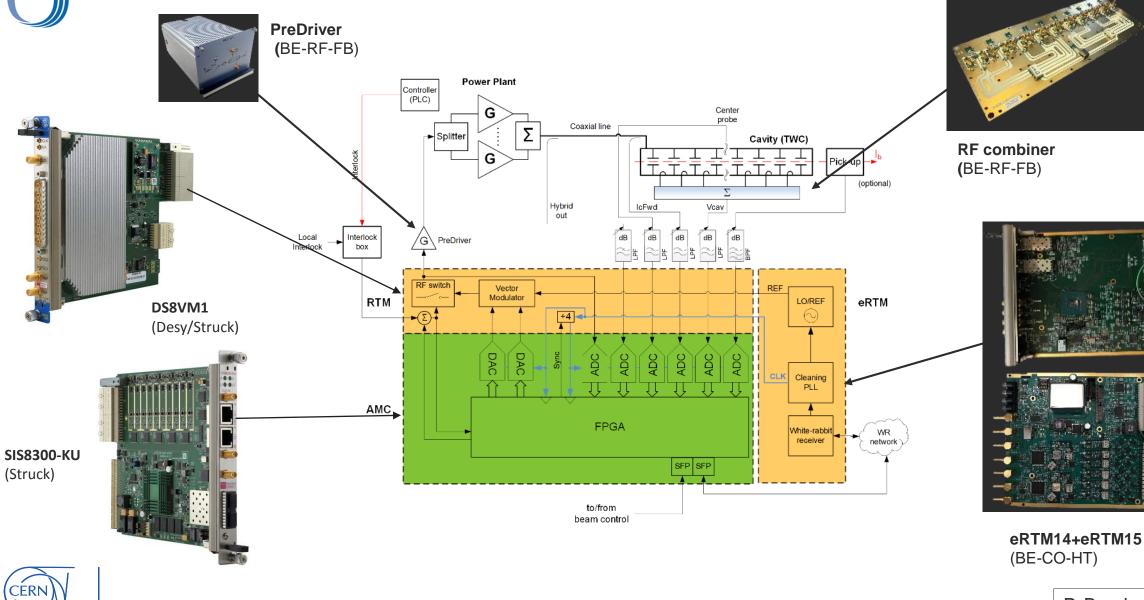
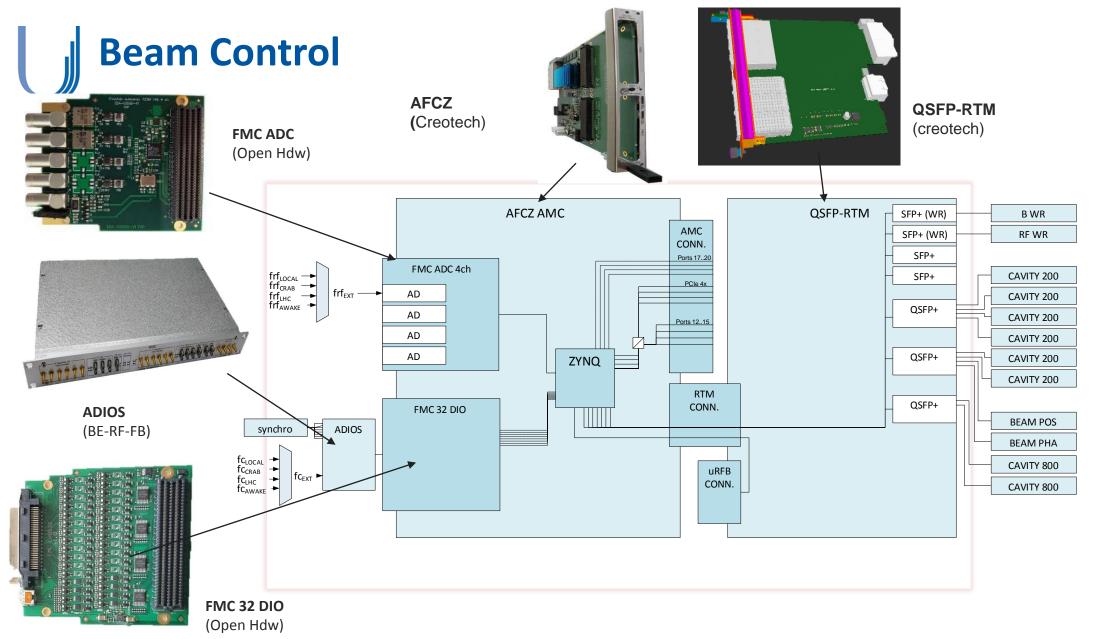


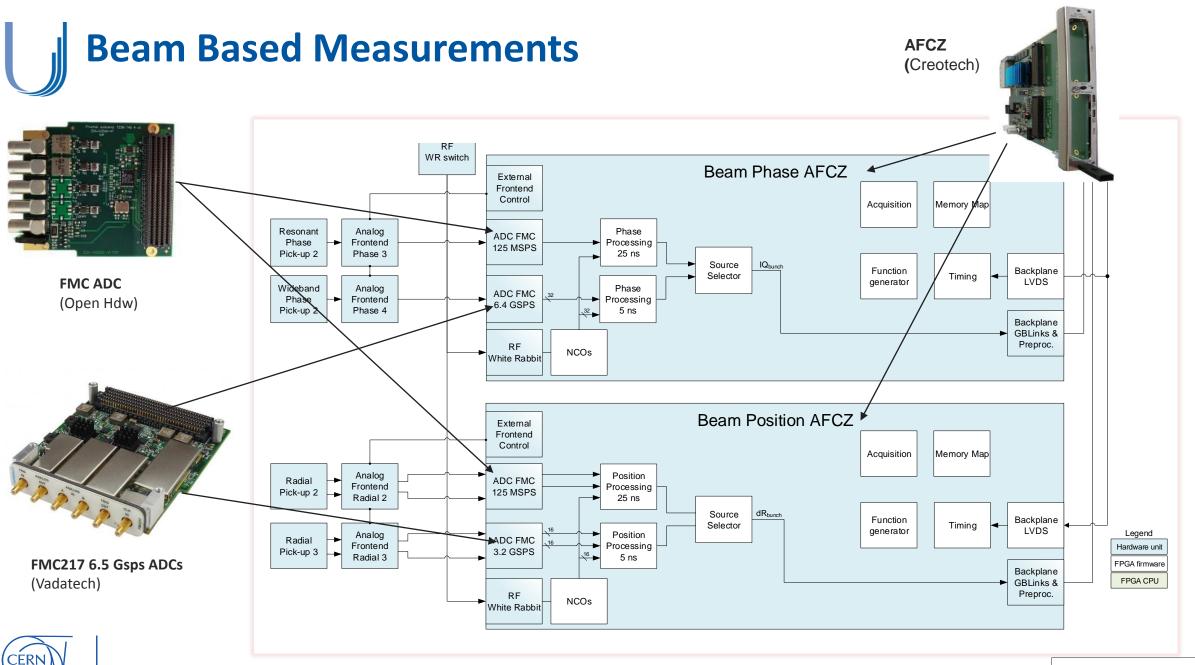
LHC Injectors Upgrade

LLRF software status and planning


28 Jan 2020



- LLRF system
- LLRF Front-end software
- **RF/OP** integration
- Milestones
- Conclusion



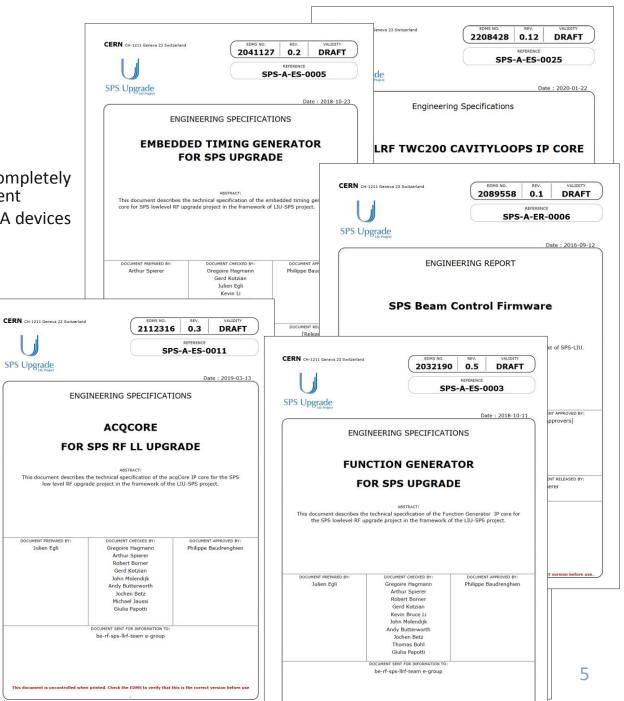
Cavity controller

P. Baudrenghien 4

LLRF front-end software

- FESA class development
 - Full implementation requires FPGA firmware memory maps to be completely defined, currently not the case for many firmware cores still in development
 - In the meantime, define FESA class interfaces and instantiate "mock" FESA devices to aid LSA and application development

SPS Upgrade


Julien Enli

۲ Generic components

- Most complex to develop
- Cover majority of control interface with OP
 - Around 130 functions, 50 timings
- FESA developments almost complete
- Mock FESA device deployment for LSA vertical slice tests
 - Timing test devices deployed since Nov 2019
 - Functions first dry run in Dec 2019, updated version by end Jan
 - Acquisitions by end Jan
 - Solving some issues with driver deployment (Reksio, CODEINE, Git)
- Aim to instantiate "final" list of devices by March 2020
 - FESA instantiation in CCDB, simulated devices running on FEC

Specific FESA classes: ۲

- Cavity Controller FESA development partially complete - FESA interface defined for Cavity Loops
- Beam Control FESA interfaces definition in progress Start code development Feb 2020

Front-end software development status (28.01.2020)

Complete In progress To do	Interface spec	FESA design	Interface implementation	Memory map	Final implementation	Mock devices deployment
Generic components						
Embedded timings						
Function generation						
Embedded acquisition						
Cavity controller						
SIS8300 platform (cavity control):						
Board surveillance (clocks etc.)						
White Rabbit interface surveillance						
Remote firmware flashing						
Cavity loops:						
1-T feedback + setpoint + modulation + limiter						
1-turn feedforward						
RF NCO						
Polar loop						
Beam control						
AFCZ (Zynq AMC) platform						
Beam control loops						
Longitudinal blowup						
Beam based measurements						
Beam phase/radial position						
Pickup analog front end control						

LLRF OP integration

Productive RF+OP collaboration

- RF to provide FESA interfaces, logic dependencies and algorithms
- OP to implement higher level parameters, make rules, value generators in LSA, CCC applications

• New timing (ATIM) functionality

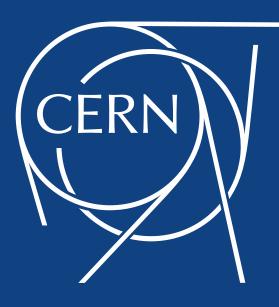
- discussed, implemented and successfully tested
- Handling of coast is complex, solved with good collaboration of the timing team in CO

• SPS RF parameter model in LSA:

- Clean up of old settings being implemented
 - not changed: cavity controller 800, beam observation
- Settings generation
 - ⁻ ready for: synchro, total voltage, partitioning, counterphasing
 - almost finalized: bucket area, loop gains (LQR controller)
- Being implemented: beam control timings, function generator, acquisition interface
- To be tackled next: cavity controller 200, ions/FFA

Milestones for LLRF & software, dry runs

Kevin's dry	run list:		HW & firmware	Software	Dry runs possible
Name	Description Test LSA generation for	End Jan		Timing, Function, Acquisition test FESA devices available	Generic device tests (FESA classes API)
LHC generation	LHC type cycle with RF synchro, RF loops, RF cavity control & timings	End Feb		Migration of legacy FECs (Synchro, TWC800) to CC7/FESA v7 completed	800 MHz settings Synchro settings
	Test settings for radial steering on synchro and	End March		Cavity controller mock FESA devices available	
Radial steering	radial loop				
SPS2PS Synchro	Test synchro	End March		All (most2) Timing Eurotian Acquisition EESA devices	LSA generation of LHC/SFTPRO with
Synchro & phase loop diagnostics Cavity control loops	Test acquisition and display of synchro and phase errors using simulated data Test generation and settings of full cavity control loops – with comb filters			All (most?) Timing, Function, Acquisition FESA devices instantiated	functions for loops, cavity control and timings comb filters Synchro and phase loop acquisitions Phase and position acquisitions
SFTPRO generation	Test LSA generation for SFTPRO type cycle of RF synchro, RF loops, RF cavity control & timings Test acquisition and display of phase and position using	End April		Beam control and beam-based measurement mock FESA devices available	Radial steering settings lon cycle generation with FFA settings Longitudinal damper settings Slip stacking settings
diagnostics	simulated data Test what can be tested				Rephasing settings RF gymnastics settings
Diagnostics test	from diagnostics not tested so far Verify settings in 800 MHz; improve generation using	End May	Firmware finalized for Beam Control, Cavity Controllers and Beam-Based Measurements	Cavity controller FESA class basic functionality implemented (1-turn FB)	
800 MHz	new functions for voltage ratio, add harmonic ratio, add offset	June	LLRF electronics installed in BA3: Beam Control, Cavity Controllers and Beam- Based Measurements	FESA classes basic HW functionality testing in BA3	
FFA generation	Generate ion cycle with FFA – all settings; also synchro Interface and settings for	End July	Control a first cavity with minimum cavity controller system (1-turn FB)		
Longitudinal damper	longitudinal damper ready for testing Interface and settings for RF	June-Oct		Completion of FESA classes HW functionality Longitudinal blowup FESA class	Longitudinal blowup settings/FESA
RF gymnastics Longitudinal blow-up	gymnastics ready for testing Interface and settings for longitudinal blow-up ready for testing	1 Oct	RF signals (RF, revolution frequency, injection and extraction pulses) available for ABT, BI		
AWAKE and LHC rephasir		Nov			Rephasing?
Slip stacking application	Slip stacking application ready with preparation of functions for settings	Dec	All cavities controlled with the new LLRF system		


Front-end software development progressing

- Generic components and cavity controller well advanced

• Long dry-run wish list, front-end software development cannot wait for HW/firmware availability

- Deploy mock FESA devices wherever possible
- Aim to deploy functions, timings and acquisitions for all systems by end of March
- Milestones (optimistic) defined for FESA class delivery and dry runs

FEBRUARY: Prepare for (re)installation

- Finish FC cabling
 - Systems: RF Synchro, Distribution, Beam Control, Cavity Controller, Beam-based measurements
- Check-calibration of RF cable tunnel-FC (Cavities, PUs)
- PU analog Front-End
 - Finalize design. Order components. Launch fabrication
- Cavity Sum analog Front-End
 - Finalize design. Order components. Launch fabrication
- Cavity Controller analog Front-End
 - Finalize design. Order components. Launch fabrication

- Validation of legacy equipment before re-installation
 - FO links RX/TX, distributions, VTU, BQM, ...
- Installation, cabling and fibers in FC
- Installation of RF Synchro (partly removed)
- Installation of the 800 MHz system (legacy)

MARCH-MAY: Finalize firmware. (Last) series orders.

- Finalize firmware for Beam Control, Cavity Controllers and Beam Based Measurements
- Last series orders

MAY-JUNE: Installation of new (uTCA) electronics

- Installation of Beam Based Measurements
- Installation of Beam Control
- Installation of Cavity Controller

13

JULY-SEPT: Re-commissioning. IST

- Re-commissioning of the RF Synchro
 - Milestone: Synchro OK by Oct 1st
- Re-commissioning of Distribution
 - Milestone: RF distribution OK by Oct 1st
- RF signals (RF, revolution frequency, injection and extraction pulses) available to the users (BI, ABT,...) from Oct 1st...but expect some interruptions...

JULY-DEC: Commissioning .IST

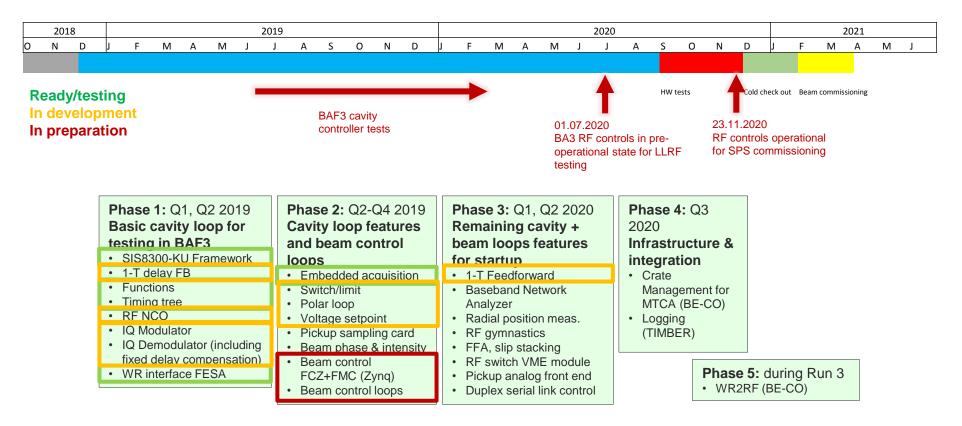
• Commissioning of Beam Control

- Milestone 1, July: RF generated from WR distribution of B field (static and simulated magnet cycle, TE-MSC)
- Milestone 2, Oct: RF following magnetic cycle via magnetic measurement in reference magnet

Commissioning of Beam Based Measurements

- Using the resonant PUs
- Using the wide-band PU for bunch per bunch measurements

Commissioning of 200 MHz Cavity Controllers


- Milestone 1, July: Control a first cavity with the new system. Minimum is the OTFB
- Milestone 2, December: All cavities controlled with the new system

• (RE)commissioning of the 800 MHz Cavity Controllers

- Legacy equipment (VME, upgraded in 2015)
- Using the old RF-synchronous clocking scheme. Must be made compatible with the new scheme based on the WR for synchronization.

Software for LLRF

LSA + Operational interfaces: Parameter model, makerules, Java applications

Collaboration OP + RF

