

Needs and status of implementation of benchmark channels

3rd FCC Physics Week 2020

Jan 14, 2020 G Ganis, C Helsens CERN-EP

About this discussion session

Goals

- This workshop is a perfect occasion gather people and to discuss how to prioritise the needs in terms of software developments
- We need clear inputs from the users, as software can not be developed without guidance.

Format

- Discussion, we do not have detailed slides
- This morning we had talks about the type of precision physics we need to reach for FCC-ee. We now need to understand how to achieve this with detectors

Disclaimer

 Focus is given on FCC-ee, as FCC-hh developments could wait a bit HL-LHC operation for synergies

About the main drivers

Need to support new/revolutionary/cheap and performant detector concepts

- Need to support physics and detector studies
 - Parameterised, fast and full simulation
- Aim to de-duplicate efforts
 - One software stack to support all the cases
 - All detector concepts and future (proto-)collaborations
- Aim to ease the comparison of a given benchmark
 - Between different detector concepts
 - For a same detector concept at different stage
- Systematically include new benchmarks
 - In a common format to ease comparaison

Preliminary Example: Performance 1

Detector concept 1

Details of performance 1 Implications of not assessing it Limiting factors to possibly achieve Performance 1

Sub-detector(s) in FCCSW relevant for **Performance 1**

FCCSW

Simulation of the sub-detectors relevant for **Performance 1**

Reconstruction aspects to achieve the targeted **Performance 1**

Generators relevant for **Performance 1**

Result:

Detector concept 1 for performance 1 with FCCSW version 1 is passing/Failing

First list of benchmark use-cases

- A first list has been compiled and available at: benchmark use-cases
- Next slides summarize the situation from the reconstruction and Monte
 Carlo availability point of view
- Some of the required Monte Carlo generators still missing
- All cases should be already analyzable at Delphes level
 - Modulo the availability of the required Monte Carlo generator

• ...

Reco requirements from benchmark use-cases

Muon momentum resolution: tracking

Charm, b tagging: tracking, vertexing, pi0

Tau ID: tracking, vertexing, photon/pi0, {e, mu, pi} ID

Very low angle particle: tracking, timing

Jets: tracking, calo objs

p / K / pi separation: dE/dx, timing

MC requirements from benchmark use-cases

Generator	latest version	LCG version
Pythia8	8.244	8.243
Whizard	2.8.2	2.8.1
MadGraph5	2.6.7	2.6.7
SuperCHIC	3.06	3.05
KKMC	4_24a	
KoralW	1.53.3	
YFSWW3	1.18	
EvtGen	1.7.0	1.7.0

Preliminary list of possible benchmark use-cases

- ...
 - O ...
- ...
 - 0 ...
- ...
 - o ..

Next steps

- Where should we host the follow up discussions?
 - Detector meetings? Software meetings? Both? others?
- Is there a need to keep a detailed history of the performances
 - With the evolution of the detector design?
 - With the improvement of calibration/reconstruction
- How to keep this history?
 - If common format, could imagine to publish web pages to ease the comparisons