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Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown
considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image
processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature.
Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition
and high combinatorial complexity sincemany combinations of hits or cells must be considered in order to arrive at the final
tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of
experunental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these
approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such
problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already
possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using
existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast
trigger decisions.

1. Parallel processing processors, or higher connectivity, or both. The
overall power of a particular architecture is speci-

The basic tenet of parallel processing, that in- fied not by any one of the parameters, but, in
dependent tasks can be performed at the same some sense, by the product of the three.
time, is of course not a new idea, but it is only To date, in high energy physics, most applica-
recently, with the ever-decreasing cost of com- tions have involved a modest number, a few tens,
puter hardware, that one has dared to think of or at most hundreds, of powerful processors which
actually putting two or more computers to work are loosely coupled, i.e., have low connectivity.
on the same problem. Parallel processing has made Examples of this approach are the 168/E and
an impact on high energy physics in a variety of 3081/E emulator ‘farms’, and the Fermilab ACP
applications. system (see ref. [1] for a review of these and other
Three parameters can be used to specify the related systems). In these applications, individual

architecture of any parallel processing system: 1) data events are distributed to the processors, each
the number of processors, 2) the power of each of which completely analyzes an entire event,
processor, and 3) the degree of connectivity be- passes on the results, indicates its readiness to
tween processors. In what follows we shall see that accept another event, and so on. Because the
difficult problems do not necessarily require processors independently operate on separate
powerful processors. Depending upon the problem events, the amount of communication required
to be solved, a large array of simple but tightly between processors is minimal.
coupled processors may be more appropriate than In another type of application, a group of
a small array of powerful, loosely coupled processors work on different parts of the same
processors. Processing power of the individual event: one on the tracking, one on the calorimetry,
processors can be traded off against more and one on the Cherenkov analysis, for instance.

OO1O-4655/88/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



INTRODUCTION
‣ Particle physics has been linked to machine  

learning and neural networks since the 1980s!

Computer Physics Communications 49 (1988) 429—448 429
North-Holland, Amsterdam

NEURAL NETWORKS AND CELLULAR AUTOMATA
IN EXPERIMENTAL HIGH ENERGY PHYSICS

B. DENBY
Laboratoire de l’Accélérateur Linéaire, Orsay, France

Received 20 September 1987; in revised form 28 December 1987

Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown
considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image
processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature.
Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition
and high combinatorial complexity sincemany combinations of hits or cells must be considered in order to arrive at the final
tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of
experunental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these
approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such
problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already
possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using
existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast
trigger decisions.

1. Parallel processing processors, or higher connectivity, or both. The
overall power of a particular architecture is speci-

The basic tenet of parallel processing, that in- fied not by any one of the parameters, but, in
dependent tasks can be performed at the same some sense, by the product of the three.
time, is of course not a new idea, but it is only To date, in high energy physics, most applica-
recently, with the ever-decreasing cost of com- tions have involved a modest number, a few tens,
puter hardware, that one has dared to think of or at most hundreds, of powerful processors which
actually putting two or more computers to work are loosely coupled, i.e., have low connectivity.
on the same problem. Parallel processing has made Examples of this approach are the 168/E and
an impact on high energy physics in a variety of 3081/E emulator ‘farms’, and the Fermilab ACP
applications. system (see ref. [1] for a review of these and other
Three parameters can be used to specify the related systems). In these applications, individual

architecture of any parallel processing system: 1) data events are distributed to the processors, each
the number of processors, 2) the power of each of which completely analyzes an entire event,
processor, and 3) the degree of connectivity be- passes on the results, indicates its readiness to
tween processors. In what follows we shall see that accept another event, and so on. Because the
difficult problems do not necessarily require processors independently operate on separate
powerful processors. Depending upon the problem events, the amount of communication required
to be solved, a large array of simple but tightly between processors is minimal.
coupled processors may be more appropriate than In another type of application, a group of
a small array of powerful, loosely coupled processors work on different parts of the same
processors. Processing power of the individual event: one on the tracking, one on the calorimetry,
processors can be traded off against more and one on the Cherenkov analysis, for instance.

OO1O-4655/88/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



INTRODUCTION
‣ Particle physics has been linked to machine  

learning and neural networks since the 1980s!

‣ In recent years, the use of ML has expanded into new territory

Figure 3: The top plot shows the input to the network. Di↵erent colors represent true clusters
in the bottom left plot and reconstructed clusters in the bottom right plot.

to generate our data set and not a feature of our reconstruction algorithm—the exact same
reduction in e�ciency is observed when employing purely human-engineered algorithms. In
addition, the region with only secondary particles, the truth information in the data set is not
fully reliable due to known insu�ciencies of the simulation.

The reconstruction e�ciency also depends on the cluster energy. As a metric to describe
the relative energy density around the shower cluster in question, we define the local shower
fraction (LSF) as the fraction of energy belonging to a given cluster with respect to the total
energy within a radius of �R = 0.5 center point of the cluster. That is,

LSF(s) =
Etrue(s)

P
i Etrue(i) | �R(s, i) < 0.5

.

The dependence of the reconstruction e�ciency on the LSF is shown in Figure 4c. The
e�ciency increases with the LSF, reflecting the fact that more spatially concentrated showers
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(a) Each dot represents one energy deposit from Geant4 and
the color of the dot encodes the energy. The absorber-gap

structure is clearly visible, where most of the energy is lost in
the absorber.
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(b) Discretized version of (a), in which energy depositions are
assigned to individual, discrete detector cells.

FIG. 1: The electromagnetic shower from one 10 GeV
electron event. The boundaries of the cells are shown,

projecting out the � segmentation.

and the hypothesized image from the current layer, I,
and learns a per-pixel attention weight W via a weighting
function !(I, I

0
) such that the pre-ReLU version of the

current layer is W � I + (1 � W ) � I
0
, where � is the

Hadamard product. This end-to-end trainable unit can
utilize information about the two layers to decide what
information to propagate through from the previous par-
ticle deposition. An alternative architectural choice that
includes a recurrent connection will be subject of future
studies.

Leaky Rectified Linear Units [57] are chosen as activa-
tion functions throughout the system, with the exception
of the output layers of G, in which we prefer Rectified
Linear Units [58] for the creation of sparse samples [19].

In the discriminator (shown in Fig. 5), the feature
space produced by each LAGAN-style output stream is

η
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φ

FIG. 2: Three-dimensional representation of a 10 GeV e
+

incident perpendicular to the center of the detector.
Not-to-scale separation among the longitudinal layers is

added for visualization purposes.

FIG. 3: Two-dimensional, per-layer representation of the
same shower as in Fig. 2.

augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
Fig. 5 by the ‘features’ vector.

The discriminator is further customized with domain-
specific features to ensure fidelity of samples. Given
the importance of matching the requested energy E, D
directly calculates the empirical energy per layer Êi, i 2
{0, 1, 2}, as well as the total energy Êtot. Minibatch
discrimination is performed on this vector of per-layer
energies to ensure a proper distributional understanding.
We also add |E�Êtot| as a feature, as well as I{|E�Êtot|>"}
with " = 5 GeV – a binary, sub-differentiable feature which
encodes the tolerance for GAN-produced scatterings to
be incorrect in their reconstructed energy.

Further specifications of the exact hyper-parameter
and architectural choices as well as software versioning
constraints are available in the source code [60].

Two additional architectural modifications were tested
in order to build a particle-type conditioning system di-
rectly into the learning process. Neither the AC-GAN [43]
nor the conditional GAN [44] frameworks were able to
handle the substantial differences among the three particle

ML for reconstruction

ML for generation/simulation

ML for “jet tagging”

Fast ML for trigger
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an impact on high energy physics in a variety of 3081/E emulator ‘farms’, and the Fermilab ACP
applications. system (see ref. [1] for a review of these and other
Three parameters can be used to specify the related systems). In these applications, individual

architecture of any parallel processing system: 1) data events are distributed to the processors, each
the number of processors, 2) the power of each of which completely analyzes an entire event,
processor, and 3) the degree of connectivity be- passes on the results, indicates its readiness to
tween processors. In what follows we shall see that accept another event, and so on. Because the
difficult problems do not necessarily require processors independently operate on separate
powerful processors. Depending upon the problem events, the amount of communication required
to be solved, a large array of simple but tightly between processors is minimal.
coupled processors may be more appropriate than In another type of application, a group of
a small array of powerful, loosely coupled processors work on different parts of the same
processors. Processing power of the individual event: one on the tracking, one on the calorimetry,
processors can be traded off against more and one on the Cherenkov analysis, for instance.
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Figure 3: The top plot shows the input to the network. Di↵erent colors represent true clusters
in the bottom left plot and reconstructed clusters in the bottom right plot.

to generate our data set and not a feature of our reconstruction algorithm—the exact same
reduction in e�ciency is observed when employing purely human-engineered algorithms. In
addition, the region with only secondary particles, the truth information in the data set is not
fully reliable due to known insu�ciencies of the simulation.

The reconstruction e�ciency also depends on the cluster energy. As a metric to describe
the relative energy density around the shower cluster in question, we define the local shower
fraction (LSF) as the fraction of energy belonging to a given cluster with respect to the total
energy within a radius of �R = 0.5 center point of the cluster. That is,

LSF(s) =
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P
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The dependence of the reconstruction e�ciency on the LSF is shown in Figure 4c. The
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augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
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the importance of matching the requested energy E, D
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▸ Why use deep neural networks in particle physics?

▸ They work!

▸ Lots of data & simulation to train them

▸ Fast ways to train them

▸ Possibly gain new insights…
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▸ Higgs boson is the centerpiece: all particles interact with it

▸ May be a link to new particles or interactions
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11. Status of Higgs boson physics 11

with possible flat directions. Still, physics at lower energies is desirable to solve other
mysteries of the universe such as dark matter or the matter-antimatter asymmetry. The
Higgs boson discovery at the LHC leaves all these options open.

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phenomenology, with an emphasis on
the impact of loop corrections to the Higgs boson decay rates and cross sections, can be
found in Refs. [32–38].

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron and the LHC are gluon fusion,
weak-boson fusion, associated production with a gauge boson and associated production
with top quarks. Figure 11.2 depicts representative diagrams for these dominant Higgs
production processes.

g

g

t

tW, Z

W,Z

q

q

g

g

q

q

q

q
(a) (b)

(c) (d)

H

HH

H

Figure 11.2: Generic Feynman diagrams contributing to the Higgs production
in (a) gluon fusion, (b) weak-boson fusion, (c) Higgs-strahlung (or associated
production with a gauge boson) and (d) associated production with top quarks.

The cross sections for the production of a SM Higgs boson as a function of
√

s, the center
of mass energy, for pp collisions, including bands indicating the theoretical uncertainties,
are summarized in Fig. 11.3 [39]. A detailed discussion, including uncertainties in the
theoretical calculations due to missing higher order effects and experimental uncertainties
on the determination of SM parameters involved in the calculations can be found in
Refs. [36–38]. These references also contain state of the art discussions on the impact of
PDF’s uncertainties, QCD scale uncertainties and uncertainties due to different matching
procedures when including higher order corrections matched to parton shower simulations
as well as uncertainties due to hadronization and parton-shower events.

Table 11.1, from Refs. [36,38], summarizes the Higgs boson production cross sections
and relative uncertainties for a Higgs mass of 125GeV, for

√
s = 7, 8 and 14 TeV.
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▸ Graph (global) features : jet massu
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Figure 3. Performance of the algorithms for identifying hadronically decaying Higgs bosons (Left: H→bb; Right:
H→cc). A selection on the jet mass, 90 < mSD < 140 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
Higgs bosons (quarks and gluons) are required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two
DeepAK8-DDT algorithms, the marker indicates the performance of the nominal working point, DeepAK8-DDT
> 0, and its background efficiency (shown in the vertical axis) is different from the design value (5% or 2%) due to
the additional selection on the jet mass.
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Figure 10: Jet mass response for signal W jets for various grooming algorithms: trimming (top),
pruning (middle), soft drop (bottom).

of ±3s around the fitted mean. The W mass resolution is improved in all cases for PF+CHS as

β = 0

β = 1

β = 2

Ungroomed

▸ An important property used to analyze Higgs boson jets is the invariant mass 
▸ Provides good separation between W/Z/H-jets and q/g jets  
▸ Grooming removes soft and wide-angle radiation (soft drop is CMS standard) 
▸ Can we do better with ML?
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2

> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –

Jet grooming
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▸ Reuse ParticleNet architecture with a target of the “true” jet mass
▸ Special training samples incorporate X→bb, X→cc, X→qq with varying X mass 

in [15, 250] GeV 

Mtarget = {Mgen
SD if jet is QCD

mX ∈ [15,250] GeV otherwise

▸ Minimize loss function:  

L(y, yp) =
n

∑
i=1

log cosh(yp
i − yi)
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Figure 1: Performance of the ParticleNet regression (green - solid) and the soft drop algorithm (red - dashed). The mass response is

shown for large-R (R=0.8) Higgs boson jets with pT > 400 GeV and 100 < Mtarget < 150 GeV for various jet compositions: H→ bb

(left), H→ cc (center) and H→ qq (right). The last bin contains the overflow contribution. The resolution degrades for the heavier

quark flavours due to the larger presence of neutrinos. For all the jet compositions, the mass regression shows a substantial

improvement in the mass resolution and in the absolute scale. In addition, tails are strongly mitigated with the mass regression, in

particular at M≈0, where the soft drop algorithm incorrectly identifies the large R jet as single-prong.
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▸ Reuse ParticleNet architecture with a target of the “true” jet mass
▸ Special training samples incorporate X→bb, X→cc, X→qq with varying X mass 

in [15, 250] GeV 

Mtarget = {Mgen
SD if jet is QCD

mX ∈ [15,250] GeV otherwise

▸ Minimize loss function:  

L(y, yp) =
n

∑
i=1

log cosh(yp
i − yi)

▸ Substantial scale and resolution improvement
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▸ Reuse ParticleNet architecture with a target of the “true” jet mass
▸ Special training samples incorporate X→bb, X→cc, X→qq with varying X mass 

in [15, 250] GeV 

Mtarget = {Mgen
SD if jet is QCD

mX ∈ [15,250] GeV otherwise

▸ Minimize loss function:  

L(y, yp) =
n

∑
i=1

log cosh(yp
i − yi)

▸ Substantial scale and resolution improvement
▸ Can increase sensitivity by 20-25% to  

rare Higgs boson signals like HH, VBF, …
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CPU DEMANDS AT THE UPGRADED LHC

▸ Computing demands increase nonlinearly with increasing “pileup”
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CPU DEMANDS AT THE UPGRADED LHC

▸ Computing demands increase nonlinearly with increasing “pileup”

▸ Need more processing power (or smarter algorithms like deep learning) to keep 
up with demands
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GENERATIVE ADVERSARIAL NETWORKS

▸ Train two neural networks in tandem:  

▸ one to generate realistic “fake” data  

▸ the other to discriminate “real” from “fake” data

18
arXiv:1406.2661 
arXiv:1912.04958

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1912.04958
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▸ one to generate realistic “fake” data  

▸ the other to discriminate “real” from “fake” data
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ATLAS FASTCALOGAN

▸ Geant4-based ATLAS simulation of the full calorimeter 
is slow; can a GAN replace this?

19ATL-SOFT-PUB-2020-006
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ATLAS FASTCALOGAN

▸ Geant4-based ATLAS simulation of the full calorimeter 
is slow; can a GAN replace this?

▸ 300 GANs trained to parametrize the detector response 
to photons, electrons and pions

19
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ATLAS FASTCALOGAN

▸ Geant4-based ATLAS simulation of the full calorimeter 
is slow; can a GAN replace this?

▸ 300 GANs trained to parametrize the detector response 
to photons, electrons and pions

▸ Good agreement between the GAN and Geant4 both 
for single-particle showers and jets
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20

‣ As an alternative to voxelization, a graph-based GAN can be used to generate 
jets as particle clouds

GRAPH-BASED GAN arXiv:2012.00173 
arXiv:2106.11535
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‣ Reproduces nontrivial properties like top 
quark jet mass and energy-flow polynomials
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COMPUTING HARDWARE ALTERNATIVES

Image: Microsoft

22

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/
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LHC EVENT PROCESSING 23
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Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)
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▸ Register transfer-level (RTL)  
code is “synthesized” into gates
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PROGRAMMING HARDWARE (FPGAS) 24

module adder(  
    input  wire [4:0] a,  
    input  wire [4:0] b,  
    output wire [4:0] y  
);  
    assign y = a + b;  
 
endmodule

▸ Say you want to program an “adder” function on an FPGA

For more: https://youtu.be/iHg0mmIg0UU

https://youtu.be/iHg0mmIg0UU
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PROGRAMMING HARDWARE (FPGAS) 24

module adder(  
    input  wire [4:0] a,  
    input  wire [4:0] b,  
    output wire [4:0] y  
);  
    assign y = a + b;  
 
endmodule

Synthesis

▸ Say you want to program an “adder” function on an FPGA

For more: https://youtu.be/iHg0mmIg0UU

https://youtu.be/iHg0mmIg0UU
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High-Level Synthesis

▸ What if instead we specify an AI model 



▸ hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed 
model

Keras 
TensorFlow 

PyTorch 
…

Tune configuration
latency, throughput, 

power, resource usage

HLS  
project

HLS  
conversion

FPGA flow

ASIC flow

Model

Machine learning model 
optimization, compression

hls  4  ml

hls4ml

HLS  4  ML

J. Instrum. 13, P07027 (2018)26DESIGN EXPLORATION WITH HLS4ML

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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▸ Goal: determine 
muon pT in endcap  
based on info.  
available in the L1  
trigger 
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Phase-2 objectives
● Challenges:

– Highly non-uniform magnetic *eld with 

very little magnetic bending in the very 

forward region.

– Large background from low pT muons, 

punch-throughs, neutrons, etc that could 

lead to non-linear PU dependence.

● For Phase-2, EMTF has to evolve to 

– Incorporate the new muon detectors.

– Improve e(ciency, redundancy, pT 

resolution, timing.

– Maintain the same trigger threshold at a 

reasonable rate at 200 PU to remain 

sensitive to electroweak scale physics.

● Phase-2 algorithm is named EMTF++

GEM-CSC bending 

angle improves pT 

resolution and reduce 

trigger rate.

BMTF: Barrel

Muon Track Finder

(0 < |η| < 0.83)

OMTF: Overlap

Muon Track Finder

(0.83 < |η| < 1.24)

EMTF: Endcap

Muon Track Finder

(1.24 < |η| < 2.4)

▸ Goal: determine 
muon pT in endcap  
based on info.  
available in the L1  
trigger 
 
 
 

▸ Challenges:  
▸ Non-uniform magnetic field  with little bending 
▸ Large background from multiple sources

▸ EMTF++ has to evolve to  
▸ Incorporate new muon detectors 
▸ Improve efficiency, redundancy, pT resolution, timing 
▸ Maintain the same trigger threshold at higher pileup

https://cds.cern.ch/record/2714892
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Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 

        input layer and in each hidden layer

Training dataset: 2M muons
 

Testing dataset: 1M muons

pT assignment with NN

Dec 8, 2019 9

● Extract input from the stubs associated to the track candidates: ф, θ, bend, quality, time.

 

● At the moment, consider 36 features

– Note: allocate 12 stations, although a muon can go through at most 8-10 stations depending on η

Regression

NN

pT assignment with NN

https://cds.cern.ch/record/2714892
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▸ NN regresses muon pT based on 36 inputs
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Regression

NN
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

28

▸ NN regresses muon pT based on 36 inputs
▸ 3× reduction in the trigger rate for NN!
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Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 
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Testing dataset: 1M muons
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● Extract input from the stubs associated to the track candidates: ф, θ, bend, quality, time.

 

● At the moment, consider 36 features

– Note: allocate 12 stations, although a muon can go through at most 8-10 stations depending on η

Regression

NN

pT assignment with NN
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▸ Fits within L1 trigger latency (240 ns!) and FPGA 
resource requirements (less then 30%)

6.4. Trigger demonstrators and slice tests 307

first demonstration setup used the current MTF7 [94] micro-TCA hardware, and the second
demonstration used the ATCA prototype described in Section 6.3.1.

An experimental setup based on the MTF7 board [94] was used first to test the NN performance
on a Virtex-7 device. The MTF7 was programmed with a control firmware that is interfaced
with the algorithm firmware. The control firmware reads test data in the form of 2048-bit
words from a buffer memory implemented in the FPGA, forwards them to the implemented
algorithm, and stores the result back in the buffer memory. Data can be written and read to
and from the MTF7 board via a PCIe interface, effectively allowing extensive testing of the
algorithm performance with a large number of events. The inherent latency of 2 clock cycles
from the control firmware is subtracted when reporting the results. A picture of the setup
installed at the University of Florida is shown in Fig. 6.43.

Figure 6.43: Picture of the endcap muon track finder demonstrator based on the MTF7 hard-
ware at University of Florida.

The NN model is converted into firmware using the HLS4ML software [44] and the resulting
HLS is then translated to Verilog and synthesized for the MTF7 together with the demonstrator
control firmware. The resource usage is reported in Table 6.5 for both the standalone NN and
the combined synthesis of NN and EMTF firmware for the Virtex 7 FPGA and the Virtex 9 Ultra-
scale+ FPGAs. The NN mostly uses digital signal processing (DSP) resources, complementing
the usage of resources of the EMTF track reconstruction firmware. The latency achieved by the
NN evaluation corresponds to 48 clock cycles when running the device at a clock frequency of
200 MHz.

Table 6.5: Summary of the resource usage for the standalone NN and NN + EMTF firmware
for the synthesis in a Virtex 7 and Virtex 9 Ultrascale+ devices. For comparison, the resource
usage for the EMTF without NN in the Virtex 9 Ultrascale+ device is shown in the last column.

Algorithm (target FPGA) LUT Flip-flop Block RAM DSP
NN (V7) 11% 5% 7% 54%
NN + EMTF (V7) 71% 26% 62% 58%
NN + EMTF (VU9P) 28% 8% 30% 30%
EMTF (VU9P) 18% 6% 13% 1%

The output of the NN implementation in the MTF7 board was compared to the prediction
from the HLS simulation using a set of 2 ⇥ 104 muon patterns. A perfect agreement was found
between the simulation and the implementation for the predicted pT value.
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Estimates for Phase-2 FPGA (VU9P )

HLS estimatesHLS estimates

Looking into the Phase-2 APd board [3] 

with Virtex US+ VU9P FPGA, which has 3X 

more LUT & FF, and 2X more DSP.

NN should comfortably Et in the VU9P 

(DSP usage is 35%)
 

32 clk @ 333 MHz ≈ 100 ns latency

APd board

being developed

[3] CMS Collaboration, “The Phase-2 Upgrade of the CMS L1 Trigger Interim Technical Design Report”, CERN-LHCC-2017-013, 

      CMS-TDR-017

�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

240 ns

https://cds.cern.ch/record/2714892
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SUMMARY AND OUTLOOK
▸ Modern ML is the latest tool in the arsenal of 

HEP that has a wide range of applications 
▸ Jet tagging/regression, event reconstruction,  

anomaly detection, trigger, data 
compression, generation/simulation

▸ We have only scratched the surface of what is  
possible in the future with ML  
▸ Improvements in physics sensitivity, detector  

design, automatic calibrations,  
reducing time/cost of data analysis
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compression, generation/simulation

▸ We have only scratched the surface of what is  
possible in the future with ML  
▸ Improvements in physics sensitivity, detector  

design, automatic calibrations,  
reducing time/cost of data analysis

‣ With upcoming data at the LHC and beyond, 
we will explore the edge of the unknown in 
particle physics with cutting-edge ML

30

NYTimes

Questions? Contact: jduarte@ucsd.edu

https://www.nytimes.com/2015/06/07/opinion/a-crisis-at-the-edge-of-physics.html
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