity
  - Embedding
  - Matrix method





- Example: ttbar background in tau+jets mode
  - 1. Select a pure sample of tt->bμν bqq' from data
  - 2. Remove muon from event (tracks, calorimeter deposition)
  - 3. Replace with simulated  $\tau$  with (rescaled) muon-4-momentum
  - 4. Run this (bτν bqq') through event selection
- Use shape of distributions of embedded events, e.g.  $m_{\tau}(H+)$ 
  - Perhaps later normalization as well
- Everything except  $\tau$  taken from data:
  - Jets, b, ET(miss), UE, MI, pile-up, ...
- Weakness:
  - Technically complex
  - can only model one ttbar decay mode at a time





# **Embedding: Shapes**





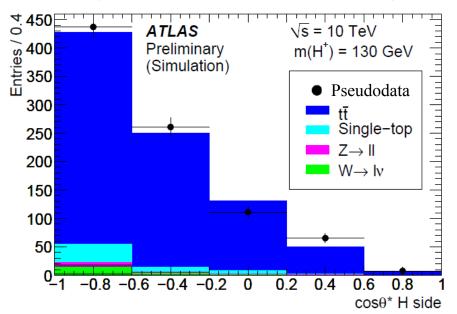


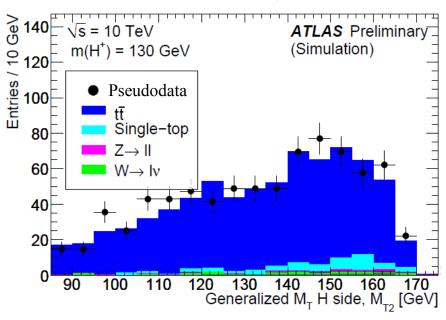




#### Matrix method

- For each background: modified selection such that this background dominates (referred to as sideband)
- Obtain data/MC ratio from sideband and apply it to the MC background expectation in the signal region
- Example: H+ dilepton search


| Process                              | Z+jets                          | W+jets   | Single top | SM tt    | $H^+W \rightarrow 2$ leptons |  |
|--------------------------------------|---------------------------------|----------|------------|----------|------------------------------|--|
| b-weight cut                         | < 0                             |          | > 4.3      |          | > 4.3                        |  |
| $E_T^{miss}$ cut                     | < 30 GeV                        | > 30 GeV | < 50 GeV   | > 50 GeV | > 50 GeV                     |  |
| Leptons                              | ee or μμ                        | eμ       |            | no cut   | no cut                       |  |
| $m_{ll}$ cut                         | $86 \rightarrow 96 \text{ GeV}$ | no cut   |            |          | no cut                       |  |
| $\cos \theta_l^* (H^+ \text{ side})$ |                                 | no cut   |            | > -0.4   | < -0.6                       |  |


- Advantage: technically simple
- Weakness: assumption data/MC ratio in sideband & signal region identical
  - need precise MC estimate (difficult: high- $\sigma$  processes)
  - does not correct for a wrong differential cross section

#### Matrix method: Pseudodata test



- Using a mix of simulated ttbar, single top, W, Z and diboson events with scaled cross sections:
  - Can we estimate the scale factors?
- Figure: ttbar sideband (MC scaled via sidebands)





Estimated scale factor: 0.87 ± 0.07 (stat, ≈150 pb<sup>-1</sup>)

#### **Conclusions**

- tes.
- ATLAS is collecting a large number of top candidates. Next steps:
  - Observation
  - Cross section measurement
- ttbar is the dominant background for all mainstream H+ searches.
  - Need reliable way to estimate it from data
  - Main methods studied:
    - Embedding
    - Matrix method
- Observing top quarks: first step towards observing data / SM disagreement in ttbar events!

# Backup slides



#### ATLAS Collaboration:

- [1] Search for top pair candidate events in ATLAS at sqrt(s)=7 TeV, ATLAS-CONF-2010-063
- [2] Background studies for top pair production in lepton plus jets final states in sqrt(s)=7 TeV ATLAS data, ATLAS-CONF-2010-087
- [3] Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020
- [4] Expected Sensitivity in Light Charged Higgs Boson Searches for H+ to tau+nu and H+ to c+sbar with Early LHC Data at the ATLAS Experiment, ATL-PHYS-PUB-2010-006
- Mohn, Flechl, Alwall:
  - [5] ATLAS Discovery Potential for the Charged Higgs Boson in H± → TV Decays, ATL-PHYS-PUB-2007-006

#### **Selections**



#### ATL-PHYS-PUB-2007-006 selection

- Jets+LV: exactly one  $\tau$ -jet with  $p_T^{\tau} > 40$  GeV,  $p_T^{miss} > 40$  GeV, at least three parton jets, among those exactly one b-jet, no isolated lepton with  $p_T^{tep} > 7$  GeV.
- $W/t_{rec}$ : two jets with  $|m_{jj} - m_W| < 25$  GeV, the same two jets plus the *b*-jet with  $|m_{jjb} - m_t| < 25$  GeV.
- au-Cuts:  $|\eta^{\tau}| < \{0.9, 1.0, 1.2\}, \, p_T^{\tau}/p_T^{\neg t} > \{6.0, 5.5, 5.0\}, \, \text{and} \, \, p_T^{\tau} > \{65, 80, 100\}.$
- $p_T^{miss} > \{120, 135, 165\}.$
- $\Delta \phi > \{1.1, 1.2, 1.3\}.$

#### ATL-PHYS-PUB-2010-006 selection

- two oppositely charged leptons (electron or muon) with  $p_T > 20$  GeV (leading) and  $p_T > 10$  GeV (sub-leading), and at least two jets with  $p_T > 15$  GeV,
- b-weight greater than 4.3 (as in the  $H^+ \to c\bar{s}$  study, we use the IP3D+SV1 b-tagger),
- $E_T^{miss} > 50 \text{ GeV}$ ,
- $\cos \theta_l^* < -0.6 \, (H^+ \, \text{side}).$

# $\cos(\theta)$

#### 4.1 Helicity Angle $\cos \theta_l^*$

In the SM top quark decays (i.e. those mediated by a W boson with purely V-A couplings), a fraction  $m_t^2/(m_t^2+2m_W^2)\simeq 0.69$  of the W bosons is expected to be found with a longitudinal polarization. The remainder, i.e. a fraction  $2m_W^2/(m_t^2+2m_W^2)\simeq 0.31$  of the W bosons, is expected to have a left-handed helicity in the top quark rest frame. With  $\theta_\ell^*$  defined as the angle of the lepton momentum with respect to the helicity axis, in the W rest frame, this leads to the following normalized angular distribution for the charged lepton  $\ell=e,\mu,\tau$  arising from  $W\to \ell v_\ell$ :

$$\frac{1}{N} \frac{dN(W \to \ell \nu_{\ell})}{d\cos\theta_{\ell}^{*}} = \frac{3}{4} \times \frac{m_{t}^{2} (1 - \cos^{2}\theta_{\ell}^{*}) + m_{W}^{2} (1 - \cos\theta_{\ell}^{*})^{2}}{m_{t}^{2} + 2m_{W}^{2}}.$$
 (4)

In the rest frame of the decaying top quark, the recoiling b quark has its momentum anti-parallel to the momentum of the W boson. For the sake of simplicity, we now neglect the mass of the b quark and we assume that the decay is mediated by an on-shell W boson. Let  $p_b$  and  $p_\ell$  be the 4-momenta of the b quark and the charged lepton  $\ell$ , respectively. With our assumptions,  $\cos \theta_\ell^*$  can be expressed as [16]:

$$\cos \theta_{\ell}^* \simeq \frac{4p_b \cdot p_{\ell}}{m_t^2 - m_W^2} - 1,\tag{5}$$

Note that  $p_b$  and  $p_\ell$  can be advantageously chosen in the laboratory frame, since  $\cos \theta_\ell^*$  contains an invariant product. Also, no knowledge about the momentum of the neutrino accompanying the charged lepton is required to compute  $\cos \theta_\ell^*$ . In the case of  $H^+ \to \tau^+ \nu$ , the decay products are distributed isotropically because the charged Higgs boson has a spin 0. Unfortunately, an experimental angular analysis of dilepton  $t\bar{t}$  events exclusively aimed at establishing the spin 0 of a presumptive charged Higgs boson in the top quark decays is very challenging, for two reasons. First, the kinematic assumptions that lead to Equation (5) are not valid as soon as  $m_{H^+}$  differs from  $m_W$ . More importantly, the presence of two neutrinos in the leptonic  $\tau$  decays does not allow full reconstruction of its momentum.