

ATLAS Highlights

Richard Hawkings (CERN), richard.hawkings@cern.ch on behalf of the ATLAS Collaboration LISHEP 2021, online, 7/7/2021

- Selected recent ATLAS results from the LHC Run-2 dataset
 - Higgs physics precision and rare Higgs decays
 - Heavy gauge boson searches
 - Lepton flavour violation
 - 4-top and single top production
 - Supersymmetry electroweak and stopped particles
 - Outlook for Run-3 and beyond
 - Only scratching the surface ...
 - <u>AtlasPublicResults</u> for more

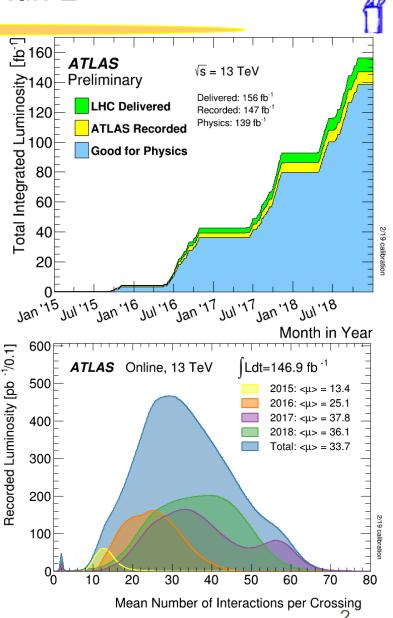
Candidate 4-top event with muon and many (b)-jets

7th July 2021

Richard Hawkings

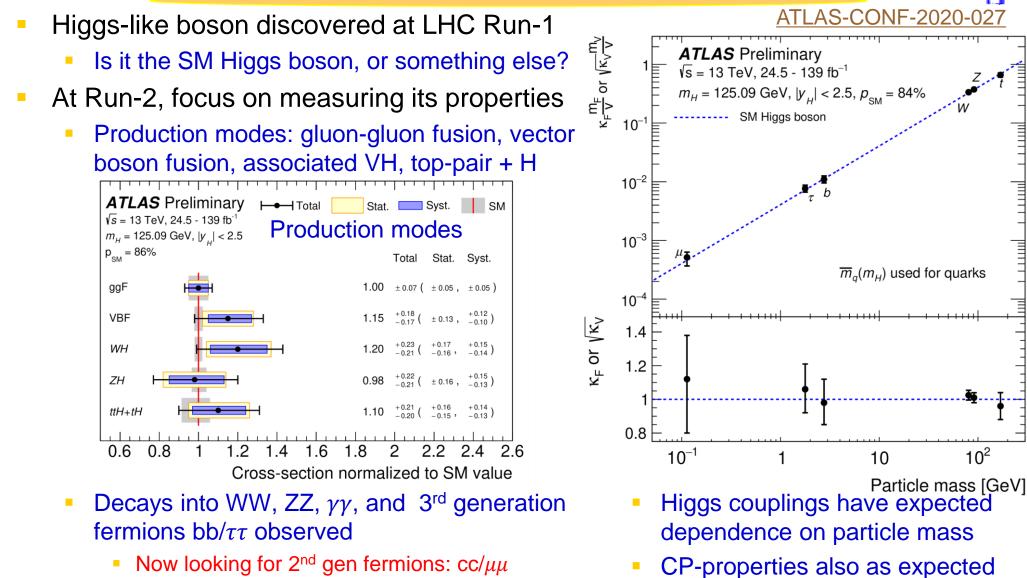
ATLAS physics at Run-2

- LHC ran at √s=13 TeV from 2015-18
 - 147 fb⁻¹ of pp data recorded by ATLAS
 - 139 fb⁻¹ good for physics analysis

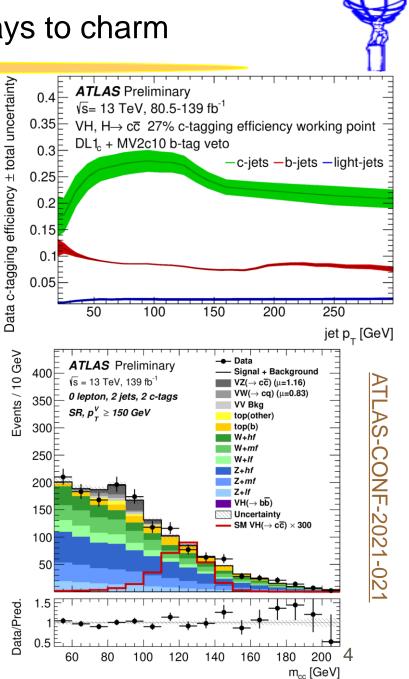

ATLAS pp Run-2: July 2015 – October 2018

Inner Tracker		Calorimeters		Muon Spectrometer			Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.5	99.9	99.7	99.6	99.7	99.8	99.6	100	100	99.8	98.8
Good for physics: 95.6% (139 fb ⁻¹)										

- High-pileup data, <µ>=33.7
- Precise calibration of physics objects
 - E.g. lepton efficiencies <1% e, ~0.1% μ
 - Jet energy scale ~1-3% for p_T>30 GeV
- Already <u>1000 ATLAS collision-data papers</u> with~135 results on full run-2 dataset
 - New physics searches, SM measurements
 - Showcasing some recent highlights ...


7th July 2021

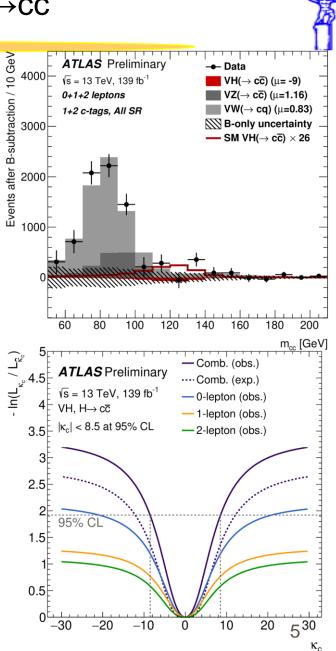
The Higgs landscape


7th July 2021

Richard Hawkings

Searching for Higgs decays to charm

- Dominant H→bb decay (BR 58%) <u>observed</u> in 2018 via WH→Ivbb and ZH→vv/II bb
 - 2^{nd} gen. H \rightarrow cc decay much more challenging
 - BR=2.9%, much harder to tag c-jets than b-jets
- Performant charm jet tagger now available
 - Pick out 'intermediate' lifetime charm hadrons between longer lifetime b and prompt uds/g
 - 27% efficiency for charm, 8% b, 1.6% light
 - Calibrated using top-pair and Z+jets in data
- Select events with large E_T^{miss} or 1/2 leptons
 - Require 1 or 2 c-tagged jets, veto b-tag jets
 - Study invariant mass of two highest p_T jets assumed to come from Higgs decay
 - Small, wide signal due to limited jet resolution
 - Very good control of backgrounds from W+jets, Z+jets, top required

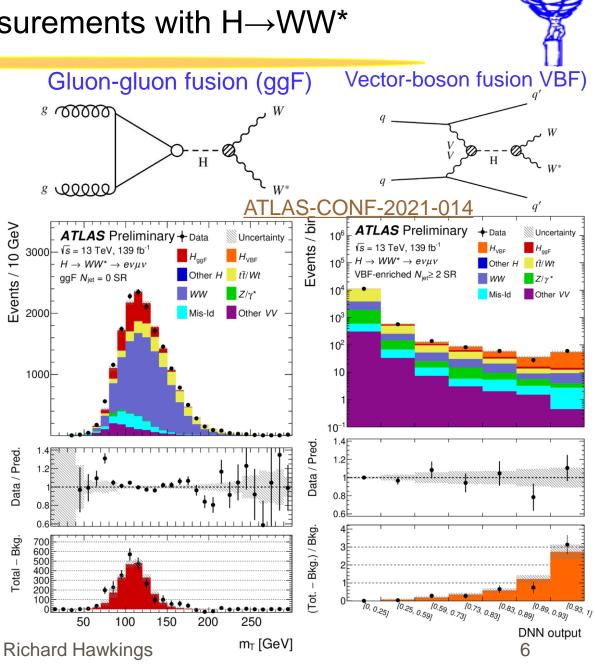


Results and limits on $H \rightarrow cc$

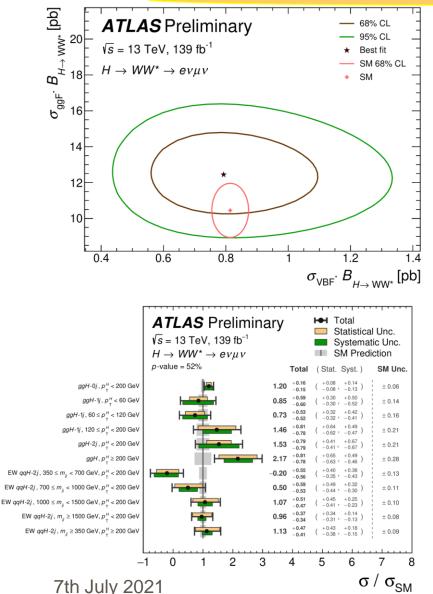
- Natural calibration signal from VV production
 - i.e. W/Z+W→cq, W/Z+Z→cc with broad mass peak around the W and Z masses
- Simultaneous fit to all three signals
 - Signal strength μ =rate normalised to SM expt.

	value	stat	syst
$\mu_{ m VW(cq)}$	0.83	±0.11	±0.21
$\mu_{VZ(cc)}$	1.16	±0.32	±0.36
$\mu_{VH(cc)}$	-9	±10	±12

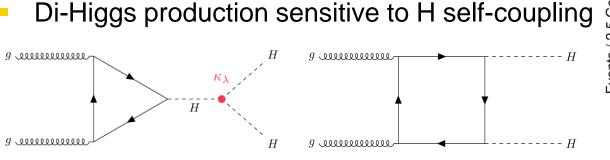
- VW(cq) and VZ(cc) observed with 3.8σ and 2.6σ significances, rates agree with expectation
- Fitted VH(cc) rate is negative, compatible with 1
 - 95% C.L. limit on VH(cc): μ<26, c.f. 31 expected
- Interpret as limit on H-charm coupling modifier
 - |κ_c|<8.5, assuming the modified coupling only affects the H→cc decays, not Higgs production
 7th July 2021 Richard Hawkings

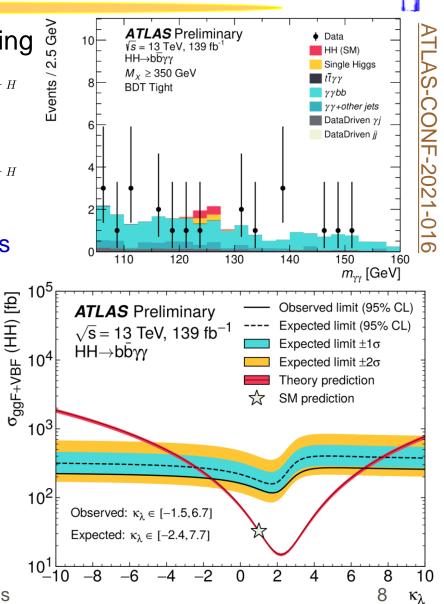


Precise measurements with $H \rightarrow WW^*$


- High statistics $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ allows studies of different Higgs production modes
 - ggF: jets only from ISR
 - VBF: forward quark jets with large m_{ii} and large Δy
 - Backgrounds from continuum WW* production, top-pair
 - Exploit $\Delta \phi(e\mu)$ smaller for signal due to spin-0 Higgs
- Separate sample using N_{iet} and dedicated deep NN for VBF
 - Backgrounds estimated using control regions for WW, top-pair and $Z \rightarrow \tau \tau \rightarrow e \mu$ contributions
 - Final discriminant for ggF:

$$m_{\rm T} = \sqrt{\left(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss}\right)^2 - \left|\boldsymbol{p}_{\rm T}^{\ell\ell} + \boldsymbol{E}_{\rm T}^{\rm miss}\right|^2}$$
7th July 2021


H→WW* results


- Simultaneous fit to ggF and VBF signals
 - Measures $\sigma_{\rm ggF}$ and $\sigma_{\rm VBF}$, good agreement with SM prediction
 - VBF observed with 6.6σ significance
 - Going further simplified template crosssections (STXS)
 - Measurement of fiducial cross-sections in different production modes, jet multiplicities and Higgs/jet kinematics
 - A well-defined framework for characterising Higgs production
 - Map STXS categories onto experimental selections/bins
 - Good overall agreement between STXS measurements and predictions
 - p-value of 52% for compatibility with SM

Towards the future – di-Higgs production

- Destructive interference with 'box' diagram reduces x-sec, σ_{HH}≈30 fb in SM – rare process
- H tri-linear coupling scaled by κ_{λ} ; κ_{λ} =1 in SM
- One of most sensitive channels: $HH \rightarrow bb\gamma\gamma$
 - Combining high-BR bb and clean low-BR $\gamma\gamma$
 - BDT selection using kinematic variables
 - Main background from continuum $bb\gamma\gamma$
- Limit $\sigma_{\rm HH}$ <130 fb at 95% CL (4.1x SM)
 - Corresponds to -1.5< κ_{λ} <6.7
 - Limits also set on resonant HH production
- A key topic for Run-3 and HL-LHC 7th July 2021 Richard Hawkings

New physics decaying to Higgs?

efficiency

Acceptance

0.4

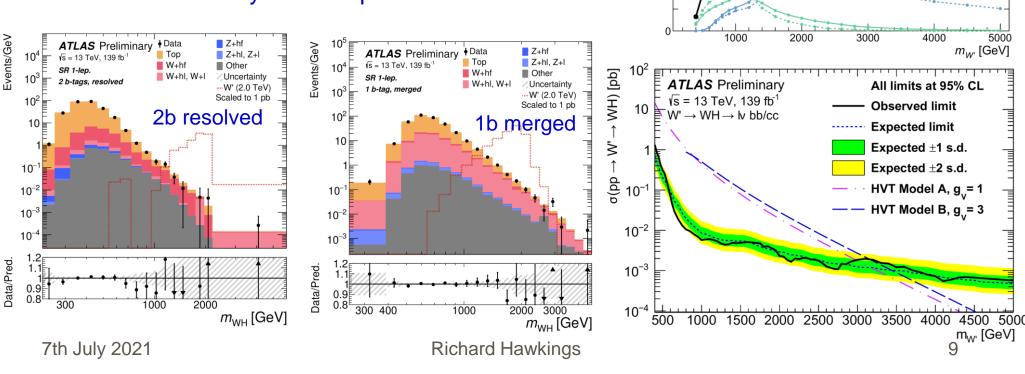
0.2

ATLAS-CONF-2021

All signal regions

1 b-tag, resolved

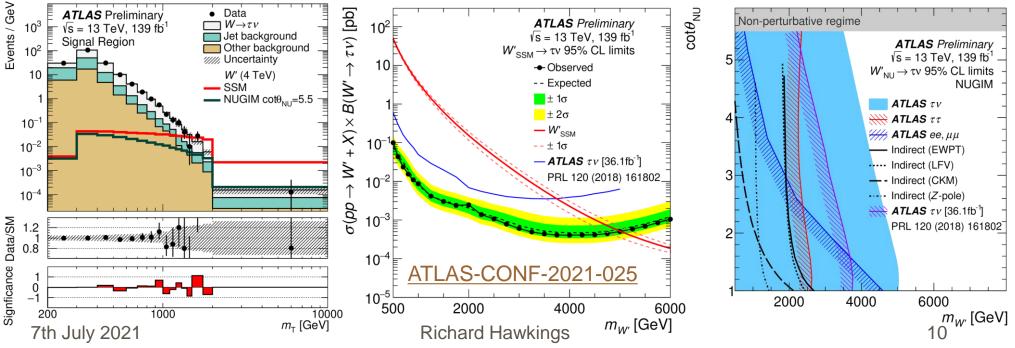
2 b-tags, resolved


- 1 b-tag, merged

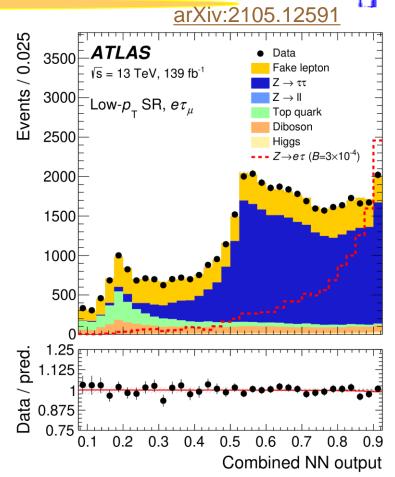
2 b-tags, merged

ATLAS Simulation Preliminary

√s = 13 TeV, 139 fb⁻¹ HVT W'→ WH →Ivbb/cc


- Dynamical symmetry breaking models predict new vector bosons decaying to H, e.g. W'→WH
 - Search for $W \rightarrow e/\mu + \nu$, $H \rightarrow bb$
 - Lepton + E_T^{miss} +2 resolved b-jets (low p_T Higgs), or one large-radius jet with 2 b-tagged track-jets
- Search for resonance in m_{WH} distributions
 - Limits on heavy vector triplet models at ~3 TeV

- W' \rightarrow Iv, flavour symmetric in SSM, or with enhanced couplings to τ
 - E.g. non-universal gauge interaction model, enhanced τ coupling if $\cot\theta_{NU}>1$
- Search for events with hadronic τ candidate and large E_T^{miss}
 - 1- or 3-prong hadronic τ identified with recursive NN, 75-85% τ -ID efficiency
 - Transverse mass m_T of visible τ decay products and E_T^{miss} used as discriminant
- W' with mass up to 5.0 TeV excluded in SSM (+1.3 TeV c.f. partial dataset)
 - W' with masses up to 3.5-5.0 TeV excluded for NUGIM models depending on θ_{NU}

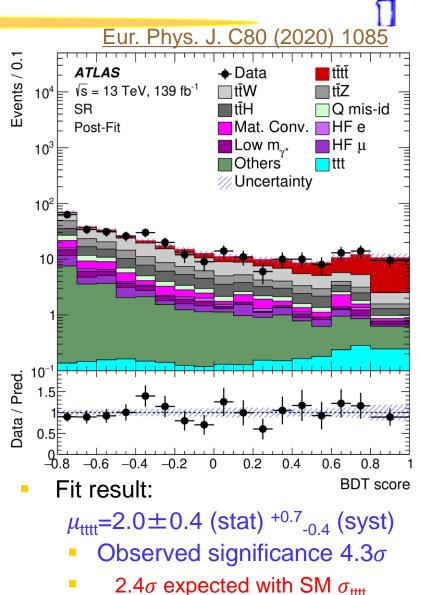


Lepton flavour violation in Z decays?

- Lepton flavour conservation 'accidental' in SM
 - But violated in neutrino oscillations
 - Heavy neutrinos could cause $Z \rightarrow e/\mu + \tau$ at 10⁻⁵
- Search for this process with $\tau \rightarrow \mu/e+2\nu$
 - Signature $e_{\mu} + E_T^{miss}$ with total invariant mass $\approx m_Z$
 - Back-to-back leptons with E_T^{miss} colinear with lepton from τ
 - Backgrounds from $Z \rightarrow \tau \tau \rightarrow e \mu + 4\nu$, top-pair, diboson and events with fake leptons
 - NN classifiers to distinguish the different event types, fit for signal and background normalisation
- No significant signal, limits on $B(Z \rightarrow e/\mu + \tau)$
 - Combine with 2010.02566 using hadronic τ decay

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]			
Final state, polarization assumption	e au	μau		
$\ell \tau_{\ell'}$ Run 2, unpolarized τ	7.0 (8.9)	7.2 (10)		
$\ell \tau_{\ell'}$ Run 2, left-handed τ	5.9 (7.5)	5.7 (8.5)		
$\ell \tau_{\ell'}$ Run 2, right-handed τ	8.4 (11)	9.2 (13)		
Combined $\ell \tau$ Run 1 + Run 2, unpolarized	au 5.0 (6.0)	6.5 (5.3)		
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)		
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)		
7th 1.1. 0004		Diele end Llevuluie ee		

7th July 2021



Surpasses LEP limits of ~1 10⁻⁵

Four tops production – 2LSS/3L channels

- Rare process 4 heavy particles ~ 700 GeV $\overbrace{}^{\circ\circ\circ\circ\circ\circ\circ}_{t}$
 - Sensitive to BSM physics, and top quark Yukawa coupling to Higgs boson
 - SM prediction with NLO QCD: σ_{tttt} =12 fb
- BR(t→Wb) ≈1; lots of jets and b-jets, leptons from leptonic W decays
 - 13% to 2 same-sign leptons or ≥3 leptons
 - Background from top-pair + W,Z,H, fake leptons
 - 57% to 1 lepton or 2 OS leptons
 - Background from top-pair + jets, esp. b-jets
- Initial full run-2 analysis in 2LSS/3L channels
 - ≥6 jets, ≥2 b-tagged jets
 - BDT using kinematics and b-tag information
 - Control samples for ttW + fake lepton b/g
 Richard Hawkings

12

1L/2LOS four tops and combination

Events

 10^{3}

 10^{2}

Data / Bkg

ATLAS

1L/2LOS

2LSS/3L

Combined

tot.

stat.

ATLAS

1L/2LOS

-2

Post-Fit

Data √s = 13 TeV, 139 fb⁻¹ signal (µ=1.0) signal (µ_=2.2) Background // Bkg. Unc. 11683 ---- signal (u=1.0) + Bkg - signal (μ. =2.2) + Bkg -1.5 log (S/B) vs = 13 TeV, 139 fb⁻ tīttī Tot. (Stat., Syst.) Obs. Sig

 $^{+1.6}_{-1.2}$ ($^{+0.7}_{-0.7}$, $^{+1.5}_{-1.0}$)

 $\begin{pmatrix} +0.4 & +0.7 \\ -0.4 & -0.5 \end{pmatrix}$

2.0 $^{+0.8}_{-0.6}$ $\begin{pmatrix} +0.4 & +0.7 \\ -0.4 & , -0.4 \end{pmatrix}$

6

+0.8 -0.6

5

1.9 σ

4.3 σ

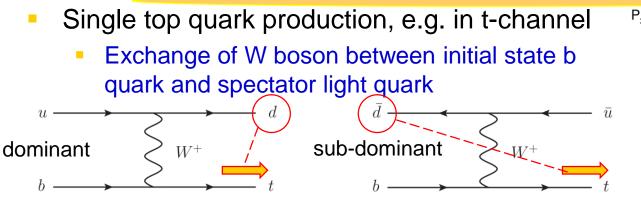
4.7 σ

Best-fit $\mu = \sigma_{\text{true}} / \sigma_{\text{true}}^{\text{SM}}$

13

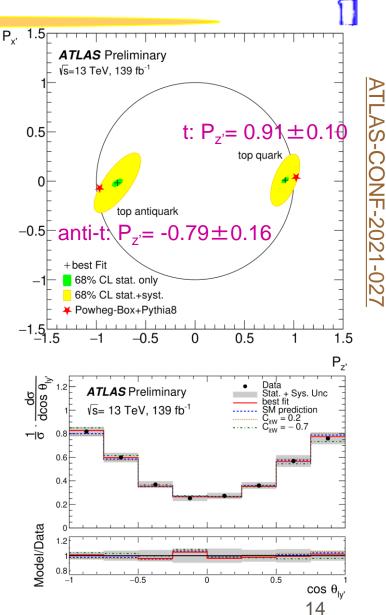
2.2

2.0

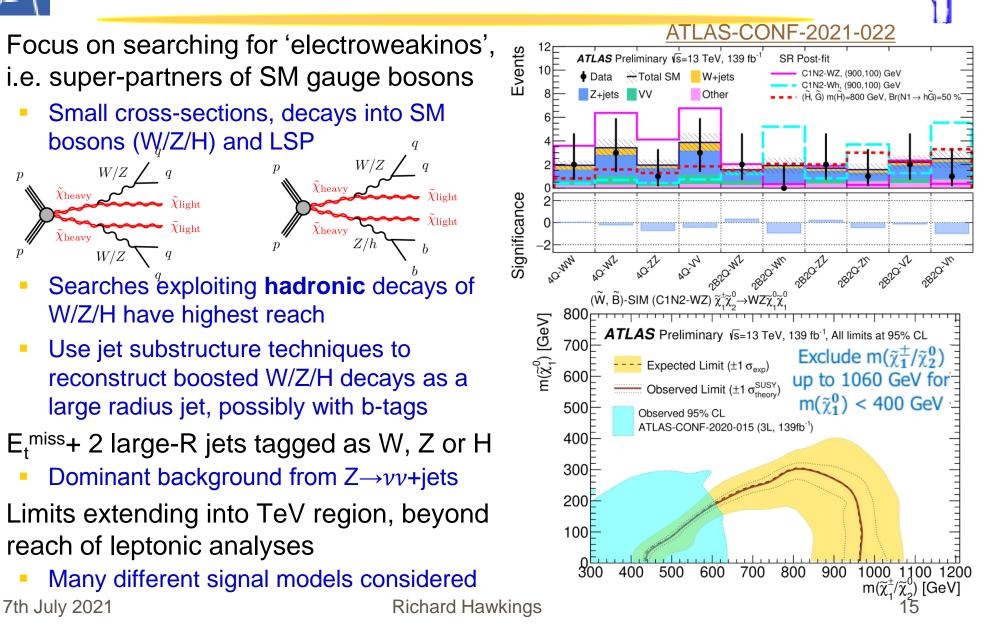

3

- Further analysis in 1L/2LOS channel
 - Require \geq 7 (1L) or \geq 5 (2LOS) jets
 - Divide data into bins of jet and b-jet multiplicity
 - Reweighting scheme with various control regions to improve top-pair + (b) jet modelling
 - Final discrimination with per-bin BDTs using kinematic and b-tagging information
 - Signal regions ranked according to their S/B
- Fit result: $\mu_{\text{tttt}} = 2.2 \pm 0.7 \text{ (stat)}^{+1.5} \text{ (syst)}$
 - Largest systematics: tttt and ttbb modelling
- Combination of both analyses
 - $\mu_{\text{tttt}} = 2.0 \pm 0.4 \text{ (stat)}^{+0.7}_{-0.5} \text{ (syst)}$
 - Observed significance 4.7 σ , expected 2.6 σ
- $\sigma_{\text{tttt}}=24^{+7}$ -6 fb, factor 2 higher than SM prediction
 - But consistent within 2 standard deviations watch this space in Run-3

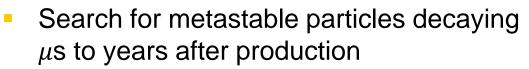
7th July 2021



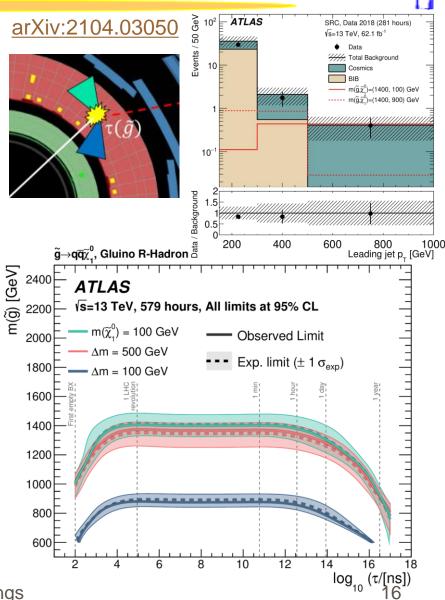
Single top polarisation in t-channel production


- V-A form of Wtb vertex implies top quark spin is aligned along direction of down type quark
 - Use outgoing spectator quark as reference z:
 - Polarisation of t mainly **along** spectator direction
 - Polarisation of anti-t mainly against spectator dirⁿ
- Identify single top events in I+jets channel
 - Reconstruct decay angle distributions gives information on original top polarisation
 - Polarisation of t/anti-t seen as predicted in SM
- Sensitive to EFT operators at Wtb vertex

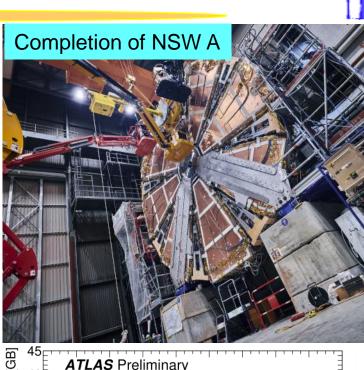
Limits -0.7<C_{tW}<1.5 and -0.7<C_{itW}<0.2
 7th July 2021
 Richard Hawkings

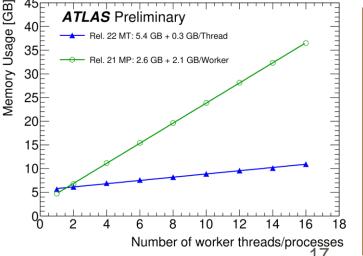


SUSY all-hadronic search



Metastable particles – stopped gluino search


- E.g. split-SUSY models with very heavy squarks and sleptons: long-lifetime gluino
 - Gluino could hadronise with SM quarks and gluons and stop in calorimeter, then decay
- Look for out-of-time particle jets produced in 20-30% 'empty' LHC bunch crossings
 - Dedicated triggers in bunch slots > 100ns from filled bunches
 - Minimises collision background
- Remaining background from cosmic muons and beam-halo (beam-induced background)
 - Estimated largely from data
- Sensitivity depends on integrated luminosity and sample 'livetime': 579 hours in 2017-18
- Gluino masses 0.6 1.4 TeV excluded for various scenarios with 100ns < τ < 1 year 7th July 2021 Richard Hawkings



Towards Run-3

- LHC Run-3 from 2022 to 2024
 - Hoping for √s=13.6 TeV or higher, and another 150-300 fb⁻¹ of pp data
 - Pileup leveled at $<\mu> \approx 50$ for much of fill
- ATLAS detector upgrades
 - Muon New Small Wheels in forward region MicroMega and sTGC detectors
 - Finer granularity of L1 electron/photon trigger
 - More capable L1 'topological' trigger
- Preparing for Run-3
 - New multithreaded software release (rel. 22)
 - Allowing more efficient use of modern computing architectures with many CPU cores
 - Reprocessing all Run-2 data for eventual combination with Run-3 dataset
 - New trigger possibilities: lowering/sharpening thresholds to look in all corners
 - New physics ideas ...

ഗ

B-202

1-002

- ATLAS continues to reap a huge physics harvest from the run-2 dataset
 - Detailed characterisation of the Higgs boson, including rarer decay modes
 - Evidence of rare SM processes (e.g. 4 tops)
 - Continuing BSM physics searches, e.g. electroweak SUSY, processes with τ
 - Ongoing program of precision measurements exploiting the large preciselyunderstood dataset – many Run-2 results to come
 - And a strong heavy-ion programme exploiting the Pb+Pb and Pb+p datasets
- Preparing for run-3
 - Slightly increased collision energy, enhanced detector, trigger and software capabilities
- Looking further HL-LHC starting in late 2020s, ATLAS phase-2 upgrade
 - A full program of detector upgrades now under development and construction
 - New all-silicon tracker (ITk), replacement of barrel muon chambers, electronics upgrades for calorimeters and muon spectrometer, new endcap timing detector (HGTD), new TDAQ system with 1 MHz level-0 trigger
 - A complementary programme of physics studies preparing to exploit the rich possibilities HL-LHC and the upgraded ATLAS detector