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Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown
considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image
processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature.
Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition
and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final
tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of
experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these
approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such
problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already
possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using
existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast
trigger decisions.
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» Deep (machine) learning is the use of structured neural networks with many
hidden layers as generic functions to approximate the optimal solution for a

given task
» Lots of data & simulation to train them 1F

» Fast ways to train them TGﬂSOrFlOW

» Possibly gain new insights...

Keras O PyTorch

» Why use deep neural networks in particle physics?

» They work!
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HIGGS BOSON IN THE STANDARD MODEL
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» Higgs boson is the centerpiece: all particles interact with it

» May be a link to new particles or interactions
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Can machine learning help us?
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b hadrons have long lifetimes:
travel O(mm) before decay!

H(bb) jet
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BASICS OF HIGGS (DOUBLE-B) TAGGING

b hadrons have long lifetimes:
travel O(mm) before decay!

» Handles:

» secondary vertices displaced

tracks charged

» displaced tracks lepton

» large impact parameters

» soft leptons

» Relative positions of SVs
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HOW CAN WE REPRESENT JETS?

» In deep learning, tailoring algorithms to the structure (and symmetries) of the
data has led to groundbreaking performance

» CNNs for images

» RNNs for language processing
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» What about high energy physics data like jets?


https://miro.medium.com/max/700/1*n-IgHZM5baBUjq0T7RYDBw.gif
https://miro.medium.com/max/700/1*Fw-ehcNBR9byHtho-Rxbtw.gif

REPRESENTING A JET AS A GRAPH (OR “PARTICLE CLOUD")
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» Node features v.: particle 4-momentum
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» Node features v.: particle 4-momentum P = [E,px,]?y,]?z] = [PT, n, ¢, mj
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» Node features v.: particle 4-momentum P = [E,px,]?y,]?z] = [PT, n, ¢, mj

N
PR
LR

. \rs“tixkg;‘im W

\\\\\\\
\\\\\\
AR

L

i,
VA
Wi

» Edge features e,: pseudoangular distance

b etW een p a rti CI es |||||||||||||||||||||||||||||

AR =1/ An? + Ag?

7
7
bl
‘‘‘‘‘‘‘
T
i % sl

i
i,

\\\\\\\\\\\\
ARG
MR

RN

» Graph (global) features u: jet mass

S
1
e

)
|
S,
|
‘;g[\)
|
e
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GRAPH NEURAL NETWORKS
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» Node-level tasks
» Correct cluster energies
» ldentify "pileup" particles

» Particle-flow reconstruction
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» Node-level tasks » Graph-level tasks
» Correct cluster energies » Jet tagging
» ldentify "pileup" particles » Estimate shower energy Node classification
: : : Z;
» Particle-flow reconstruction » Signal-to-background z; = f(h;)

event discrimination

Graph classification

Zg = f (@iév h;)

Inputs Latents

(X, A) (H, A)
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» Node-level tasks » Graph-level tasks

» Correct cluster energies » Jet tagging

» ldentify "pileup" particles » Estimate shower energy Node classification

Z; — f(hz')

» Particle-flow reconstruction » Signal-to-background
event discrimination

Graph classification
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» Edge-level tasks (H’ A)
Link prediction

» Identify track segments zi; = f(h;,h;, e;;)

» Estimate track parameters

» Secondary vertex reconstruction
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» Particles (i.e. tracks) and
vertices are two separate
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» Particles (i.e. tracks) and
vertices are two separate

_ rel prel . rel
inputs with different feature Pi=1prs @ - dyp, cOV(pr, py), -
vectors (heterogenous graph) (P-p)s
(P-p)1

» GNNs typically consider a

homogenous graph (e.g. (P-P)z (P-P)4
particle-particle graph) (P-P)s (p-p)
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arXiv:1909.12285 12

» Particles (i.e. tracks) and
vertices are two separate
inputs with different feature
vectors (heterogenous graph)

» GNNs typically consider a
homogenous graph (e.g.
particle-particle graph)

» Vertex-vertex graph can also
be considered

» Combined GNN can consider
both by constructing two
separate graphs
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GNN FOR TAGGING H(BB) IN CMS

arXiv:1202.08570

CMS-DP-2020-002 13

EdgeConv Block
k=16, C = (64, 64, 64)

\

EdgeConv Block
k=16, C = (128, 128, 128)

\

-

.

EdgeConv Block
k=16, C = (256, 256, 256)

~

J

\/

Global Average Pooling

\/

Fully Connected
256, RelL U, Dropout = 0.1

\ 4

Fully Connected
2

\/

Softmax



https://arxiv.org/abs/1902.08570
https://cds.cern.ch/record/2707946/

arXiv:1202.08570

GNN FOR TAGGING H(BB) IN CMS CMS-DP-2020-002 13

» ParticleNet, using “dynamic edge convolutions:” graph is constructed based on
“closeness” in a latent space
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» ParticleNet, using “dynamic edge convolutions:” graph is constructed based on
“closeness” in a latent space
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» ParticleNet, using “dynamic edge convolutions:” graph is constructed based on

“closeness” in a latent space

» Identifies H(bb) with a true positive rate of over 50% and a false positive rate of

0.1%
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BEYOND JET TAGGING: JET MASS

arXiv:1307.0007
arXiv:1402.2657 14

» An important property used to analyze Higgs boson jets is the invariant mass

» Provides good separation between W/Z/H-jets and g/g jets

» Grooming removes soft and wide-angle radiation (soft drop is CMS standard)
» Can we do better with ML?
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Stop when
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» Reuse ParticleNet architecture with a target of the “true” jet mass

» Special training samples incorporate X—bb, X—cc, X—qqg with varying X mass
in[15, 250] GeV

o MED if jet is QCD
et my € [15,250] GeV  otherwise

» Minimize loss function:

L(y, y?P) = 2 log cosh(y!” — y)
i=1
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» Reuse ParticleNet architecture with a target of the “true” jet mass

» Special training samples incorporate X—=bb, X—cc, X—+qqg with varying X mass
in[15, 250] GeV

CMS Simulation Preliminary

ME if jet is QCD  § o T T
Mtar ot — SD J . Q '-.f-—; 0-14__ anti—kT jets  wreeene H -> bb (soft drop)
. my € [15.250]GeV otherwise 8 F ags  — He>bbregresson)
= p_>400 GeV
» Minimize loss function: G 01"
N o T
L(y,yP) = Z log cosh(yf ), 0.08[-

i=1
» Substantial scale and resolution improvement
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» Reuse ParticleNet architecture with a target of the “true” jet mass

» Special training samples incorporate X—bb, X—cc, X—+qqg with varying X mass

in[15, 250] GeV
Mgy if jet is QCD

M —
et my € [15,250] GeV otherwise

» Minimize loss function:

n
L(y, y?P) = Z log cosh(y!” — y)
i=1
» Substantial scale and resolution improvement
» Can increase sensitivity by 20-25% to
rare Higgs boson signals like HH, VBF, ...
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» Computing demands increase nonlinearly with increasing “pileup”
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» Computing demands increase nonlinearly with increasing “pileup”

» Need more processing power (or smarter algorithms like deep learning) to keep
up with demands



arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS arXivi1912.04958 18
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» Train two neural networks in tandem:
» one to generate realistic "fake” data

» the other to discriminate “real” from “fake” data
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» Geant4-based ATLAS simulation of the full calorimeter
is slow; can a GAN replace this?
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» Geant4-based ATLAS simulation of the full calorimeter
is slow; can a GAN replace this?

» 300 GANs trained to parametrize the detector response
to photons, electrons and pions
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» Geant4-based ATLAS simulation of the full calorimeter
is slow; can a GAN replace this?

» 300 GANs trained to parametrize the detector response
to photons, electrons and pions

» Good agreement between the GAN and Geant4 both

for single-particle showers and jets
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arXiv:2012.00173

GRAPH-BASED GAN arXiv:2106.11535 20

» As an alternative to voxelization, a graph-based GAN can be used to generate
jets as particle clouds
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GRAPH-BASED GAN arXiv:2106.11535 20

» As an alternative to voxelization, a graph-based GAN can be used to generate
jets as particle clouds
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PRUGRAMMING HARDWARE (FPGAS) For more: https://youtu.be/iHgOmmIgOUU 24

» Say you want to program an “adder” function on an FPGA

module adder(
Lthput wire [4:0] a,
Lhput wire [4:0] b,
output wire [4:0] vy
) ;

assign y = a + b;

endmodule

» Register transfer-level (RTL)
code is “synthesized” into gates


https://youtu.be/iHg0mmIg0UU
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» Say you want to program an “adder” function on an FPGA

module adder(
Lthput wire [4:0] a
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)3 b - -
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endmodule \\\\\~___’,///’

» Register transfer-level (RTL)

Synthesis
code is “synthesized” into gates /


https://youtu.be/iHg0mmIg0UU

PROGRAMMING HARDWARE (FPGAS) 25

» What if instead we specity an Al model
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DESIGN EXPLORATION WITH HLSAML

J. Instrum. 13, P07027 (2018)26

» hlsdml for scientists or ML experts to translate ML algorithms into RTL firmware
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DESIGN EXPLORATION WITH HLSAML

» hls4dml for scientists or ML experts to translate ML algorithms into RTL firmware
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EMIF+-+ NETWORK AND PERFORMANCE
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» NN regresses muon pr based on 36 inputs
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» NN regresses muon pr based on 36 inputs

» 3x reduction in the trigger rate for NN!
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EMTF++ FPGA IMPLEMENTATION CMS-TDR-021 5
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J' Inference time: 240 ns
Throughput: 104 Gb/s

» Fits within L1 trigger latency (240 ns!) and FPGA
resource requirements (less then 30%)
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» Modern ML is the latest tool in the arsenal of
HEP that has a wide range of applications

» Jet tagging/regression, event reconstruction,
anomaly detection, trigger, data
compression, generation/simulation

» We have only scratched the surface of what is
possible in the future with ML

» Improvements in physics sensitivity, detector
design, automatic calibrations,
reducing time/cost of data analysis


mailto:jduarte@ucsd.edu

SUMMARY AND OUTLUOK Questions? Contact: jduarte@ucsd.edu 30

» Modern ML is the latest tool in the arsenal of
HEP that has a wide range of applications

» Jet tagging/regression, event reconstruction,
anomaly detection, trigger, data
compression, generation/simulation

» We have only scratched the surface of what is
possible in the future with ML

» Improvements in physics sensitivity, detector
design, automatic calibrations,
reducing time/cost of data analysis

» With upcoming data at the LHC and beyond,
we will explore the edge of the unknown in
particle physics with cutting-edge ML
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