

Some Comments on BIF Optics, Integration Times and Gas Curtain Thickness

S. Udrea

GSI Helmholtzzentrum für Schwerionenforschung

Optics, Simplified Overview

Depth of Field

$$\begin{split} \Phi &\approx 2 \cdot |\delta| \cdot (\Omega/\pi)^{0.5} \cdot |\mathsf{M}|, \ |\delta|/(|z_{\circ}| - f) << 1 \& \Omega \leq 2.5 \cdot 10^{-2} \\ (\Omega/\pi)^{0.5} &\approx (\mathsf{D} / 2f) \cdot |\mathsf{M}| / (|\mathsf{M}| + 1) \end{split}$$

Solid Angle and Vignetting

The upper limit is imposed on the solid angle by the exit window. For (point) light sources off axis vignetting may appear at the lens (1) or at the window (2) and one has to consider these issues when trying to improve the signal by increasing the solid angle.

Integration Times

	.(Ò	
-	- 18	Ĩ.	
	-	-	

Projectile Emitter		λ [nm]	σ [cm²]	I [A]	η _{ρc}	η _{сср}	< t i> _{МСР}	<ti>emccd</ti>	
electron	N ₂	337.1	1.5.10-23	5	0.19	0.30	$1.8^{^{6582}}_{_{0.32}} \cdot 10^{^{-2}}$	$8.4_{1.8}^{20320} \cdot 10^{-3}$	
electron	N ₂ ⁺	391.4	9.1·10 ⁻¹⁹	5	0.19	0.70	$2.9^{10608}_{0.51} \cdot 10^{-7}$	$5.9^{^{14272}}_{^{1.3}} \cdot 10^{^{-8}}$	
proton	N ₂	337.1	0.0	1	0.19	0.30	8	œ	
proton	N_2^+	391.4	3.7·10 ⁻²⁰	1	0.19	0.70	$3.6^{^{14330}}_{_{0.59}} \cdot 10^{^{-5}}$	$7.3^{^{19228}}_{^{1.4}} \cdot 10^{^{-6}}$	
electron	Ne	585.4	1.4.10-20	5	0.09	0.93	$4.0_{_{0.71}}^{^{23475}} \cdot 10^{^{-5}}$	$2.9^{6989}_{0.65} \cdot 10^{-6}$	
proton	Ne	585.4	4.7·10 ⁻²²	1	0.09	0.93	5.9 ³⁷⁷⁶⁰ .10 ⁻³	$4.3^{11283}_{0.90} \cdot 10^{-4}$	
electron	Ar	750.4	5.6·10 ⁻²⁰	5	0.02	0.85	$4.5^{^{29392}}_{_{0.59}} \cdot 10^{^{-5}}$	$7.9_{1.7}^{19237} \cdot 10^{-7}$	
electron	Ar	751.5	1.8.10-20	5	0.02	0.85	$1.4^{_{0.18}^{9142}} \cdot 10^{^{-4}}$	$2.5^{6088}_{0.53} \cdot 10^{-6}$	
electron	Ar	750 & 751	7.4.10-20	5	0.02	0.85	$3.4_{_{0.44}}^{^{22205}} \cdot 10^{^{-5}}$	$6.0^{^{14610}}_{^{1.3}} \cdot 10^{^{-7}}$	
electron	Ar ⁺	454.5	4.2·10 ⁻²¹	5	0.22	0.82	$5.4^{19389}_{0.97} \cdot 10^{-5}$	$1.1_{0.24}^{2653} \cdot 10^{-5}$	
electron	Ar ⁺	476.5	5.7·10 ⁻²¹	5	0.19	0.85	$4.6^{16826}_{\scriptstyle 0.82} \cdot 10^{-5}$	$7.8^{^{18993}}_{^{1.7}} \cdot 10^{^{-6}}$	
electron	Ar+	454 & 476	9.9·10 ⁻²¹	5	0.20	0.84	$2.5_{_{0.45}}^{_{9072}} \cdot 10^{^{-5}}$	$4.5_{_{0.96}}^{^{10926}} \cdot 10^{^{-6}}$	
proton	Ar	750.4	2.3·10 ⁻²¹	1	0.02	0.85	$5.5^{39107}_{0.67} \cdot 10^{-3}$	$9.6^{25450}_{1.9} \cdot 10^{-5}$	
proton	Ar	751.5	9.6.10-22	1	0.02	0.85	$1.3^{9245}_{0.16}\!\cdot\!10^{-2}$	$2.3^{6097}_{0.45} \cdot 10^{-4}$	
proton	Ar	750 & 751	3.3.10-21	1	0.02	0.85	$3.8^{27021}_{\scriptstyle 0.46} {\cdot10^{-3}}$	$6.7_{_{1.3}}^{^{17762}} \cdot 10^{^{-5}}$	
proton	Ar ⁺	454.5	7.3·10 ⁻²²	1	0.22	0.82	$1.6^{6256}_{0.27} \cdot 10^{-3}$	3.1 ⁸¹⁴¹ _{0.62} ·10 ⁻⁴	
proton	Ar ⁺	476.5	9.9·10 ⁻²²	1	0.19	0.85	$1.3^{5174}_{0.21} \cdot 10^{-3}$	$2.2^{5832}_{\scriptstyle 0.43} {\cdot10^{-4}}$	
proton	Ar ⁺	454 & 476	1.7·10 ⁻²¹	1	0.20	0.84	7.4 ²⁹³¹⁵ ·10 ⁻⁴	$1.3^{3433}_{0.26} \cdot 10^{-4}$	

 $V_{\gamma} = \sigma \cdot \frac{I \cdot \Delta t}{e} \cdot n \cdot d \cdot \frac{\Omega}{4\pi} \cdot T \cdot T_{f} \cdot \eta_{pc} \cdot \eta_{MCP}$

Parameter	er Old value		New value			Worst value			Best value	
n	2.5·10 ¹⁰ cm ⁻³		2.5·10 ¹⁰ cm ⁻³		2.5·10 ⁹ cm ⁻³			5.10 ¹⁰ cm ⁻³		
d	0.5 mm		0.5 mm			0.3 mm			0.7 mm	
Т	0.7		0.85			0.7			0.9	
T _f	0.3		0.8			0.3			0.9	
Ω	Ω 4π·10 ⁻⁴ s		40⊓·10 ⁻⁴ sr			п∙10 ⁻⁴ sr			50⊓·10 ⁻⁴ sr	
η_{pc}	λ-depende	nt	λ-depe	ndent	λ-dependent			λ -dependent		
η_{MCP}	0.5		0.7	5		0.5		0.9		
η_{CCD}	-		λ-depe	ndent	λ -dependent		ent	λ -dependent		
Ip	1 A		1 /	٩	0.9		0.9 A		1.1 A	
Ie	I _e 5 A		5 A		4.9 A			5.1 A		
λ [nm]	337		391	454		476 5		85	750	
$\eta_{ m pc}$	$0.19_{0.17}^{0.21}$	($0.19^{0.21}_{0.17}$	0.220	.24 .20	²⁴ 0.19 ^{0.21} 20		09 ^{0.1}	$0.02^{\rm 0.03}_{\rm 0.01}$	
η _{сср}	0.3 ^{0.33}		0.7 ^{0.77} _{0.63}	0.820	.90 .74	0.85 ^{0.94} _{0.76} 0.9		93 ^{0.97}	0.85 ^{0.94}	

Note: <t_i> are the mean single photon integration times

Table usage example: $\langle t_i \rangle = 1.4_{0.18}^{9142} \cdot 10^{-4}$ s means that the value of $1.4 \cdot 10^{-4}$ s should be achievable according to present estimations, while the worst case value is estimated to $9142 \cdot 10^{-4}$ s ≈ 0.91 s and the best case one to $0.18 \cdot 10^{-4}$ s $= 1.8 \cdot 10^{-5}$ s.

Influence of Curtain Thickness: 1D-Model

Parabolic Gas Curtain Profile and Gaussian Beam

Line of sight and beam axis are perpendicular to each other, moreover $\alpha = \beta = 45^{\circ}$ The charged particle beam has a Gaussian profile with standard deviation $\boldsymbol{\sigma}$, three gas curtain thicknesses **d** are considered: $0.1 \cdot \boldsymbol{\sigma}$, $\boldsymbol{\sigma}$ and $2 \cdot \boldsymbol{\sigma}$.

Peak Intensities and Curtain Thickness

Computations performed for a Gaussian beam profile

Curtain Thickness 5·σ

