JAVIER DUARTE
LISHEP SESSION C
JULY 6, 2021
MACHINE LEARNING FOR (EXPERIMENTAL) HIGH ENERGY PHYSICS

INTRODUCTION

NEURAL NETWORUS AND CELLULAR AUTOMATA
IN EXPERIMENTAL HIGH ENERGY PHYSICS
B. DENBY

Luboratioure de P Accelelerateru Linéaire Orasy, France
Reecived 20 Seplember 1987; in revised form 28 December 1987

 exsining gectnologsy,
triger decisions.

INTRODUCTION

- Particle physics has been linked to machine learning and neural networks since the 1980s!

neural networks and cellular automat

in experimental high energy physics
b. denby

Received 20 September 1987 ; in revised form 28 Docember 1987

INTRODUCTION

- Particle physics has been linked to machine learning and neural networks since the 1980s!
- In recent years, the use of ML has expanded into new territory

ML for "jet tagging"

CMS Phase-2 Simulation Preliminary

ML for reconstruction

Fast ML for trigger

INTRODUCTION

- Particle physics has been linked to machine learning and neural networks since the 1980s!
- In recent years, the use of ML has expanded into new territory
- Broadly speaking, we're interested in two advantages from ML: sensitivity to physics and computational performance

neural networks and cellular automat

in experimental high energy phyics
B. DENBY

Luboratuire de P PAccelerraceru Linéaire Orsay, France
Received 20 Seplember 1987 ; in revised form 28 Deeember 1987

Abstract

 ML for "jet tagging"CMS Phase-2 Simulation Preliminary

$\xrightarrow[\sim]{\longrightarrow}$

Fast ML for trigger

- Deep (machine) learning is the use of structured neural networks with many hidden layers as generic functions to approximate the optimal solution for a given task

WHY MACHINE LEARNING?

- Deep (machine) learning is the use of structured neural networks with many hidden layers as generic functions to approximate the optimal solution for a given task
- Why use deep neural networks in particle physics?
- Deep (machine) learning is the use of structured neural networks with many hidden layers as generic functions to approximate the optimal solution for a given task
- Why use deep neural networks in particle physics?
- They work!
- Deep (machine) learning is the use of structured neural networks with many hidden layers as generic functions to approximate the optimal solution for a given task
- Why use deep neural networks in particle physics?
- They work!
- Lots of data \& simulation to train them

WHY MACHINE LEARNING?

- Deep (machine) learning is the use of structured neural networks with many hidden layers as generic functions to approximate the optimal solution for a given task
- Why use deep neural networks in particle physics?
- They work!
- Lots of data \& simulation to train them
- Fast ways to train them

TensorFlow

K Keras © PyTorch

WHY MACHINE LEARNING?

- Deep (machine) learning is the use of structured neural networks with many hidden layers as generic functions to approximate the optimal solution for a given task
- Why use deep neural networks in particle physics?
- They work!
- Lots of data \& simulation to train them
- Fast ways to train them

TensorFlow

- Possibly gain new insights...

K Keras © PyTorch

ML FOR JET TAGGING ML FOR GEN/SIM FAST ML FOR TRIGGER

FERMIONS (MATTER)
quarks leptons

HIGGS BOSON IN THE STANDARD MODEL

> Higgs boson is the centerpiece: all particles interact with it
, May be a link to new particles or interactions

Signal:

Signal:

Signal:
Can machine learning help us?

b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!

BASICS OF HIGGS (DOUBLE-B) TAGGING

b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!

- Handles:

BASICS OF HIGGS (DOUBLE-B) TAGGING

b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!

- Handles:
- secondary vertices

BASICS OF HIGGS (DOUBLE-B) TAGGING

b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!

- Handles:
- secondary vertices
- displaced tracks

BASICS OF HIGGS (DOUBLE-B) TAGGING

b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!

- Handles:
- secondary vertices
- displaced tracks
- large impact parameters

b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!
- Handles:
- secondary vertices
- displaced tracks
- large impact parameters
, soft leptons
b hadrons have long lifetimes: travel $\mathrm{O}(\mathrm{mm})$ before decay!
- Handles:
- secondary vertices
- displaced tracks
- large impact parameters
- soft leptons

- Relative positions of SVs
- In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance
- In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance
- CNNs for images

- In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance
- CNNs for images

- RNNs for language processing

0.2
0.5
1

- In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance
- CNNs for images

- RNNs for language processing

0.2
0.5
1

- What about high energy physics data like jets?

- Node features \mathbf{v}_{i} : particle 4-momentum

$$
p=\left[E, p_{x}, p_{y}, p_{z}\right] \equiv\left[p_{\mathrm{T}}, \eta, \phi, m\right]
$$

- Node features \mathbf{v}_{i} : particle 4-momentum

$$
p=\left[E, p_{x}, p_{y}, p_{z}\right] \equiv\left[p_{\mathrm{T}}, \eta, \phi, m\right]
$$

- Edge features \mathbf{e}_{k} : pseudoangular distance between particles

$$
\Delta R=\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}
$$

- Node features \mathbf{v}_{i} : particle 4-momentum

$$
p=\left[E, p_{x}, p_{y}, p_{z}\right] \equiv\left[p_{\mathrm{T}}, \eta, \phi, m\right]
$$

- Edge features \mathbf{e}_{k} : pseudoangular distance between particles

$$
\Delta R=\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}
$$

- Graph (global) features u: jet mass

$$
m=\sqrt{\sum_{i \in \mathrm{jet}} E_{i}^{2}-p_{x, i}^{2}-p_{y, i}^{2}-p_{z, i}^{2}}
$$

GRAPH NEURAL NETWORKS

- Node-level tasks
- Correct cluster energies
- Identify "pileup" particles
- Particle-flow reconstruction

GRAPH NEURAL NETWORKS

- Node-level tasks
- Graph-level tasks
- Correct cluster energies
- Jet tagging
- Identify "pileup" particles * Estimate shower energy
- Particle-flow reconstruction , Signal-to-background

Node classification
$\mathbf{z}_{i}=f\left(\mathbf{h}_{i}\right)$

GRAPH NEURAL NETWORKS

- Node-level tasks
- Graph-level tasks
- Correct cluster energies
, Jet tagging
- Identify "pileup" particles * Estimate shower energy
- Particle-flow reconstruction , Signal-to-background

Node classification $\mathbf{z}_{i}=f\left(\mathbf{h}_{i}\right)$ event discrimination

- Estimate track parameters
- Secondary vertex reconstruction

PARTICLES AND SECONDARY VERTICES: TWO INPUT GRAPHS

$$
p_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, d_{3 \mathrm{D}}, \operatorname{cov}\left(p_{\mathrm{T}}, p_{\mathrm{T}}\right), \ldots\right]
$$

$$
v_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, n_{\text {tracks }}, \cos \theta_{\mathrm{PV}}, \ldots\right]
$$

PARTICLES AND SECONDARY VERTICES: TWO INPUT GRAPHS

- Particles (i.e. tracks) and vertices are two separate inputs with different feature vectors (heterogenous graph)

$$
p_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, d_{3 \mathrm{D}}, \operatorname{cov}\left(p_{\mathrm{T}}, p_{\mathrm{T}}\right), \ldots\right]
$$

$$
v_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, n_{\text {tracks }}, \cos \theta_{\mathrm{PV}}, \ldots\right]
$$

PARTICLES AND SECONDARY VERTICES: TWO INPUT GRAPHS

- Particles (i.e. tracks) and vertices are two separate inputs with different feature vectors (heterogenous graph)
- GNNs typically consider a homogenous graph (e.g. particle-particle graph)

$$
v_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, n_{\text {tracks }}, \cos \theta_{\mathrm{PV}}, \ldots\right]
$$

PARTICLES AND SECONDARY VERTICES: TWO INPUT GRAPHS

- Particles (i.e. tracks) and vertices are two separate inputs with different feature vectors (heterogenous graph)
- GNNs typically consider a homogenous graph (e.g. particle-particle graph)
- Vertex-vertex graph can also be considered

$$
p_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, d_{3 \mathrm{D}}, \operatorname{cov}\left(p_{\mathrm{T}}, p_{\mathrm{T}}\right), \ldots\right]
$$

$$
v_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, n_{\text {tracks }}, \cos \theta_{\mathrm{PV}}, \ldots\right]
$$

PARTICLES AND SECONDARY VERTICES: TWO INPUT GRAPHS

- Particles (i.e. tracks) and vertices are two separate inputs with different feature vectors (heterogenous graph)
- GNNs typically consider a homogenous graph (e.g. particle-particle graph)
- Vertex-vertex graph can also be considered
- Combined GNN can consider

$$
p_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, d_{3 \mathrm{D}}, \operatorname{cov}\left(p_{\mathrm{T}}, p_{\mathrm{T}}\right), \ldots\right]
$$

$$
v_{i}=\left[p_{\mathrm{T}}^{\mathrm{rel}}, \phi^{\mathrm{rel}}, \eta^{\mathrm{rel}}, \ldots, n_{\text {tracks }}, \cos \theta_{\mathrm{PV}}, \ldots\right]
$$ both by constructing two separate graphs

- ParticleNet, using "dynamic edge convolutions:" graph is constructed based on "closeness" in a latent space

- ParticleNet, using "dynamic edge convolutions:" graph is constructed based on "closeness" in a latent space

- ParticleNet, using "dynamic edge convolutions:" graph is constructed based on "closeness" in a latent space
- Identifies $\mathrm{H}(\mathrm{bb})$ with a true positive rate of over 50% and a false positive rate of 0.1\%

- An important property used to analyze Higgs boson jets is the invariant mass
- Provides good separation between W/Z/H-jets and q/g jets
- Grooming removes soft and wide-angle radiation (soft drop is CMS standard)
- Can we do better with ML?

CMS: $z_{\text {cut }}=0.1, \beta=0$

GNN FOR MASS REGRESSION IN CMS

- Reuse ParticleNet architecture with a target of the "true" jet mass
- Special training samples incorporate $X \rightarrow b b, X \rightarrow c c, X \rightarrow q q$ with varying X mass in $[15,250] \mathrm{GeV}$

$$
M_{\text {target }}= \begin{cases}M_{\mathrm{SD}}^{\mathrm{gen}} & \text { if jet is } \mathrm{QCD} \\ m_{\mathrm{X}} \in[15,250] \mathrm{GeV} & \text { otherwise }\end{cases}
$$

- Minimize loss function:

$$
L\left(y, y^{p}\right)=\sum_{i=1}^{n} \log \cosh \left(y_{i}^{p}-y_{i}\right)
$$

GNN FOR MASS REGRESSION IN CMS

- Reuse ParticleNet architecture with a target of the "true" jet mass
- Special training samples incorporate $X \rightarrow b b, X \rightarrow c c, X \rightarrow q q$ with varying X mass

$$
\begin{aligned}
& \text { in }[15,250] \mathrm{GeV} \\
& M_{\text {target }}= \begin{cases}M_{\mathrm{SD}}^{\mathrm{gen}} & \text { if jet is QCD } \\
m_{\mathrm{X}} \in[15,250] \mathrm{GeV} & \text { otherwise }\end{cases}
\end{aligned}
$$

- Minimize loss function:

$$
L\left(y, y^{p}\right)=\sum_{i=1}^{n} \log \cosh \left(y_{i}^{p}-y_{i}\right)
$$

- Substantial scale and resolution improvement

- Reuse ParticleNet architecture with a target of the "true" jet mass
- Special training samples incorporate $X \rightarrow b b, X \rightarrow c c, X \rightarrow q q$ with varying X mass

$$
\text { in }[15,250] \mathrm{GeV}
$$

$$
M_{\text {target }}= \begin{cases}M_{\mathrm{SD}}^{\text {gen }} & \text { if jet is } \mathrm{QCD} \\ m_{\mathrm{X}} \in[15,250] \mathrm{GeV} & \text { otherwise }\end{cases}
$$

- Minimize loss function:

$$
L\left(y, y^{p}\right)=\sum_{i=1}^{n} \log \cosh \left(y_{i}^{p}-y_{i}\right)
$$

- Substantial scale and resolution improvement
- Can increase sensitivity by 20-25\% to rare Higgs boson signals like HH, VBF, ...

CMS Simulation Preliminary

ML FOR TAGGING FOR GEN/SIM FAST ML FOR TRIGGER

CPU DEMANDS AT THE UPGRADED LHC

RUN-2

- Computing demands increase nonlinearly with increasing "pileup"

- Computing demands increase nonlinearly with increasing "pileup"
- Need more processing power (or smarter algorithms like deep learning) to keep up with demands

GENERATIVE ADVERSARIAL NETWORKS

- Train two neural networks in tandem:
- one to generate realistic "fake" data
- the other to discriminate "real" from "fake" data

- Train two neural networks in tandem:
- one to generate realistic "fake" data

- the other to discriminate "real" from "fake" data

ATLAS FASTCALOGAN

ATLAS FASTCALOGAN

- Geant4-based ATLAS simulation of the full calorimeter is slow; can a GAN replace this?

ATLAS FASTCALOGAN

- Geant4-based ATLAS simulation of the full calorimeter is slow; can a GAN replace this?
- 300 GANs trained to parametrize the detector response to photons, electrons and pions

ATLAS FASTCALOGAN

- Geant4-based ATLAS simulation of the full calorimeter is slow; can a GAN replace this?
- 300 GANs trained to parametrize the detector response to photons, electrons and pions

- Good agreement between the GAN and Geant4 both for single-particle showers and jets

- As an alternative to voxelization, a graph-based GAN can be used to generate jets as particle clouds

- As an alternative to voxelization, a graph-based GAN can be used to generate jets as particle clouds

$$
\begin{aligned}
& \text { FOR TAGGING } \\
& \text { FOR GEN/SIM } \\
& \text { FOR TRIGGER }
\end{aligned}
$$

COMPUTING HARDWARE ALTERNATIVES

COMPUTING HARDWARE ALTERNATIVES

$\begin{array}{ll}\text { FLEXIBILITY } & \text { EFFICIENCY }\end{array}$

COMPUTING HARDWARE ALTERNATIVES

COMPUTING HARDWARE ALTERNATIVES

FLEXIBILITY
EFFICIENCY

Sweet spot for edge?

LHC EVENT PROCESSING

Challenges:

Each collision produces $O\left(10^{3}\right)$ particles
The detectors have $O\left(10^{8}\right)$ sensors
Extreme data rates of $\mathrm{O}(100 \mathrm{~TB} / \mathrm{s})$

LHC EVENT PROCESSING

Challenges:
Each collision produces $\mathrm{O}\left(10^{3}\right)$ particles
The detectors have $O\left(10^{8}\right)$ sensors
Extreme data rates of $\mathrm{O}(100 \mathrm{~TB} / \mathrm{s})$

LHC EVENT PROCESSING

Challenges:

Each collision produces $O\left(10^{3}\right)$ particles
The detectors have $O\left(10^{8}\right)$ sensors
Extreme data rates of $\mathrm{O}(100 \mathrm{~TB} / \mathrm{s})$

LHC EVENT PROCESSING

Challenges:
Each collision produces $O\left(10^{3}\right)$ particles
The detectors have $O\left(10^{8}\right)$ sensors
Extreme data rates of $\mathrm{O}(100 \mathrm{~TB} / \mathrm{s})$

LHC EVENT PROCESSING

Challenges:

Each collision produces $O\left(10^{3}\right)$ particles
The detectors have $O\left(10^{8}\right)$ sensors
Extreme data rates of $\mathrm{O}(100 \mathrm{~TB} / \mathrm{s})$

Challenges:

Each collision produces $\mathrm{O}\left(10^{3}\right)$ particles
The detectors have $O\left(10^{8}\right)$ sensors
Extreme data rates of $\mathrm{O}(100 \mathrm{~TB} / \mathrm{s})$

- Say you want to program an "adder" function on an FPGA module adder(
input wire $[4: 0] a$,
input wire $[4: 0] b$,
output wire $[4: 0] \mathrm{y}$
);

$$
\text { assign } y=a+b ;
$$

endmodule

- Register transfer-level (RTL) code is "synthesized" into gates
- Say you want to program an "adder" function on an FPGA module adder(
input wire $[4: 0] a$,
input wire $[4: 0] b$, output wire [4:0] y);

$$
\text { assign } y=a+b ;
$$

endmodule

- Register transfer-level (RTL) code is "synthesized" into gates

PROGRAMMING HARDWARE (FPGAS)

- What if instead we specify an AI model

High-Level Synthesis

DESIGN EXPLORATION WITH HLS4ML

- hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Machine learning model optimization, compression

DESIGN EXPLORATION WITH HLS4ML

- hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

DESIGN EXPLORATION WITH HLS4ML

- hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

- Goal: determine muon P_{T} in endcap based on info. available in the L1 trigger

- Goal: determine muon p_{T} in endcap based on info. available in the L1 trigger
- Challenges:

- Non-uniform magnetic field with little bending
- Large background from multiple sources
- EMTF++ has to evolve to
- Incorporate new muon detectors
- Improve efficiency, redundancy, P_{T} resolution, timing
- Maintain the same trigger threshold at higher pileup

EMTF++ NETWORK AND PERFORMANCE

EMTF++ NETWORK AND PERFORMANCE

- NN regresses muon $\mathrm{p}_{\text {t }}$ based on 36 inputs

- NN regresses muon p_{T} based on 36 inputs
- $3 \times$ reduction in the trigger rate for NN!

Algorithm (target FPGA)	LUT	Flip-flop	Block RAM	DSP
NN + EMTF (VU9P)	28%	8%	30%	30%

- Fits within L1 trigger latency (240 ns !) and FPGA resource requirements (less then 30%)

- Modern ML is the latest tool in the arsenal of HEP that has a wide range of applications
- Jet tagging/regression, event reconstruction, anomaly detection, trigger, data compression, generation/simulation
- We have only scratched the surface of what is possible in the future with ML
- Improvements in physics sensitivity, detector design, automatic calibrations, reducing time/cost of data analysis
- Modern ML is the latest tool in the arsenal of HEP that has a wide range of applications
- Jet tagging/regression, event reconstruction, anomaly detection, trigger, data compression, generation/simulation
- We have only scratched the surface of what is possible in the future with ML
- Improvements in physics sensitivity, detector design, automatic calibrations, reducing time/cost of data analysis
- With upcoming data at the LHC and beyond, we will explore the edge of the unknown in particle physics with cutting-edge ML

JAVIER DUARTE

 LISHEP SESSION CJULY 6, 2021
BACKUP

