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The Large Hadron Collider at CERNThe Large Hadron Collider at CERN See Ignacio
De Bediaga,
RichardHawkings,

Luca Malgeri,

Luciano Musa
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Standard Model
[Cham & Whiteson, We have no idea]

Standard Model
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http://phdcomics.com/noidea/


Quarks
[Gell-Mann, Phys.Lett. 8 (1964) 214] [Zweig, CERN-TH-401] [Petermann, Nucl.Phys. 63 (1965) 349]

Murray Gell-Mann George Zweig André Petermann See also [Petrov, arXiv:1412.8681]
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QED

At large distances the force is constant
and the potential increases linearly

The QCD potential is postulated. The mathematical proof that QCD produces
such a potential is an unsolved problem. Solve it and claim your $1M prize
with the Clay Mathematics Institute [Millenium problems].
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Bound states with d ,u,s,c quarks
[PDG]

The meson 4-quark multiplet The baryon 4-quark multiplet
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http://pdg.lbl.gov/


Masses of Ground States
[PDG]

Bars and boxes: measured masses and
widths.
Symbols: computations.
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Isodoublet of Ξ0
b (bsu) and Ξ−b (bsd)

[CMS, PRL 126 (2021) 252003, arXiv:2102.04524]
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[CMS’21]

? [LHCb’18] ? [LHCb’20]
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Observation of the Ξb(6100)− resonance
[CMS, PRL 126 (2021) 252003, arXiv:2102.04524]
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Also visible with partially
reconstructed Ξ−b → J/ψΣ0K−

Using 130 fb−1 2016–18 data, CMS study Ξ−b π+π− combinations.
Ü new baryon Ξb(6100)− with mass 6100.3± 0.2± 0.1± 0.6 MeV/c2

Consistent with the orbitally excited JP = 3
2
− state with jds = 1, as the

Ξc(2815).
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Five new Ω0
c resonances in Ξ+

c K−
[LHCb, PRL 118 (2017) 182001, arXiv:1703.04639]
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 sidebands+
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Using 3.3 fb−1 at 7, 8 and 13TeV
search for Ω0

c (css) states
Reconstruct Ξ+

c → pK−π+

Combine with
prompt K−

Ü Wow-effect: Five peaks!
Clearly five narrow states,
two of which are very narrow.
Maybe there is a sixth wider
state
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Excited Ω0
c in Ω−b → Ξ+

c K−π+
[LHCb, LHCb-PAPER-2021-012, in preparation]
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Using 9 fb−1 2011–18 data reconstruct
Ω−b → Ξ+

c K−π+ and study Ω0
c in Ξ+

c K−
See 4 of the 5 states of [PRL 118 (2017) 182001]

Ü Angular fit to determine quantum numbers
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Excited Ω0
c in Ω−b → Ξ+

c K−π+
[LHCb, LHCb-PAPER-2021-012, in preparation]
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Using 9 fb−1 2011–18 data reconstruct
Ω−b → Ξ+

c K−π+ and study Ω0
c in Ξ+

c K−
See 4 of the 5 states of [PRL 118 (2017) 182001]

Ü Angular fit to determine quantum numbers
Spin assignments inconclusive.
Ωc(3050)0 and Ωc(3065)0 are
not J = 1

2 (2σ, 3σ resp.)
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Observation of excited Ω−b

[LHCb, PRL 124 (2020) 082002, arXiv:2001.00851]
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4 new states are seen at masses of 6316, 6330, 6340 and 6350 MeV/c2

Karliner and Roser argue they are excitations of the spin-1 ss diquark
with JP = 1/2−, 1/2−, 3/2−, 3/2−. A 5/2− is missing. [PRD 102 (2020) 014027]

Liang and Oset argue for molecules [PRD 101 (2020) 554033]
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[B]

P+
c saga
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Energy Levels: neutral charmonium states

[B]

[Lebed, Mitchell, Swanson, Progress in Particle and Nuclear Physics 93 (2017) 143, arXiv:1610.04528]
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Energy Levels: charged charmonium states

[B]

[Lebed, Mitchell, Swanson, Progress in Particle and Nuclear Physics 93 (2017) 143, arXiv:1610.04528]
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2015 Pentaquark observation
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Using 3 fb−1 2011–12 data find 26000 ± 170
Λ0

b→ J/ψpK− decays.
A 6-dimensional angular analysis needs two
exotic contributions:

Pc(4380)+ Pc(4450)+

JP 3
2
− 5

2
+

Mass [MeV/c2] 4380± 8± 29 4449.8± 1.7± 2.5
Width [MeV] 205± 18± 86 39± 5± 19
Significance 9σ 12σ

Also > 3σ evidence for P+
c in Cabibbo-

suppressed Λ0
b→ J/ψpπ− [PRL 117 (2016) 082003]
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Breit-Wigner behaviour of pentaquarks
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Observation of narrow pentaquarks

[B]

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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Update of Run 1 analysis [PRL 115 (2015) 072001]

Ü Revisit this channel with an updated
BDT: 246 000 Λ0

b→ J/ψpK− decays (10
times Run 1) and 6.4% background.

Reflections from B0
s vetoed

Re-optimised BDT including PID (new)
Only 2 dimensions used: J/ψp and cos θ

Ü No sensitivity to
Argand diagram
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Observation of narrow pentaquarks

[B]

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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cΣThree states are observed:
Pc(4312)+ Γ ∼ 10 MeV (7σ), which

we could not see with 3 fb−1

Pc(4440)+ Γ ∼ 20 MeV
and

Pc(4457)+ Γ ∼ 6 MeV. The
significance of the 2-peak structure
is 5.4σ

7 No sensitivity to the wide
Pc(4380)+

It is striking that the Pc(4312)+ and the Pc(4457)+ sit at the ΣcD and ΣcD∗
thresholds
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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With Run 1 data, ATLAS find 2270± 300 Λ0
b→ J/ψpK− decays

With the same data, LHCb see 26 000± 170 with hardly any background
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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With Run 1 data, ATLAS find 2270± 300 Λ0
b→ J/ψpK− decays

Good fits with 4 P+
c LHCb states of [PRL 122 (2019) 222001] (p ∼ 69%)

(also with 2 P+
c of [PRL 115 (2015) 072001], excluded by LHCb, p ∼ 56% )

Fit with only Λ is not (p ∼ 9× 10−3)
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Amplitude analysis of B0
s→ J/ψpp

[B]

[LHCb, LHCb-PAPER-2021-018, in preparation]

LHCb preliminary

LHCb preliminary

With 9 fb−1 2011–18 data, find 800 B0
s →

J/ψpp with 15% background. Flavour is
untagged.

7 Some structure at 4.3 GeV
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Amplitude analysis of B0
s→ J/ψpp

[B]

[LHCb, LHCb-PAPER-2021-018, in preparation]

LHCb preliminary

LHCb preliminary

With 9 fb−1 2011–18 data, find 800 B0
s →

J/ψpp with 15% background. Flavour is
untagged.

4 Good fit with a P+
c state (3.1σ)

M = 4337 + 7
− 4 ± 2 MeV

Γ = 29 + 26
− 12 ± 14 MeV
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What is a Pentaquark?
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1200 papers citing the 1st P+
c paper, with many possible interpretations.
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Pentaquarks as triangle diagrams

[B]

[Guo, Meissner, Wang, PRD92 (2015) 071502, arXiv:1507.04950]
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Tetraquarks
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

24 220 ± 170 B+ → J/ψφK +

candidates with 4% background
and 2% B+→ J/ψK +K−K +
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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24 220 ± 170 B+ → J/ψφK +

candidates with 4% background
and 2% B+→ J/ψK +K−K +
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Zcs(3985)+ versus Zcs(4000)+

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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[PRL 126 (2021) 102001]
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See YifangWang
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Zcs(3985)+ versus Zcs(4000)+

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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Description of BESIII data
[PRL 126 (2021) 102001]

Description of LHCb data
[arXiv:2103.01803]

Multiplet: For [Maiani, Polosa,

Riquer, arXiv:2103.08331] they are an
SU(3) multiplet

Threshold effects: For
[Ge, Liu, Ke, arXiv:2103.05282] they
are threshold effects

Virtual states: For [Ortega,

Entem, Fernandez, arXiv:2103.07871] the
Zcs are the same virtual
state in different
coupled-channels
environment.
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All exotic hadrons found at the LHC
[LHCb-FIGURE-2021-001] [Updates here]

All exotic resonances observed at the LHC in a mass versus submission date
plot. Hollow markers indicate superseded states.
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χc1(3872) saga
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Observation of the X (3872) Resonance

[B]

[Belle, PRL 91, 262001 (2003), arXiv:hep-ex/0309032]
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Moon-Mars

Belle reported a clear peak in the J/ψπ+π−

mass spectrum above the ψ(2S) in B+ →
J/ψπ+π−K + decays (36± 7 events)

MX = 3872.0± 0.6± 0.5 MeV/c2

Γ < 2.3 MeV

close to the D0D∗0 threshold
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X (3872) quantum numbers

[B]

[LHCb, PRL 110 (2013) 222001, arXiv:1302.6269]
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Five-dimensional angular analysis of
B+→ X (3872)K + with
X (3872)→ J/ψπ+π− using 2011 data

Ü 313± 26 decays in 38 000
B+→ J/ψπ+π−K + candidates

4 Unambiguous assignment JPC = 1++ at 8σ.
This rules out the ηc2 (11D2) hypothesis.
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Breit-Wigner
[Cowan, Gershon]

For narrow resonances far away from the threshold, the Breit-Wigner
parametrisation is suitable

A(s) = α

M2
BW − s − i

√
s ΓBW

' α

M2
BW − s − i MBW ΓBW

[PDG]
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Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

Using 3 fb−1 2011–12 detached
J/ψπ+π− data, study the χc1(3872)
lineshape (15k signal). ψ(2S) is used
as control. 200
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First measurement of the BW width!

Is the χc1(3872) above or below D∗0D
threshold?

m(D∗0D) = 3871.69± 0.06 MeV
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Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

For a resonance near threshold with coupled channels, the Flatté parametrisa-
tion is to be used [Yu, Kalashnikova, Nefediev, PRD80 (2009) 074004]
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Γf : various decay modes
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Resonances
Asner, Hanhart, Klemp in [PDG]

The physical states appear as poles of the S-matrix as a
Bound state on the real axis below threshold, on the physical sheet
Virtual state on the real axis above threshold, on the physical sheet
Resonance off the real axis, on the unphysical sheet.

Ü Real part: m, imaginary part: Γ/2
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Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]
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χc1(3872) looks like a quasi-bound∗
state of D∗0D with binding energy of
24 keV (Eb < 100 keV at 90% CL)
∗ In the limit of all other couplings being switched off
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χc1(3872) production versus multiplicity

[B]

[LHCb, PRL 126 (2021) 092001, arXiv:2009.06619]
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.
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Outlook
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New hadrons found at the LHC
[LHCb-FIGURE-2021-001] [Updates here]
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Figure 5: Mass spectra of (top) D0D0 and (bottom) D+D− candidates in the near-threshold
mDD < 3.88 GeV/c2 region. The result of the simultaneous fit described in the text is superim-
posed.

To evaluate the systematic uncertainty related to the parameterisation of the signal
shape, the parameters of the relativistic Breit–Wigner functions are varied. In particular,
the meson radius, entering the Blatt–Weisskopf centrifugal factor with the default value
of 3.5 GeV−1, is varied between 1.5 GeV−1 and 5 GeV−1. In the case of the X(3842) state,
where the quantum numbers are unknown, the orbital momentum is varied between
zero and four. For the X(3842) and χc2(3930) states, alternative signal descriptions with
multi-channel relativistic Breit–Wigner functions with D0D0 and D+D− and radiative
non-DD decays are used. For the ψ(3770) signal, the parameters of the multi-channel
relativistic P-wave Breit–Wigner function, namely the ratio of branching fractions to
D0D0 and D+D− final states, and the branching fraction for non-DD, are varied within
their known uncertainties [39].

The determination of the natural width of the X(3842) and χc2(3930) states relies on
accurate modelling of the detector resolution. Comparing data and simulation for decay
modes with low energy release such as the χc1→ J/ψµ+µ− decay, agreement at the 10%
level is found [46]. Even better agreement is found for b-hadron decays to pairs of open
charm hadrons such as B0→ D+

s D−, Λ0
b→ Λ+

c D−s and Λ0
b→ Λ+

c D− [47], where the energy
release is larger. Hence, to estimate the corresponding uncertainty the resolution scale is
varied by 10% and the fit is repeated. Alternative resolution models, such as a symmetric
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59 hadrons found so far, and still counting
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n The LHC is a hadron discovery machine: 59 new hadrons

to date
17 exotic hadrons discovered, but their nature is uncertain
Study of baryons helps understanding diquarks
Detailed study of χc1(3872) indicates it has a bound
D∗D0 component

Contact: [ @pkoppenburg] [patrick.koppenburg@nikhef.nl]
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UPGRADE II

LHCb

Opportunities in flavour physics,
and beyond, in the HL-LHC era

L = 2 ·1033 cm−2s−1 requires some new detectors and 40 MHz read-out clock
new electronics
Velo: New pixel vertex detector
Trackers: New scintillating fibre tracker.

The upstream tracker is also replaced
PID: Hybrid photodetectors

replaced by multi-anode PMTs
Ü 50 fb−1 by Run 4.

4 We are preparing another
upgrade for Run 5
Ü 300 fb−1

[Upgrade TDR] [Velo] [PID] [Sci-Fi] [Trigger] [Phase-II EoI]
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LHCb Trigger in Run 2
[JINST 14 (2019) P04013, arXiv:1812.10790]
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Production mechanism of exotic charmonia
[Chen, Chen, Liu, Zhu, Physics Reports 639, 1, arXiv:1601.02092]

Channel b̄ c̄
q q

W+
c

s̄
e− c

ce+ γ∗

γ
e− c

c

e+ γ∗ J/ψ

γ

γ c̄

c π−

Z+

Y (4260)

In pp In pp
J/ψπ+π− X (3872) Y (4008) X (3872) X (3872)

Y (4260)
ψ(2S)π+π− Y (4360)

Y (4660)
Λ+

c Λ
−
c Y (4630)

ψ(2S)γ X (3872)
χc1(1P)γ X (3832)
χc1(1P)ω Y (4220)
J/ψω X (3872) X (3915)
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c (4450) Colour coding: neutral — charged
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Exotic Charmonia Timeline

[B]

[Lebed, Mitchell, Swanson, Progress in Particle and Nuclear Physics 93 (2017) 143, arXiv:1610.04528]

X(3872) observed at Belle

X(3872) confirmed at D0, CDF

X(3915) [as Y (3940)] observed at Belle

Y (4260) observed at BaBar

χc2(2P ) [as Z(3930)] observed at Belle

Y (4260) confirmed at CLEO-c
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Y (4360) observed at BaBar
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c (4450) observed at LHCb

Yb(10888) no longer observed at Belle
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X(5568)± NOT observed at LHCb
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X(4500), X(4700) observed at LHCb
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1

signal. To determine an upper limit on the total width, we
repeated the fits using a resolution-broadened Breit-
Wigner (BW) function to represent the signal. This fit
gives a BW width parameter that is consistent with zero:

! ! 1:4" 0:7 MeV. From this we infer a 90% confidence
level (C.L.) upper limit of ! < 2:3 MeV.

The open histogram in Fig. 3(a) shows the !#!$

invariant mass distribution for events in a "5 MeV win-
dow around the X%3872& peak; the shaded histogram
shows the corresponding distribution for events in the
nonsignal "E-Mbc region, normalized to the signal
area. The !#!$ invariant masses tend to cluster near
the kinematic boundary, which is around the " mass; the
entries below the " are consistent with background. For
comparison, we show the !#!$ mass distribution for the
 0 events in Fig. 3(b), where the horizontal scale is shifted
and expanded to account for the different kinematically
allowed region. This distribution also peaks near the
upper kinematic limit, which in this case is near 590 MeV.

We determine a ratio of product branching fractions
for B# ! K#X%3872&, X%3872&! !#!$J= and B# !
K# 0,  0 ! !#!$J= to be

B!B# ! K#X%3872&"'B!X%3872&! !#!$J= "
B%B# ! K# 0& 'B% 0 ! !#!$J= & ! 0:063" 0:012%stat& " 0:007%syst&:

Here the systematic error is mainly due to the uncertain-
ties in the efficiency for the X%3872&! !#!$J= chan-
nel, which is estimated with MC simulations that use
different models for the decay [13].

The decay of the 3Dc2 charmonium state to #$c1 is an
allowed E1 transition with a partial width that is ex-
pected to be substantially larger than that for the
!#!$J= final state; e.g., the authors of Ref. [4] pre-
dict !%3Dc2 ! #$c1& > 5' !%3Dc2 ! !#!$J= &. We
searched for an X%3872& signal in the #$c1 decay chan-
nel, concentrating on the $c1 ! #J= final state.

We select events with the same J= ! ‘#‘$ and
charged kaon requirements plus two photons, each with
energy more than 40 MeV. We reject photons that form a
!0 when combined with any other photon in the event. We
require one of the #J= combinations to satisfy

398 MeV< %M#‘#‘$ $M‘#‘$&< 423 MeV (correspond-
ing to $15 MeV< %M#J= $M$c1

&< 10 MeV). In the
following we use M#$c1

( M##‘#‘$ $M#‘#‘$ #MPDG
$c1

,
where MPDG

$c1
is the PDG $c1 mass value [9].

The B! K#$c1, $c1 ! #J= decay processes have a
large combinatoric background from B! K$c1 decays
plus an uncorrelated # from the accompanying B meson.
This background produces a peaking at positive "E val-
ues that is well separated from zero and is removed by the
"E< 30 MeV requirement. Because of the complicated
"E background shape and its correlation with Mbc, we do
not include "E in the likelihood fit. Instead, we perform
an unbinned fit to the M#$c1

and Mbc distributions with
the same signal and background PDFs for Mbc and M#$c1

that are used for the !#!$J= fits. We fix the Gaussian
widths at their MC values, and the  0 and X%3872& masses
at the values found from the fits to the !#!$J= chan-
nels. The signal yields and background parameters are
allowed to float.

The signal-band projections of Mbc and M#$c1
for the

 0 region are shown in Figs. 4(a) and 4(b), respectively,
together with curves that show the results of the fit. The
fitted signal yield is 34:1" 6:9" 4:1 events, where the
first error is statistical and the second is a systematic error
determined by varying the Mbc and M#$c1

resolutions
over their allowed range of values. The number of ob-
served events is consistent with the expected yield of
26" 4 events based on the known B! K 0 and  0 !
#$c1 branching fractions [9] and the MC-determined
acceptance.

The results of the application of the same procedure
to the X%3872& mass region are shown in Figs. 4(c) and
4(d). Here, no signal is evident; the fitted signal yield is
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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detected in the EMC since it is produced preferentially
along the beam direction.

Candidate !!!"‘!‘" tracks are refitted, constrained
to a common vertex, while the lepton pair is kinemati-
cally constrained to the J= mass. The resulting
!!!"J= mass-resolution function is well described by
a Cauchy distribution [10] with a full width at half maxi-
mum of 4:2 MeV=c2 for the  #2S$ and 5:3 MeV=c2 at
4:3 GeV=c2.

The !!!"J= invariant-mass spectrum for candidates
passing all criteria is shown in Fig. 1 as points with error
bars. Events that have an e!e" ("!"") mass in the J= 
sidebands %2:76; 2:95& or %3:18; 3:25& (%2:93; 3:01& or
%3:18; 3:25&) GeV=c2 but pass all the other selection crite-
ria are represented by the shaded histogram after being
scaled by the ratio of the widths of the J= mass window
and sideband regions. An enhancement near 4:26 GeV=c2

is clearly observed; no other structures are evident at the
masses of the quantum number JPC ' 1"" charmonium
states, i.e., the  #4040$,  #4160$, and  #4415$ [11], or the
X#3872$. The Fig. 1 inset includes the  #2S$ region with a
logarithmic scale for comparison; 11 802( 110  #2S$
events are observed, consistent with the expectation of
12 142( 809  #2S$ events. We search for sources of back-
grounds that contain a true J= and peak in the !!!"J= 
invariant-mass spectrum. The possibility that one or both
pion candidates are misidentified kaons is checked by
reconstructing the K!K"J= and K(!)J= final states;
we observe featureless mass spectra. Similar studies of ISR
events with a !!!"J= candidate plus one or more addi-
tional pions reveal no structure that could feed down to

produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2

and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
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sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.

PRL 95, 142001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
30 SEPTEMBER 2005

142001-5

(c)

A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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signal. To determine an upper limit on the total width, we
repeated the fits using a resolution-broadened Breit-
Wigner (BW) function to represent the signal. This fit
gives a BW width parameter that is consistent with zero:

! ! 1:4" 0:7 MeV. From this we infer a 90% confidence
level (C.L.) upper limit of ! < 2:3 MeV.

The open histogram in Fig. 3(a) shows the !#!$

invariant mass distribution for events in a "5 MeV win-
dow around the X%3872& peak; the shaded histogram
shows the corresponding distribution for events in the
nonsignal "E-Mbc region, normalized to the signal
area. The !#!$ invariant masses tend to cluster near
the kinematic boundary, which is around the " mass; the
entries below the " are consistent with background. For
comparison, we show the !#!$ mass distribution for the
 0 events in Fig. 3(b), where the horizontal scale is shifted
and expanded to account for the different kinematically
allowed region. This distribution also peaks near the
upper kinematic limit, which in this case is near 590 MeV.

We determine a ratio of product branching fractions
for B# ! K#X%3872&, X%3872&! !#!$J= and B# !
K# 0,  0 ! !#!$J= to be

B!B# ! K#X%3872&"'B!X%3872&! !#!$J= "
B%B# ! K# 0& 'B% 0 ! !#!$J= & ! 0:063" 0:012%stat& " 0:007%syst&:

Here the systematic error is mainly due to the uncertain-
ties in the efficiency for the X%3872&! !#!$J= chan-
nel, which is estimated with MC simulations that use
different models for the decay [13].

The decay of the 3Dc2 charmonium state to #$c1 is an
allowed E1 transition with a partial width that is ex-
pected to be substantially larger than that for the
!#!$J= final state; e.g., the authors of Ref. [4] pre-
dict !%3Dc2 ! #$c1& > 5' !%3Dc2 ! !#!$J= &. We
searched for an X%3872& signal in the #$c1 decay chan-
nel, concentrating on the $c1 ! #J= final state.

We select events with the same J= ! ‘#‘$ and
charged kaon requirements plus two photons, each with
energy more than 40 MeV. We reject photons that form a
!0 when combined with any other photon in the event. We
require one of the #J= combinations to satisfy

398 MeV< %M#‘#‘$ $M‘#‘$&< 423 MeV (correspond-
ing to $15 MeV< %M#J= $M$c1

&< 10 MeV). In the
following we use M#$c1

( M##‘#‘$ $M#‘#‘$ #MPDG
$c1

,
where MPDG

$c1
is the PDG $c1 mass value [9].

The B! K#$c1, $c1 ! #J= decay processes have a
large combinatoric background from B! K$c1 decays
plus an uncorrelated # from the accompanying B meson.
This background produces a peaking at positive "E val-
ues that is well separated from zero and is removed by the
"E< 30 MeV requirement. Because of the complicated
"E background shape and its correlation with Mbc, we do
not include "E in the likelihood fit. Instead, we perform
an unbinned fit to the M#$c1

and Mbc distributions with
the same signal and background PDFs for Mbc and M#$c1

that are used for the !#!$J= fits. We fix the Gaussian
widths at their MC values, and the  0 and X%3872& masses
at the values found from the fits to the !#!$J= chan-
nels. The signal yields and background parameters are
allowed to float.

The signal-band projections of Mbc and M#$c1
for the

 0 region are shown in Figs. 4(a) and 4(b), respectively,
together with curves that show the results of the fit. The
fitted signal yield is 34:1" 6:9" 4:1 events, where the
first error is statistical and the second is a systematic error
determined by varying the Mbc and M#$c1

resolutions
over their allowed range of values. The number of ob-
served events is consistent with the expected yield of
26" 4 events based on the known B! K 0 and  0 !
#$c1 branching fractions [9] and the MC-determined
acceptance.

The results of the application of the same procedure
to the X%3872& mass region are shown in Figs. 4(c) and
4(d). Here, no signal is evident; the fitted signal yield is
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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tion of the signal (histogram) normalized to the total number of
the observed data events.

 

)2)  (GeV/cψ)J/-π+πm(2(
4 4.5 5 5.5

2
E

ve
nt

s 
/ 5

0M
eV

/c

5

10

)2)  (GeV/cψ)J/-π+πm(2(
4 4.5 5 5.5

2
E

ve
nt

s 
/ 5

0M
eV

/c

5

10

)2)  (GeV/cψ)J/-π+πm(2(
4 4.5 5 5.5

2
E

ve
nt

s 
/ 5

0M
eV

/c

5

10

)2)  (GeV/cψ)J/-π+πm(2(
4 4.5 5 5.5

2
E

ve
nt

s 
/ 5

0M
eV

/c

5

10

FIG. 3 (color online). The 2!!#!$"J= invariant-mass spec-
trum up to 5:7 GeV=c2 for the final sample. The shaded histo-
gram represents the fixed background and the curves represent
the fits to the data (see text).
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detected in the EMC since it is produced preferentially
along the beam direction.

Candidate !!!"‘!‘" tracks are refitted, constrained
to a common vertex, while the lepton pair is kinemati-
cally constrained to the J= mass. The resulting
!!!"J= mass-resolution function is well described by
a Cauchy distribution [10] with a full width at half maxi-
mum of 4:2 MeV=c2 for the  #2S$ and 5:3 MeV=c2 at
4:3 GeV=c2.

The !!!"J= invariant-mass spectrum for candidates
passing all criteria is shown in Fig. 1 as points with error
bars. Events that have an e!e" ("!"") mass in the J= 
sidebands %2:76; 2:95& or %3:18; 3:25& (%2:93; 3:01& or
%3:18; 3:25&) GeV=c2 but pass all the other selection crite-
ria are represented by the shaded histogram after being
scaled by the ratio of the widths of the J= mass window
and sideband regions. An enhancement near 4:26 GeV=c2

is clearly observed; no other structures are evident at the
masses of the quantum number JPC ' 1"" charmonium
states, i.e., the  #4040$,  #4160$, and  #4415$ [11], or the
X#3872$. The Fig. 1 inset includes the  #2S$ region with a
logarithmic scale for comparison; 11 802( 110  #2S$
events are observed, consistent with the expectation of
12 142( 809  #2S$ events. We search for sources of back-
grounds that contain a true J= and peak in the !!!"J= 
invariant-mass spectrum. The possibility that one or both
pion candidates are misidentified kaons is checked by
reconstructing the K!K"J= and K(!)J= final states;
we observe featureless mass spectra. Similar studies of ISR
events with a !!!"J= candidate plus one or more addi-
tional pions reveal no structure that could feed down to

produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2

and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for
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FIG. 2. The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
Rec

and having a !!!"J= mass near 4260 MeV=c2, minus the
scaled distribution from neighboring !!!"J= mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR  #2S$ data
events.
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
range that includes the  #2S$. The points with error bars repre-
sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.
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detected in the EMC since it is produced preferentially
along the beam direction.

Candidate !!!"‘!‘" tracks are refitted, constrained
to a common vertex, while the lepton pair is kinemati-
cally constrained to the J= mass. The resulting
!!!"J= mass-resolution function is well described by
a Cauchy distribution [10] with a full width at half maxi-
mum of 4:2 MeV=c2 for the  #2S$ and 5:3 MeV=c2 at
4:3 GeV=c2.

The !!!"J= invariant-mass spectrum for candidates
passing all criteria is shown in Fig. 1 as points with error
bars. Events that have an e!e" ("!"") mass in the J= 
sidebands %2:76; 2:95& or %3:18; 3:25& (%2:93; 3:01& or
%3:18; 3:25&) GeV=c2 but pass all the other selection crite-
ria are represented by the shaded histogram after being
scaled by the ratio of the widths of the J= mass window
and sideband regions. An enhancement near 4:26 GeV=c2

is clearly observed; no other structures are evident at the
masses of the quantum number JPC ' 1"" charmonium
states, i.e., the  #4040$,  #4160$, and  #4415$ [11], or the
X#3872$. The Fig. 1 inset includes the  #2S$ region with a
logarithmic scale for comparison; 11 802( 110  #2S$
events are observed, consistent with the expectation of
12 142( 809  #2S$ events. We search for sources of back-
grounds that contain a true J= and peak in the !!!"J= 
invariant-mass spectrum. The possibility that one or both
pion candidates are misidentified kaons is checked by
reconstructing the K!K"J= and K(!)J= final states;
we observe featureless mass spectra. Similar studies of ISR
events with a !!!"J= candidate plus one or more addi-
tional pions reveal no structure that could feed down to

produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2

and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for

) 4/c2 (GeV2
Recm

0 5

4
/c2

E
ve

nt
s 

/ 0
.1

 G
eV

-10

0

10

20

FIG. 2. The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
Rec

and having a !!!"J= mass near 4260 MeV=c2, minus the
scaled distribution from neighboring !!!"J= mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR  #2S$ data
events.
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
range that includes the  #2S$. The points with error bars repre-
sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.
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First observations of X(3872) [Belle, PRL 91 262001 (2003), arXiv:hep-
ex/0309032], Y (3940) [Belle, PRL 94 182002 (2005), arXiv:hep-ex/0408126],
Y (4260) [BABAR, PRL 95 142001 (2005), arXiv:hep-ex/0506081], Y (4360)
[BABAR, PRL 98 212001 (2007), arXiv:hep-ex/0610057]

2003 Belle sees X (3872) by accident in
B+→ J/ψK +π+π− [Belle, PRL 91 262001 (2003), arXiv:hep-ex/0309032]

2005 Belle then searched for it in B+→ J/ψK +ω but
found the Y (3940) [Belle, PRL 94 182002 (2005), arXiv:hep-ex/0408126]

2005 BaBar searched for it in e+e−→ X (3872) with ISR
but did not find it. They found the Y (4260) instead.
[BABAR, PRL 95 142001 (2005), arXiv:hep-ex/0506081]

2006 BaBar then looked whether the Y (4260) decayed
to ψ(2S)π+π− with ISR. Instead they found the
Y (4360). [BABAR, PRL 98 212001 (2007), arXiv:hep-ex/0610057]

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [55 / 47]
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Exotic Charmonia Timeline

[B]

[Lebed, Mitchell, Swanson, Progress in Particle and Nuclear Physics 93 (2017) 143, arXiv:1610.04528]

X(3872) observed at Belle

X(3872) confirmed at D0, CDF

X(3915) [as Y (3940)] observed at Belle

Y (4260) observed at BaBar

χc2(2P ) [as Z(3930)] observed at Belle

Y (4260) confirmed at CLEO-c

X(3940), Y (4008), Y (4660) observed at Belle

Y (4360) observed at BaBar

Y (4360) confirmed at Belle

X(3915) [as Y (3940)] confirmed at BaBar

X(3940) confirmed at Belle

Z±(4050), X(4160), Z±(4250), Z±(4430), X(4630)

observed at Belle

Y (4140) observed at CDF

X(3915), X(4350), Yb(10888) observed at Belle

χc2(2P ) [as Z(3930)] confirmed at BaBar

Y (4274) observed at CDF

X(3915) confirmed at BaBar

Zb(10610)± observed and confirmed at Belle

Zb(10650)± observed and confirmed at Belle

X(3823) [likely ψ2(1D)], Zb(10610)0 observed and confirmed at Belle

Zc(3900)±, Zc(4020)± observed at BESIII

Zc(3900)± confirmed at Belle

Zc(3900)0 observed at CLEO-c

Zc(4020)0 observed at BESIII

Y (4140) confirmed at D0, CMS

Y (4274) confirmed at CMS

Y (4660) confirmed at BaBar

Zc(4020)± confirmed at BESIII

Z±(4200) observed at Belle

Z±(4240) observed at LHCb

Z±(4430) confirmed at LHCb

X(3823) [likely ψ2(2D)], Zc(3900)0, Zc(4020)0 confirmed at BESIII

Zc(4055)± observed at Belle

Y (4230) observed at BESIII

P+
c (4380), P+

c (4450) observed at LHCb

Yb(10888) no longer observed at Belle

X(5568)± observed at D0

X(5568)± NOT observed at LHCb

Y (4140), Y (4274) confirmed at LHCb

X(4500), X(4700) observed at LHCb

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

1

signal. To determine an upper limit on the total width, we
repeated the fits using a resolution-broadened Breit-
Wigner (BW) function to represent the signal. This fit
gives a BW width parameter that is consistent with zero:

! ! 1:4" 0:7 MeV. From this we infer a 90% confidence
level (C.L.) upper limit of ! < 2:3 MeV.

The open histogram in Fig. 3(a) shows the !#!$

invariant mass distribution for events in a "5 MeV win-
dow around the X%3872& peak; the shaded histogram
shows the corresponding distribution for events in the
nonsignal "E-Mbc region, normalized to the signal
area. The !#!$ invariant masses tend to cluster near
the kinematic boundary, which is around the " mass; the
entries below the " are consistent with background. For
comparison, we show the !#!$ mass distribution for the
 0 events in Fig. 3(b), where the horizontal scale is shifted
and expanded to account for the different kinematically
allowed region. This distribution also peaks near the
upper kinematic limit, which in this case is near 590 MeV.

We determine a ratio of product branching fractions
for B# ! K#X%3872&, X%3872&! !#!$J= and B# !
K# 0,  0 ! !#!$J= to be

B!B# ! K#X%3872&"'B!X%3872&! !#!$J= "
B%B# ! K# 0& 'B% 0 ! !#!$J= & ! 0:063" 0:012%stat& " 0:007%syst&:

Here the systematic error is mainly due to the uncertain-
ties in the efficiency for the X%3872&! !#!$J= chan-
nel, which is estimated with MC simulations that use
different models for the decay [13].

The decay of the 3Dc2 charmonium state to #$c1 is an
allowed E1 transition with a partial width that is ex-
pected to be substantially larger than that for the
!#!$J= final state; e.g., the authors of Ref. [4] pre-
dict !%3Dc2 ! #$c1& > 5' !%3Dc2 ! !#!$J= &. We
searched for an X%3872& signal in the #$c1 decay chan-
nel, concentrating on the $c1 ! #J= final state.

We select events with the same J= ! ‘#‘$ and
charged kaon requirements plus two photons, each with
energy more than 40 MeV. We reject photons that form a
!0 when combined with any other photon in the event. We
require one of the #J= combinations to satisfy

398 MeV< %M#‘#‘$ $M‘#‘$&< 423 MeV (correspond-
ing to $15 MeV< %M#J= $M$c1

&< 10 MeV). In the
following we use M#$c1

( M##‘#‘$ $M#‘#‘$ #MPDG
$c1

,
where MPDG

$c1
is the PDG $c1 mass value [9].

The B! K#$c1, $c1 ! #J= decay processes have a
large combinatoric background from B! K$c1 decays
plus an uncorrelated # from the accompanying B meson.
This background produces a peaking at positive "E val-
ues that is well separated from zero and is removed by the
"E< 30 MeV requirement. Because of the complicated
"E background shape and its correlation with Mbc, we do
not include "E in the likelihood fit. Instead, we perform
an unbinned fit to the M#$c1

and Mbc distributions with
the same signal and background PDFs for Mbc and M#$c1

that are used for the !#!$J= fits. We fix the Gaussian
widths at their MC values, and the  0 and X%3872& masses
at the values found from the fits to the !#!$J= chan-
nels. The signal yields and background parameters are
allowed to float.

The signal-band projections of Mbc and M#$c1
for the

 0 region are shown in Figs. 4(a) and 4(b), respectively,
together with curves that show the results of the fit. The
fitted signal yield is 34:1" 6:9" 4:1 events, where the
first error is statistical and the second is a systematic error
determined by varying the Mbc and M#$c1

resolutions
over their allowed range of values. The number of ob-
served events is consistent with the expected yield of
26" 4 events based on the known B! K 0 and  0 !
#$c1 branching fractions [9] and the MC-determined
acceptance.

The results of the application of the same procedure
to the X%3872& mass region are shown in Figs. 4(c) and
4(d). Here, no signal is evident; the fitted signal yield is
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(a)

be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we

3880 4080 4280
M(ωJ/ψ) (MeV)

0

10

20

30
E

ve
nt

s/
40

 M
eV

3880 4080 4280
M(ωJ/ψ) (MeV)

0

10

20

30

FIG. 4. B! K!J= signal yields vs M!!J= ". The curve in
(a) indicates the result of a fit that includes only a phase-space-
like threshold function. The curve in (b) shows the result of a fit
that includes an S-wave Breit-Wigner resonance term.

0

4

8

12

E
ve

nt
s/

bi
n

0

4

8

E
ve

nt
s/

bi
n

0

4

8

E
ve

nt
s/

bi
n

5.200 5.250

Mbc (GeV)

0

4

8

E
ve

nt
s/

bi
n

5.200 5.250

Mbc (GeV)
5.200 5.250 5.300

Mbc (GeV)

FIG. 3. Mbc distributions for B& ! K&!J= candidates in
the "E signal region for 40 MeV-wide !J= invariant mass
intervals. The curves are the results of fits described in the text.

PRL 94, 182002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
13 MAY 2005

182002-4

(b)

detected in the EMC since it is produced preferentially
along the beam direction.

Candidate !!!"‘!‘" tracks are refitted, constrained
to a common vertex, while the lepton pair is kinemati-
cally constrained to the J= mass. The resulting
!!!"J= mass-resolution function is well described by
a Cauchy distribution [10] with a full width at half maxi-
mum of 4:2 MeV=c2 for the  #2S$ and 5:3 MeV=c2 at
4:3 GeV=c2.

The !!!"J= invariant-mass spectrum for candidates
passing all criteria is shown in Fig. 1 as points with error
bars. Events that have an e!e" ("!"") mass in the J= 
sidebands %2:76; 2:95& or %3:18; 3:25& (%2:93; 3:01& or
%3:18; 3:25&) GeV=c2 but pass all the other selection crite-
ria are represented by the shaded histogram after being
scaled by the ratio of the widths of the J= mass window
and sideband regions. An enhancement near 4:26 GeV=c2

is clearly observed; no other structures are evident at the
masses of the quantum number JPC ' 1"" charmonium
states, i.e., the  #4040$,  #4160$, and  #4415$ [11], or the
X#3872$. The Fig. 1 inset includes the  #2S$ region with a
logarithmic scale for comparison; 11 802( 110  #2S$
events are observed, consistent with the expectation of
12 142( 809  #2S$ events. We search for sources of back-
grounds that contain a true J= and peak in the !!!"J= 
invariant-mass spectrum. The possibility that one or both
pion candidates are misidentified kaons is checked by
reconstructing the K!K"J= and K(!)J= final states;
we observe featureless mass spectra. Similar studies of ISR
events with a !!!"J= candidate plus one or more addi-
tional pions reveal no structure that could feed down to

produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2

and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for
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(see text). The solid histogram represents ISR Y Monte Carlo
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events.
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
range that includes the  #2S$. The points with error bars repre-
sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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signal. To determine an upper limit on the total width, we
repeated the fits using a resolution-broadened Breit-
Wigner (BW) function to represent the signal. This fit
gives a BW width parameter that is consistent with zero:

! ! 1:4" 0:7 MeV. From this we infer a 90% confidence
level (C.L.) upper limit of ! < 2:3 MeV.

The open histogram in Fig. 3(a) shows the !#!$

invariant mass distribution for events in a "5 MeV win-
dow around the X%3872& peak; the shaded histogram
shows the corresponding distribution for events in the
nonsignal "E-Mbc region, normalized to the signal
area. The !#!$ invariant masses tend to cluster near
the kinematic boundary, which is around the " mass; the
entries below the " are consistent with background. For
comparison, we show the !#!$ mass distribution for the
 0 events in Fig. 3(b), where the horizontal scale is shifted
and expanded to account for the different kinematically
allowed region. This distribution also peaks near the
upper kinematic limit, which in this case is near 590 MeV.

We determine a ratio of product branching fractions
for B# ! K#X%3872&, X%3872&! !#!$J= and B# !
K# 0,  0 ! !#!$J= to be

B!B# ! K#X%3872&"'B!X%3872&! !#!$J= "
B%B# ! K# 0& 'B% 0 ! !#!$J= & ! 0:063" 0:012%stat& " 0:007%syst&:

Here the systematic error is mainly due to the uncertain-
ties in the efficiency for the X%3872&! !#!$J= chan-
nel, which is estimated with MC simulations that use
different models for the decay [13].

The decay of the 3Dc2 charmonium state to #$c1 is an
allowed E1 transition with a partial width that is ex-
pected to be substantially larger than that for the
!#!$J= final state; e.g., the authors of Ref. [4] pre-
dict !%3Dc2 ! #$c1& > 5' !%3Dc2 ! !#!$J= &. We
searched for an X%3872& signal in the #$c1 decay chan-
nel, concentrating on the $c1 ! #J= final state.

We select events with the same J= ! ‘#‘$ and
charged kaon requirements plus two photons, each with
energy more than 40 MeV. We reject photons that form a
!0 when combined with any other photon in the event. We
require one of the #J= combinations to satisfy

398 MeV< %M#‘#‘$ $M‘#‘$&< 423 MeV (correspond-
ing to $15 MeV< %M#J= $M$c1

&< 10 MeV). In the
following we use M#$c1

( M##‘#‘$ $M#‘#‘$ #MPDG
$c1

,
where MPDG

$c1
is the PDG $c1 mass value [9].

The B! K#$c1, $c1 ! #J= decay processes have a
large combinatoric background from B! K$c1 decays
plus an uncorrelated # from the accompanying B meson.
This background produces a peaking at positive "E val-
ues that is well separated from zero and is removed by the
"E< 30 MeV requirement. Because of the complicated
"E background shape and its correlation with Mbc, we do
not include "E in the likelihood fit. Instead, we perform
an unbinned fit to the M#$c1

and Mbc distributions with
the same signal and background PDFs for Mbc and M#$c1

that are used for the !#!$J= fits. We fix the Gaussian
widths at their MC values, and the  0 and X%3872& masses
at the values found from the fits to the !#!$J= chan-
nels. The signal yields and background parameters are
allowed to float.

The signal-band projections of Mbc and M#$c1
for the

 0 region are shown in Figs. 4(a) and 4(b), respectively,
together with curves that show the results of the fit. The
fitted signal yield is 34:1" 6:9" 4:1 events, where the
first error is statistical and the second is a systematic error
determined by varying the Mbc and M#$c1

resolutions
over their allowed range of values. The number of ob-
served events is consistent with the expected yield of
26" 4 events based on the known B! K 0 and  0 !
#$c1 branching fractions [9] and the MC-determined
acceptance.

The results of the application of the same procedure
to the X%3872& mass region are shown in Figs. 4(c) and
4(d). Here, no signal is evident; the fitted signal yield is
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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be equal. The curves in Fig. 3 indicate the results of the
Mbc fits.

The fitted B-meson signal yields are plotted vs
M!!J= " in Figs. 4(a) and 4(b). An enhancement is evi-
dent around M!!J= " # 3940 MeV. The curve in
Fig. 4(a) is the result of a fit with a threshold function of
the form f!M" # A0q$!M", where q$!M" is the momentum
of the daughter particles in the !J= rest frame. This
functional form accurately reproduces the threshold behav-
ior of Monte Carlo simulated B! K!J= events that are
generated uniformly over phase space. The fit quality to the
observed data points is poor (!2=d:o:f: # 115=11), indi-
cating a significant deviation from phase space; the integral
of f!M" over the first three bins is 16.8 events, where the
data total is 55.6 events.

In Fig. 4(b) we show the results of a fit where we include
an S-wave Breit-Wigner (BW) function [15] to represent
the enhancement. The fit, which has !2=d:o:f: # 15:6=8
(C:L: # 4:8%), yields a Breit-Wigner signal yield of 58%
11 events with mass M # 3943% 11 MeV and width ! #
87% 22 MeV (statistical errors only). The statistical signi-
ficance of the signal, determined from

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

&2 ln!L0=Lmax"
p

,
where Lmax and L0 are the likelihood values for the best fit
and for zero signal yield, respectively, is 8:1".

The K! invariant mass distribution for Mbc-"E signal
region events in the region of the M!!J= " enhancement
are distributed uniformly across the available phase space
and there is no evident K! mass structure that might be
producing the observed mass enhancement by a kinematic
reflection. Nevertheless, the possibility that different high-
mass K! partial waves might interfere in a way that
produces some peaking in the !J= mass distribution
cannot be ruled out.

The M!#'#&#0" distributions for different M!!J= "
mass regions exhibit !! #'#&#0 signals that track the
Mbc-"E signal yields. There are no significant !!
#'#&#0 signals in the "E or Mbc sidebands. A compari-
son of the ! signal strengths in the Mbc-"E signal region
and the Mbc and "E sidebands is used to infer that !90%
18"% of the B! K#'#&#0J= events in the M #
3943 MeV enhancement are produced via !! #'#&#0

decays.
We study potential systematic errors on the yield, mass,

and width by repeating the fits with different signal pa-
rametrizations, background shapes, and bin sizes. For ex-
ample, when we change the background function to
include terms up to third order in q$, the yield increases
to 75% 10 events, the mass changes to 3948% 9 MeV, the
width changes to ! # 100% 23 MeV, and the fit quality
improves: !2=d:o:f: # 10:0=6 (C:L: # 12:4%). However,
the resulting background shape is very different from that
of phase space. For different bin sizes, fitting ranges,
M!K!" requirements, and signal line shapes we see similar
variations.

For the systematic uncertainties we use the largest de-
viations from the nominal values for the different fits. In
the following, we assume that all of the 3# systems are due
to !! #'#&#0 decays and include the possibility of a
nonresonant contribution in the systematic error. This is the
main component of the negative side systematic error; the
change in yield for different background shapes contributes
a positive side error of comparable size. The effects of
possible acceptance variation as a function ofM!!J= " on
the mass and width values are found to be negligibly small.

To determine a branching fraction, we use the BW fit
shown in Fig. 4(b) to establish the event yield of the
observed enhancement. Monte Carlo simulation is used
to estimate detection efficiencies of 2:4%% 0:1% and
0:42%% 0:02% for B! K'!J= and K0!J= , respec-
tively. We find a product branching fraction [here we
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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FIG. 2 (color online). The distributions of (a) !p& and
(b) cos"& of the 2!!#!$"J= combination in the e#e$ c.m.
frame are shown for data (solid dots) and Monte Carlo simula-
tion of the signal (histogram) normalized to the total number of
the observed data events.
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the fits to the data (see text).
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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FIG. 2 (color online). The distributions of (a) !p& and
(b) cos"& of the 2!!#!$"J= combination in the e#e$ c.m.
frame are shown for data (solid dots) and Monte Carlo simula-
tion of the signal (histogram) normalized to the total number of
the observed data events.
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gram represents the fixed background and the curves represent
the fits to the data (see text).
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A clean  !2S" signal is apparent in Fig. 1. An examina-
tion of the !#!$ !2S" combinations reveals that about
half the background results from recombinations within the
same 2!!#!$"J= system where at least one of the pri-
mary pions is combined with the J= to form a !#!$J= 
candidate. After subtracting the self-combinatorial back-
ground, we estimate 3:8% 1:1 non- !2S" background
events in the final sample of 78 events within the  !2S"
mass window.

In Fig. 2 the distributions of (a) !p& and (b) cos"& for
2!!#!$"J= candidates, where "& is the angle between
the positron beam and the (!#!$!#!$J= ) momentum
in the e#e$ c.m. frame, are shown and compared to
expectations from simulations. There are 16 events that
have a well-reconstructed gamma with energy greater than
3 GeV, while the Monte Carlo simulation predicts 16.4 for
the same total number of ISR !#!$ !2S" candidates.
Furthermore, all events within j cos"&j< 0:9 are accom-
panied by a reconstructed gamma with energy greater than
3.0 GeV. We find excellent agreement in the ISR character-
istics between the data and signal Monte Carlo sample. The

good agreement in the !p& distribution rules out any
significant feed down from higher mass charmonia de-
caying to the  !2S" with one or more undetected particles.
As an example, the !p& distribution for  !4415"!
!#!$!0 !2S" events would peak around $0:2 GeV=c
with a long tail extending to well below $0:2 GeV=c.
We estimate the non-ISR !#!$ !2S" background to be
less than 1 event.

The track quality, particle identification information,
and kinematic variables of all pion candidates are exam-
ined, and displays of the events are scanned visually to
check for possible track duplications and other potential
problems. No evidence for improper reconstruction or
event quality problems is found.

The 2!!#!$"J= invariant-mass spectrum up to
5:7 GeV=c2 for the final sample is represented as data
points in Fig. 3. A structure around 4:32 GeV=c2 is ob-
served in the mass spectrum.

To clarify the peaking structure observed in Fig. 3, we
perform an unbinned maximum likelihood fit to the mass
spectrum up to 5:7 GeV=c2 in terms of a single resonance
with the following probability density function (PDF):

 P!m" ' Na"!m"!W!s; x"2m=s" 12!
m2

( M2"ee"f!#!m"=#!M""
!M2 $m2"2 # !M"tot"2

# B!m"; (2)

whereM, "tot, "ee, "f,N are the nominal mass, total width,
partial width to e#e$, partial width to !#!$ !2S", and
yield for a resonance, respectively, and m is the
2!!#!$"J= invariant mass, "!m" is the mass-dependent
efficiency, #!m" is the mass-dependent phase-space factor
for a S-wave three-body !#!$ !2S" system, a is a nor-
malization factor, and B!m" is the PDF (the shaded histo-
gram in Fig. 3) for the non- !2S" background. The shape
of B was obtained from  !2S" sideband events with its
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FIG. 2 (color online). The distributions of (a) !p& and
(b) cos"& of the 2!!#!$"J= combination in the e#e$ c.m.
frame are shown for data (solid dots) and Monte Carlo simula-
tion of the signal (histogram) normalized to the total number of
the observed data events.
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the fits to the data (see text).
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detected in the EMC since it is produced preferentially
along the beam direction.

Candidate !!!"‘!‘" tracks are refitted, constrained
to a common vertex, while the lepton pair is kinemati-
cally constrained to the J= mass. The resulting
!!!"J= mass-resolution function is well described by
a Cauchy distribution [10] with a full width at half maxi-
mum of 4:2 MeV=c2 for the  #2S$ and 5:3 MeV=c2 at
4:3 GeV=c2.

The !!!"J= invariant-mass spectrum for candidates
passing all criteria is shown in Fig. 1 as points with error
bars. Events that have an e!e" ("!"") mass in the J= 
sidebands %2:76; 2:95& or %3:18; 3:25& (%2:93; 3:01& or
%3:18; 3:25&) GeV=c2 but pass all the other selection crite-
ria are represented by the shaded histogram after being
scaled by the ratio of the widths of the J= mass window
and sideband regions. An enhancement near 4:26 GeV=c2

is clearly observed; no other structures are evident at the
masses of the quantum number JPC ' 1"" charmonium
states, i.e., the  #4040$,  #4160$, and  #4415$ [11], or the
X#3872$. The Fig. 1 inset includes the  #2S$ region with a
logarithmic scale for comparison; 11 802( 110  #2S$
events are observed, consistent with the expectation of
12 142( 809  #2S$ events. We search for sources of back-
grounds that contain a true J= and peak in the !!!"J= 
invariant-mass spectrum. The possibility that one or both
pion candidates are misidentified kaons is checked by
reconstructing the K!K"J= and K(!)J= final states;
we observe featureless mass spectra. Similar studies of ISR
events with a !!!"J= candidate plus one or more addi-
tional pions reveal no structure that could feed down to

produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2

and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for

) 4/c2 (GeV2
Recm

0 5

4
/c2

E
ve

nt
s 

/ 0
.1

 G
eV

-10

0

10

20

FIG. 2. The distribution of m2
Rec. The points represent the

data events passing all selection criteria except that on m2
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and having a !!!"J= mass near 4260 MeV=c2, minus the
scaled distribution from neighboring !!!"J= mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
events, and the dotted histogram represents the ISR  #2S$ data
events.
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
range that includes the  #2S$. The points with error bars repre-
sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.
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detected in the EMC since it is produced preferentially
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produce a peak in the !!!"J= mass spectrum. Two-
photon events are studied directly by reversing the require-
ment on the missing mass; the number of events inferred
for the signal region is a small fraction of those observed
and their mass spectrum shows no structure. Hadronic
e!e" ! q !q events produce J= at a rate that is surpris-
ingly large [12–15], but no structure is observed for this
background.

We evaluate the statistical significance of the enhance-
ment using unbinned maximum likelihood fits to the
!!!"J= mass spectrum. To evaluate the goodness of
fit, the fit probability is determined from the #2 and the
number of degrees of freedom for bin sizes of 5, 10, 20, 40,
and 50 MeV=c2. Bins are combined with higher mass
neighbors as needed to ensure that no bin is predicted to
have fewer than seven entries. We try first-, second-, and
third-order polynomials as null-hypothesis fit functions.
The #2-probability estimates for these fits range from
10"16 to 10"11. No substantial improvement is obtained
by including  #4040$,  #4160$, or  #4415$ [11] terms in
the fit. We conclude that the structure near 4:26 GeV=c2 is
statistically inconsistent with a polynomial background.
Henceforth, we refer to this structure as the Y#4260$.

It is important to test the ISR-production hypothesis
because the JPC ' 1"" assignment for the Y#4260$ fol-
lows from it. The ISR photon is reconstructed in #24( 8$%
of the Y#4260$ events, in agreement with the 25% observed
for ISR #2S$ events. Kinematic distributions for the signal
are obtained by subtracting scaled distributions for events
with !!!"J= mass in the regions %3:86; 4:06& GeV=c2

and %4:46; 4:66& GeV=c2 from those with !!!"J= mass
in the signal region, defined as %4:16; 4:36& GeV=c2. The
distribution of m2

Rec is shown in Fig. 2, along with corre-
sponding distributions for ISR  #2S$ data events and for
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and having a !!!"J= mass near 4260 MeV=c2, minus the
scaled distribution from neighboring !!!"J= mass regions
(see text). The solid histogram represents ISR Y Monte Carlo
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FIG. 1 (color online). The !!!"J= invariant-mass spec-
trum in the range 3:8–5:0 GeV=c2 and (inset) over a wider
range that includes the  #2S$. The points with error bars repre-
sent the selected data and the shaded histogram represents the
scaled data from neighboring e!e" and "!"" mass regions
(see text). The solid curve shows the result of the single-
resonance fit described in the text; the dashed curve represents
the background component.
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First observations of X(3872) [Belle, PRL 91 262001 (2003), arXiv:hep-
ex/0309032], Y (3940) [Belle, PRL 94 182002 (2005), arXiv:hep-ex/0408126],
Y (4260) [BABAR, PRL 95 142001 (2005), arXiv:hep-ex/0506081], Y (4360)
[BABAR, PRL 98 212001 (2007), arXiv:hep-ex/0610057]
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positive parity rules out the possibility that the Zð4430Þ−
state is a D̄#ð2007ÞD1ð2420Þ threshold effect as proposed
in Refs. [4,14].
In the amplitude fit, the Z−

1 is represented by a Breit-
Wigner amplitude, where the magnitude and phase vary
with m2

ψ 0π− according to an approximately circular trajec-
tory in the (ReAZ−

, ImAZ−
) plane (Argand diagram [38]),

where AZ−
is the m2

ψ 0π− dependent part of the Z
−
1 amplitude.

We perform an additional fit to the data, in which we
represent the Z−

1 amplitude as the combination of inde-
pendent complex amplitudes at six equidistant points in the
m2

ψ 0π− range covering the Z−
1 peak, 18.0–21.5 GeV2. Thus,

the K# and the Z−
1 components are no longer influenced

in the fit by the assumption of a Breit-Wigner amplitude for
the Z−

1 . The resulting Argand diagram, shown in Fig. 3, is
consistent with a rapid change of the Z−

1 phase when its
magnitude reaches the maximum, a behavior characteristic
of a resonance.
If a second Z− resonance is allowed in the amplitude

with JP ¼ 0− (Z−
0 ) the pχ2 of the fit improves to 26%.

The Z−
0 significance from the Δð−2 lnLÞ is 6σ including

the systematic variations. It peaks at a lower mass
4239% 18þ45

−10 MeV, and has a larger width 220%
47þ108

−74 MeV , with a much smaller fraction, fZ−
0
¼ ð1.6%

0.5þ1.9
−0.4Þ% ðfIZ−

0
¼ ð2.4% 1.1þ1.7

−0.2Þ%Þ than the Z−
1 . With the

defaultK# model, 0− is preferred over 1−, 2−, and 2þ by 8σ.
The preference over 1þ is only 1σ. However, the width
in the 1þ fit becomes implausibly large, 660% 150 MeV.
The Z−

0 has the same mass and width as one of the χc1π−

states reported previously [21], but a 0− state cannot decay
strongly to χc1π−. Figure 4 compares the m2

ψ 0π− projections

of the fits with both Z−
0 and Z−

1 , or the Z
−
1 component only.

The model-independent analysis has a large statistical
uncertainty in the Z−

0 region and shows no deviations of
the data from the reflections of the K# degrees of freedom
(Fig. 1). Argand diagram studies for the Z−

0 are incon-
clusive. Therefore, its characterization as a resonance will
need confirmation when larger samples become available.
In summary, an amplitude fit to a large sample of B0 →

ψ 0Kþπ− decays provides the first independent confirmation
of the existence of the Zð4430Þ− resonance and establishes
its spin parity to be 1þ, both with very high significance.
The positive parity rules out the interpretation in terms
of D̄#ð2007ÞD1ð2420Þ [4,14] or D̄#ð2007ÞD#

2ð2460Þ
threshold effects, leaving the four-quark bound state as
the only plausible explanation. The measured mass
4475% 7þ15

−25 MeV, width 172% 13þ37
−34 MeV, and ampli-

tude fraction ð5.9% 0.9þ1.5
−3.3Þ%, are consistent with, but

more precise than, the Belle results [28]. An analysis of the
data using the model-independent approach developed by
the BABAR collaboration [25] confirms the inconsistencies
in the Zð4430Þ− region between the data and Kþπ− states
with J ≤ 2. The D-wave contribution is found to be
insignificant in Zð4430Þ− decays, as expected for a true
state at such mass. The Argand diagram obtained for the
Zð4430Þ− amplitude is consistent with the resonant behav-
ior; among all observed candidates for charged four-quark
states, this is the first to have its resonant character confirmed
in this manner.

We express our gratitude to our colleagues in the CERN
accelerator departments for the excellent performance of
the LHC. We thank the technical and administrative staff at
the LHCb institutes. We acknowledge support from CERN
and from the national agencies: CAPES, CNPq, FAPERJ,
and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and
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1 amplitude in six
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ψ 0π− bins, shown in an Argand diagram (connected points with
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ψ 0π− increases counterclockwise). The red curve

is the prediction from the Breit-Wigner formula with a resonance
mass (width) of 4475 (172) MeV and magnitude scaled to
intersect the bin with the largest magnitude centered at
ð4477 MeVÞ2. Units are arbitrary. The phase convention assumes
the helicity-zero K#ð892Þ amplitude to be real.
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positive parity rules out the possibility that the Zð4430Þ−
state is a D̄#ð2007ÞD1ð2420Þ threshold effect as proposed
in Refs. [4,14].
In the amplitude fit, the Z−

1 is represented by a Breit-
Wigner amplitude, where the magnitude and phase vary
with m2

ψ 0π− according to an approximately circular trajec-
tory in the (ReAZ−

, ImAZ−
) plane (Argand diagram [38]),

where AZ−
is the m2

ψ 0π− dependent part of the Z
−
1 amplitude.

We perform an additional fit to the data, in which we
represent the Z−

1 amplitude as the combination of inde-
pendent complex amplitudes at six equidistant points in the
m2

ψ 0π− range covering the Z−
1 peak, 18.0–21.5 GeV2. Thus,

the K# and the Z−
1 components are no longer influenced

in the fit by the assumption of a Breit-Wigner amplitude for
the Z−

1 . The resulting Argand diagram, shown in Fig. 3, is
consistent with a rapid change of the Z−

1 phase when its
magnitude reaches the maximum, a behavior characteristic
of a resonance.
If a second Z− resonance is allowed in the amplitude

with JP ¼ 0− (Z−
0 ) the pχ2 of the fit improves to 26%.

The Z−
0 significance from the Δð−2 lnLÞ is 6σ including

the systematic variations. It peaks at a lower mass
4239% 18þ45

−10 MeV, and has a larger width 220%
47þ108

−74 MeV , with a much smaller fraction, fZ−
0
¼ ð1.6%

0.5þ1.9
−0.4Þ% ðfIZ−

0
¼ ð2.4% 1.1þ1.7

−0.2Þ%Þ than the Z−
1 . With the

defaultK# model, 0− is preferred over 1−, 2−, and 2þ by 8σ.
The preference over 1þ is only 1σ. However, the width
in the 1þ fit becomes implausibly large, 660% 150 MeV.
The Z−

0 has the same mass and width as one of the χc1π−

states reported previously [21], but a 0− state cannot decay
strongly to χc1π−. Figure 4 compares the m2

ψ 0π− projections

of the fits with both Z−
0 and Z−

1 , or the Z
−
1 component only.

The model-independent analysis has a large statistical
uncertainty in the Z−

0 region and shows no deviations of
the data from the reflections of the K# degrees of freedom
(Fig. 1). Argand diagram studies for the Z−

0 are incon-
clusive. Therefore, its characterization as a resonance will
need confirmation when larger samples become available.
In summary, an amplitude fit to a large sample of B0 →

ψ 0Kþπ− decays provides the first independent confirmation
of the existence of the Zð4430Þ− resonance and establishes
its spin parity to be 1þ, both with very high significance.
The positive parity rules out the interpretation in terms
of D̄#ð2007ÞD1ð2420Þ [4,14] or D̄#ð2007ÞD#

2ð2460Þ
threshold effects, leaving the four-quark bound state as
the only plausible explanation. The measured mass
4475% 7þ15

−25 MeV, width 172% 13þ37
−34 MeV, and ampli-

tude fraction ð5.9% 0.9þ1.5
−3.3Þ%, are consistent with, but

more precise than, the Belle results [28]. An analysis of the
data using the model-independent approach developed by
the BABAR collaboration [25] confirms the inconsistencies
in the Zð4430Þ− region between the data and Kþπ− states
with J ≤ 2. The D-wave contribution is found to be
insignificant in Zð4430Þ− decays, as expected for a true
state at such mass. The Argand diagram obtained for the
Zð4430Þ− amplitude is consistent with the resonant behav-
ior; among all observed candidates for charged four-quark
states, this is the first to have its resonant character confirmed
in this manner.
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1 amplitude in six
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ψ 0π− bins, shown in an Argand diagram (connected points with

the error bars, m2
ψ 0π− increases counterclockwise). The red curve

is the prediction from the Breit-Wigner formula with a resonance
mass (width) of 4475 (172) MeV and magnitude scaled to
intersect the bin with the largest magnitude centered at
ð4477 MeVÞ2. Units are arbitrary. The phase convention assumes
the helicity-zero K#ð892Þ amplitude to be real.
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fore provide a useful cross-check. For the !c1 in the
helicity zero state the expected angular distribution for
!c1 ! J=c" and J=c ! ‘þ‘" decay is P0 ¼ 9

32 $
ð1þ 2cos2#!c1

cos2#J=c " cos2#J=c Þ, while for the !c1 in
the helicity '1 state the expected angular distribution is
P1 ¼ 9

32 ð1" cos2#!c1
cos2#J=c Þ. Here it is assumed that

different J=c helicity states do not interfere. We integrate
the helicity zero and helicity '1 components of the fit
function over the Dalitz plot and find the relative contri-
butions w0 and w'1. The expected angular distribution is
then P ¼ w0P0 þ w'1P'1.

The cos#!c1
and cos#J=c distributions for the entire

Dalitz plot are presented in Fig. 11; for the leftmost vertical
slice containing the K(ð892Þ signal in Fig. 12; and for the
middle horizontal slice dominated by the Zþ resonances in
Fig. 13. The agreement with predictions is good. It is
evident that the different models give very similar predic-
tions and these angular distributions are not useful for
discriminating between them.

X. CONCLUSIONS

A broad doubly peaked structure is observed in the
$þ!c1 invariant mass distribution in exclusive !B0 !
K"$þ!c1 decays. When fitted with two Breit-Wigner
resonance amplitudes, the resonance parameters are
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We check if the Zcð4200Þþ signal can be explained by a
resonance in the J=ψK− system by adding a J=ψK−

resonance, which is referred to as the Z−
cs instead of the

Zcð4200Þþ. The preferred quantum numbers of the Z−
cs are

also JP ¼ 1þ; the mass and width in the default model for
the 1þ hypothesis are 4228% 5 MeV=c2 and 30%
17 MeV, respectively. The Wilks significance is only
4.3σ. The hypothesis of the existence of a J=ψπþ resonance
is preferred over the hypothesis of the existence of a
J=ψK− resonance at the level of 7.4σ. The Z−

cs becomes
insignificant if the Zcð4200Þþ is added to the model.

Separate results from J=ψ → eþe− and J=ψ → μþμ−

decay samples agree with each other and with the results
from the combined sample. The Zcð4200Þþ mass, width
and significance for the JP ¼ 1þ hypothesis for each J=ψ
decay channel are shown in Table IV.
We also consider other amplitude models: without one of

the insignificant K& resonances [K&ð1680Þ, K&
0ð1950Þ];

with the addition of S-, P- and D-wave nonresonant K−πþ

amplitudes; with free Blatt-Weisskopf r parameters; with
free masses and widths of K& resonances (with Gaussian
constraints to their known values [22]) and with the LASS
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FIG. 7 (color online). The fit results with (solid line) and without (dashed line) the Zcð4200Þþ (JP ¼ 1þ) in the default model. The
points with error bars are data; the hatched histograms are the J=ψ sidebands. The slices are defined in Fig. 4.
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higher mass states are 9 and 12 standard deviations,
respectively.
Analysis and results.—We use data corresponding to

1 fb−1 of integrated luminosity acquired by the LHCb
experiment in pp collisions at 7 TeV center-of-mass
energy, and 2 fb−1 at 8 TeV. The LHCb detector [13]
is a single-arm forward spectrometer covering the
pseudorapidity range, 2 < η < 5. The detector includes a
high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region [14],
a large-area silicon-strip detector located upstream of a
dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes
[15] placed downstream of the magnet. Different types of
charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors [16]. Muons are
identified by a system composed of alternating layers of
iron and multiwire proportional chambers [17].

Events are triggered by a J=ψ → μþμ− decay, requiring
two identified muons with opposite charge, each with
transverse momentum, pT , greater than 500 MeV. The
dimuon system is required to form a vertex with a fit
χ2 < 16, to be significantly displaced from the nearest pp
interaction vertex, and to have an invariant mass within
120 MeV of the J=ψ mass [12]. After applying these
requirements, there is a large J=ψ signal over a small
background [18]. Only candidates with dimuon invariant
mass between −48 and þ43 MeV relative to the observed
J=ψ mass peak are selected, the asymmetry accounting for
final-state electromagnetic radiation.
Analysis preselection requirements are imposed prior to

using a gradient boosted decision tree, BDTG [19], that
separates the Λ0

b signal from backgrounds. Each track is
required to be of good quality and multiple reconstructions
of the same track are removed. Requirements on the
individual particles include pT > 550 MeV for muons,
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Using 9 fb−1 Run 1+2 data look at pairs of J/ψ
mesons.

Ü Revisit mass distribution of [JHEP 06 (2017) 047]
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Require pT > 5.2 GeV/c to maximise
single over double parton scattering
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Peaks seen at 6.9 GeV/c2 and at threshold
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Background-only fit. There is a peak at 6900 MeV/c2.
How to fit the low-mass region?
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Model I: Two Breit–Wigner shapes for threshold,
χ2/ndf = 112.7/89, p = 4.6%
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Or parametrise with a single BW
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Model I with another BW at 7.2 GeV/c2
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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In all cases a new state Tcccc(6900) is ob-
served.
Mass and width, and cross-section R rela-
tive to J/ψJ/ψ, based on the no-interference
fit:

M = 6905± 11± 7 MeV/c2

Γ = 80± 19± 33 MeV/c2

R = 2.6± 0.6± 0.8%

And with an interfering resonance:

M = 6886± 11± 11 MeV/c2

Γ = 168± 33± 69 MeV/c2
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Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Model I fit in bins of pT.

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [66 / 47]

http://arxiv.org/abs/2006.16957


Structure in J/ψJ/ψ
[LHCb, Science Bulletin 65 (2020) 1983, arXiv:2006.16957]
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Model II fit in bins of pT.

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [67 / 47]

http://arxiv.org/abs/2006.16957


Amplitude analysis of B+→ D−D+K−
[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]
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Amplitude analysis of B+→ D−D+K−
[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]
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Amplitude analysis of B+→ D−D+K−
[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]
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Amplitude analysis of B+→ D−D+K−
[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]
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New csdu states

X0(2900) : M = 2866± 7± 2 MeV/c2

Γ = 57± 12± 4 MeV
X1(2900) : M = 2904± 5± 1 MeV/c2

Γ = 110± 11± 4 MeV

Model-independently confirmed by
[LHCb, PRL 125 (2020) 242001, arXiv:2009.00025]
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

24 220± 170 B+→ J/ψφK + candidates with 4%
background and 2% B+→ J/ψK +K−K +
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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9 fb−1 update of 3 fb−1
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

24 220± 170 B+→ J/ψφK + candidates with 4%
background and 2% B+→ J/ψK +K−K +

Ü Run 2 almost 5 times Run 1 sample
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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9 fb−1 update of 3 fb−1
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

Try run-1 model with 5 K +φ and 4 J/ψφ resonances
Ü J/ψK + distribution poorly modelled

Add more resonances: lower-mass kaons, two Zcs and two more X .
Clear need of J/ψK + tetraquarks: Zcs(4000)+ and Zcs(4220)+
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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9 fb−1 update of 3 fb−1
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

Try run-1 model with 5 K +φ and 4 J/ψφ resonances
Add more resonances: lower-mass kaons, two Zcs and two more X .

Clear need of J/ψK + tetraquarks: Zcs(4000)+ and Zcs(4220)+
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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9 fb−1 update of 3 fb−1
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

Try run-1 model with 5 K +φ and 4 J/ψφ resonances
Add more resonances: lower-mass kaons, two Zcs and two more X .
Clear need of J/ψK + tetraquarks: Zcs(4000)+ and Zcs(4220)+
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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9 fb−1 update of 3 fb−1
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

Try run-1 model with 5 K +φ and 4 J/ψφ resonances
Add more resonances: lower-mass kaons, two Zcs and two more X .
Clear need of J/ψK + tetraquarks: Zcs(4000)+ and Zcs(4220)+

4 Resonant behaviour of Zcs(4000)+
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]

Angular moments of J/ψφ helicity angle versus J/ψφ mass
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Strange tetraquarks in B+→ J/ψφK +

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]

Contribution Significance [×σ] M0 [MeV] Γ0 [MeV] FF [%]
All K (1+) 25± 4 + 6

− 15
21P1 K (1+) 4.5 (4.5) 1861± 10 + 16

− 46 149± 41 + 231
− 23

23P1 K ′(1+) 4.5 (4.5) 1911± 37 + 124
− 48 276± 50 + 319

− 159
13P1 K1(1400) 9.2 (11) 1403 174 15± 3 + 3

− 11
All K (2−) 2.1± 0.4 + 2.0

− 1.1
11D2 K2(1770) 7.9 (8.0) 1773 186
13D2 K2(1820) 5.8 (5.8) 1816 276

All K (1−) 50± 4 + 10
− 19

13D1 K ∗(1680) 4.7 (13) 1717 322 14± 2 + 35
− 8

23S1 K ∗(1410) 7.7 (15) 1414 232 38± 5 + 11
− 17

K (2+)
23P2 K ∗2 (1980) 1.6 (7.4) 1988± 22 + 194

− 31 318± 82 +481
− 101 2.3± 0.5± 0.7

K (0−)
21S0 K (1460) 12 (13) 1483 336 10.2± 1.2 + 1.0

− 3.8
X (2−)

X (4150) 4.8 (8.7) 4146± 18± 33 135± 28 + 59
− 30 2.0± 0.5 + 0.8

− 1.0
X (1−)

X (4630) 5.5 (5.7) 4626± 16 + 18
− 110 174± 27 + 134

− 73 2.6± 0.5 + 2.9
− 1.5

All X (0+) 20± 5 + 14
− 7

X (4500) 20 (20) 4474± 3± 3 77± 6 + 10
− 8 5.6± 0.7 + 2.4

− 0.6
X (4700) 17 (18) 4694± 4 + 16

− 3 87± 8 + 16
− 6 8.9± 1.2 + 4.9

− 1.4
NRJ/ψφ 4.8 (5.7) 28± 8 + 19

− 11
All X (1+) 26± 3 + 8

− 10
X (4140) 13 (16) 4118± 11 + 19

− 36 162± 21 + 24
− 49 17± 3 + 19

− 6
X (4274) 18 (18) 4294± 4 + 3

− 6 53± 5± 5 2.8± 0.5 + 0.8
− 0.4

X (4685) 15 (15) 4684± 7 + 13
− 16 126± 15 + 37

− 41 7.2± 1.0 + 4.0
− 2.0

All Zcs(1+) 25± 5 + 11
− 12

Zcs(4000) 15 (16) 4003± 6 + 4
− 14 131± 15± 26 9.4± 2.1± 3.4

Zcs(4220) 5.9 (8.4) 4216± 24 + 43
− 30 233± 52 + 97

− 73 10± 4 + 10
− 7
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Tetraquarks interpretation

[B]

[LHCb, arXiv:2103.01803, submitted to PRD]
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Some comments by Richard Lebed:
Zcs(4000) could be the strange SU(3) partner

of Zc(3900) [BESIII, PRL 110 (2013) 252001]

Zcs(4220) could be the strange SU(3) partner
of Zc(4020) [BESIII, PRL 111 (2013) 242001]

However these states are not seen in
B decays and wider

X (4630) is close in mass to Y (4626) seen in
D+Ds(2536)− [Belle, PRD 100 (2019) 111103]

X (4150) is below 5σ. It could be the
ηc2(2D). The mass is predicted to be
4158 MeV [Barnes, Godfrey, Swanson, PRD 72 (2005) 054026]
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[B]

χc1(3872) saga
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Hidden charm states decaying to J/ψπ+π−
[E705, PRD 50 (1994) 4258]

J/ψπ+π− in 10 GeV/cπ±Li
interactions

Was the X (3872) seen in
1993 at FermiLab?
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Observation of the X (3872) Resonance

[B]

[Belle, PRL 91, 262001 (2003), arXiv:hep-ex/0309032]
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Moon-Mars

Belle reported a clear peak in the J/ψπ+π−

mass spectrum above the ψ(2S) in B+ →
J/ψπ+π−K + decays (36± 7 events)

MX = 3872.0± 0.6± 0.5 MeV/c2

Γ < 2.3 MeV

close to the D0D∗0 threshold
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Observation of the X (3872) Resonance

[B]

[Belle, PRL 91, 262001 (2003), arXiv:hep-ex/0309032]
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Belle reported a clear peak in the J/ψπ+π−

mass spectrum above the ψ(2S) in B+ →
J/ψπ+π−K + decays (36± 7 events)

π+π− spectrum consistent with ρ0

A search in B+ → γχc1K + yields no signal,
contradicting a 3Dc2 explanation
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χc1(3872) production at 7 TeV
[LHCb, EPJC 72 (2012) 1972, arXiv:1112.5310]
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LHCb was first to observe the χc1(3872) meson in pp collisions (CDF saw it
in pp [PRL96 (2016) 102002])

Using 2010 data corresponding to 35 pb−1, see 500 χc1(3872) and 4000
ψ(2S) in J/ψπ+π−.

Cross-section times BF in
25 < y < 4.5 and
5 < pT < 20 GeV/c is

5.4± 1.3± 0.8 nb

The mass is also
measured to be
3871±0.48±0.12 MeV/c2
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X (3872) quantum numbers

[B]

[LHCb, PRL 110 (2013) 222001, arXiv:1302.6269]

)  [MeV]ψ) - M(J/ψJ/-π+πM(
600 800 1000 1200 1400

N
um

be
r 

of
 c

an
di

da
te

s 
/ (

2.
5 

M
eV

)

0

200

400

600

800

1000

1200

LHCb
550 6000

200

400

600

800

1000

1200
(2S)ψ

750 8000

10

20

30

40

50

60

70 X(3872)
-1 -0.5 0 0.5 1

N
um

be
r 

of
 c

an
di

da
te

s 
/ 0

.4

20

40

60

80

100

120

all candidates
LHCb

Data
++=1PCSimulated J
-+=2PCSimulated J

Xθcos
-1 -0.5 0 0.5 1
0

10

20

30

40

50

| > 0.6ππθ|cos

) ]++(1L)/-+(2L = -2 ln[ t
-200 -100 0 100 200

N
um

be
r 

of
 e

xp
er

im
en

ts
 / 

bi
n

210

310

410

510

610

710

datat

-+=2PCSimulated J ++=1PCSimulated J

LHCb

Five-dimensional angular analysis of
B+→ X (3872)K + with
X (3872)→ J/ψπ+π− using 2011 data

Ü 313± 26 decays in 38 000
B+→ J/ψπ+π−K + candidates

4 Unambiguous assignment JPC = 1++ at 8σ.
This rules out the ηc2 (11D2) hypothesis.
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χc1(3872) production at 7 TeV
[CMS, JHEP 04 (2013) 154, arXiv:1302.3968]
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CMS see χc1(3872) with 2011 data (4.8 fb−1).
They bin in pT

And determine the non-prompt fraction,
defined as `xy > 100µm
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χc1(3872) production at 7 TeV
[CMS, JHEP 04 (2013) 154, arXiv:1302.3968]
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Should be flat

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [88 / 47]

http://arxiv.org/abs/1302.3968


χc1(3872) production at 7 TeV
[CMS, JHEP 04 (2013) 154, arXiv:1302.3968]
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Evidence for X (3872)→ ψ(2S)γ
[LHCb, Nucl. Phys. B886 (2014) 665, arXiv:1404.0275]

The nature of the X (3872) is not
clear. The ratio Rψγ of decay
widths to ψ(2S)γ and J/ψγ is
expected to be very different for a
cc state or a pure DD∗ molecule
BaBar and Belle results were not
conclusive
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Evidence for X (3872)→ ψ(2S)γ
[LHCb, Nucl. Phys. B886 (2014) 665, arXiv:1404.0275]
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The nature of the X (3872) is not
clear. The ratio Rψγ of decay
widths to ψ(2S)γ and J/ψγ is
expected to be very different for a
cc state or a pure DD∗ molecule
We reconstruct B+ →J/ψγK +

and fit for the X
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Evidence for X (3872)→ ψ(2S)γ
[LHCb, Nucl. Phys. B886 (2014) 665, arXiv:1404.0275]
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The nature of the X (3872) is not
clear. The ratio Rψγ of decay
widths to ψ(2S)γ and J/ψγ is
expected to be very different for a
cc state or a pure DD∗ molecule
We reconstruct B+ →J/ψγK +

and fit for the X
Same for B+ →ψ(2S)γK +: 4.4σ
evidence
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Evidence for X (3872)→ ψ(2S)γ
[LHCb, Nucl. Phys. B886 (2014) 665, arXiv:1404.0275]

The nature of the X (3872) is not
clear. The ratio Rψγ of decay
widths to ψ(2S)γ and J/ψγ is
expected to be very different for a
cc state or a pure DD∗ molecule
We reconstruct B+ →J/ψγK +

and fit for the X
The ratio is measured to be

B(X (3872)→ ψ(2S)γ)
B(X (3872)→ J/ψγ) = 2.46±0.64±0.29

This disfavours the DD∗ molecule at 4.4σ
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X (3872) QN with X (3872)→ ρ0J/ψ
[LHCb, PRD 92 (2015) 011102(R), arXiv:1504.06339]

The X (3872) state was observed
by Belle [PRL 91 (2013) 26001] in
B→ XK and X→ π+π−J/ψ. Its
nature is unknown.
CDF determined the quantum
numbers to be JPC = 1++ or 2−+

[PRL 98 (2007) 132002]

LHCb determined JPC = 1++

[PRL 110 (2013) 222001] (1 fb−1)
Ü One of the PDG highlights of

the 2014 edition
7 Both assumed the decay to be

dominated by the lowest angular
momentum Lmin.
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X (3872) QN with X (3872)→ ρ0J/ψ
[LHCb, PRD 92 (2015) 011102(R), arXiv:1504.06339]

Parity-allowed LS couplings in
X→ ρ0J/ψ

The X (3872) state was observed
by Belle [PRL 91 (2013) 26001]

CDF determined the quantum
numbers to be JPC = 1++ or 2−+

[PRL 98 (2007) 132002]

LHCb determined JPC = 1++

[PRL 110 (2013) 222001] (1 fb−1)
Ü One of the PDG highlights of

the 2014 edition
7 Both assumed the decay to be

dominated by the lowest angular
momentum Lmin.
Here we present a re-analysis
using 3 fb−1 without this
assumption.Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [95 / 47]
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X (3872) QN with X (3872)→ ρ0J/ψ
[LHCb, PRD 92 (2015) 011102(R), arXiv:1504.06339]
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Here we present a re-analysis
using 3 fb−1 without this
assumption.
Use 1011± 38 B+→ XK +,
X→ ρ0J/ψ decays
The phase space is limited
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X (3872) QN with X (3872)→ ρ0J/ψ
[LHCb, PRD 92 (2015) 011102(R), arXiv:1504.06339]
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Here we present a re-analysis
using 3 fb−1 without this
assumption.
Use 1011± 38 B+→ XK +,
X→ ρ0J/ψ decays
The phase space is limited
Use helicity formalism to fit
5-dimensional angular
distributions
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X (3872) QN with X (3872)→ ρ0J/ψ
[LHCb, PRD 92 (2015) 011102(R), arXiv:1504.06339]
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This fits!

Here we present a re-analysis
using 3 fb−1 without this
assumption.
Use 1011± 38 B+→ XK +,
X→ ρ0J/ψ decays
The phase space is limited
Use helicity formalism to fit
5-dimensional angular
distributions
Only JPC = 1++ fits and the
fraction of D-wave is found to be
less than 4%

Ü Compatible with tetraquark, molecule or χc1(23P1) hypotheses (possibly
mixed). It excludes any other charmonium state.
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ψ(2S) and χc1(3872) at 8 TeV
[ATLAS, JHEP01(2017)117, arXiv:1610.09303]
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Study of ψ(2S) and X (3872) production using the
final state J/ψ(µ+µ−)π+π− with 8 TeV data.

Prompt and non-prompt components
disentangled by pseudo-lifetime fits

Non-prompt X (3872) production
consistently low compared to predictions
[Cacciari et al.,JHEP 10 (2012) 137, arXiv:1205.6344]
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ψ(2S) and χc1(3872) at 8 TeV
[ATLAS, JHEP01(2017)117, arXiv:1610.09303]
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Study of ψ(2S) and X (3872) production using the
final state J/ψ(µ+µ−)π+π− with 8 TeV data.

Prompt and non-prompt components
disentangled by pseudo-lifetime fits
Prompt X (3872) production consistent with
NLO NRQCD predictions [Artoisenet and Braaten,

PRD81 114018, arXiv:0911.2016]. Also consistent with
CMS [JHEP 04 (2013) 154, arXiv:1302.3968].

Non-prompt X (3872) production
consistently low compared to predictions
[Cacciari et al.,JHEP 10 (2012) 137, arXiv:1205.6344]
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ψ(2S) and χc1(3872) at 8 TeV
[ATLAS, JHEP01(2017)117, arXiv:1610.09303]
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Study of ψ(2S) and X (3872) production using the
final state J/ψ(µ+µ−)π+π− with 8 TeV data.

Prompt and non-prompt components
disentangled by pseudo-lifetime fits
Non-prompt X (3872) production
consistently low compared to predictions
[Cacciari et al.,JHEP 10 (2012) 137, arXiv:1205.6344]

Ratio assuming same mix of b-hadrons:

B(b→ X (3872)(µ+µ−)any)
B(b→ ψ(2S)(µ+µ−)any) = (3.95± 0.32± 0.08)%

But if B+
c component is fitted, it is found that (25± 13± 2± 5 (spin))% of

non-prompt X (3872) come from B+
c Ü Puzzling!
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X (3872) muoproduction COMPASS

[Compass, PLB 783 (2018) 334, arXiv:1707.01796]
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Observation of Λ0
b→ χc1(3872)pK−

[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]
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3.62 < mJ/ψπ+π− < 3.72 GeV/c2

3.80 < mJ/ψπ+π− < 3.95 GeV/c2

5.61 < mJ/ψπ+π−pK− < 5.63 GeV/c2

5.61 < mJ/ψπ+π−pK− < 5.63 GeV/c2

Λ0
b→ ψππpK−
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ψππpK−

combinatorial bkg.
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Λ0
b→ χc1(3872)Λ(1520)

Λ0
b→ χc1(3872)(pK−)NR

total

The X (3872) is now called
χc1(3872).
Find 55 ± 11 (7σ) Λ0

b →
χc1(3872)pK− with χc1(3872)→
ψ(2S)π+π−

Rψ(2S) = B(Λ0
b→ χc1(3872)pK−)
B(Λ0

b→ ψ(2S)K−)

× B(χc1(3872)→ J/ψπ+π−)
B(ψ(2S)→ J/ψπ+π−)

= (5.4± 1.1± 0.2)× 10−2

The combined BF is
(1.2± 0.3± 0.2)× 10−6
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Observation of Λ0
b→ χc1(3872)pK−

[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]
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B+ → ψK0π+

B+ → ψπ+

Rψ(2S)

Compared with PDG averages
for other modes

The X (3872) is now called
χc1(3872).
Find 55 ± 11 (7σ) Λ0

b →
χc1(3872)pK− with χc1(3872)→
ψ(2S)π+π−

Rψ(2S) = B(Λ0
b→ χc1(3872)pK−)
B(Λ0

b→ ψ(2S)K−)

× B(χc1(3872)→ J/ψπ+π−)
B(ψ(2S)→ J/ψπ+π−)

= (5.4± 1.1± 0.2)× 10−2

The combined BF is
(1.2± 0.3± 0.2)× 10−6
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Observation of Λ0
b→ χc1(3872)pK−

[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]

0 0.005 0.01 0.015 0 0.01 0.02 0.03

Λ0
b → ψpK−

B0 → ψK∗0

B0 → ψK0

B+ → ψK0π+

B+ → ψπ+

RJ/ψ Rχc1

RJ/ψ and Rχc compared with PDG averages for other
modes

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [105 / 47]

http://arxiv.org/abs/1907.00954


Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

Using 3 fb−1 2011–12 detached
J/ψπ+π− data, study the χc1(3872)
lineshape (15k signal). ψ(2S) is used
as control. 200
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background

total

m = 3871.70± 0.07± 0.07± 0.01 MeV
Γ = 1.39± 0.24± 0.10 MeV

First measurement of the BW width!

Is the χc1(3872) above or below D∗0D
threshold?

m(D∗0D) = 3871.69± 0.06 MeV
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Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

For a resonance near threshold with coupled channels, the Flatté parametrisa-
tion is to be used [Yu, Kalashnikova, Nefediev, PRD80 (2009) 074004]

dR(J/ψπ+π−)
dE ∝ Γρ(E )∣∣∣E − Ef + i

2 [g (k1 + k2) + Γρ(E ) + Γω(E ) + Γ0]
∣∣∣2

Ef = m0 − (mD0 + mD∗0)
Γf : various decay modes

mode = 3871.69 + 0.00
− 0.04

+ 0.05
− 0.13 MeV

FWHM = 0.22 + 0.07
− 0.06

+ 0.11
− 0.13 MeV

3.868 3.87 3.872 3.874
0

50

100

150

200

250

300

350

400

310×

3.84 3.86 3.88 3.9
0

1000

2000

3000

4000

5000

6000

7000

8000

E
ve

n
ts

/(
1.

6
M

eV
)

d
R

(J
/ψ
π
+
π
−

)
d
m
J
/ψ
π
+
π
−

[a
.u
.]

mJ/ψπ+π− mJ/ψπ+π−[GeV] [GeV]

Flatté
Breit–Wigner Incl. resolution and background
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Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]
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Phase on complex E plane, with
trajectory when other couplings are

moved to 0.

Analytic continuation of Flatté function
in complex space.
Poles found:

Sheet II :( 0.0569− 0.1256 i) MeV
Sheet III :(−3.5780− 1.2165 i) MeV

χc1(3872) looks like a quasi-bound∗
state of D∗0D with binding energy of
24 keV (Eb < 100 keV at 90% CL)
∗ In the limit of all other couplings being switched off
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Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]
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width of D∗0 taken into account

Analytic continuation of Flatté function
in complex space.
Poles found:

Sheet II :( 0.0569− 0.1256 i) MeV
Sheet III :(−3.5780− 1.2165 i) MeV

χc1(3872) looks like a quasi-bound∗
state of D∗0D with binding energy of
24 keV (Eb < 100 keV at 90% CL)
∗ In the limit of all other couplings being switched off

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [109 / 47]

http://arxiv.org/abs/2005.13419


Lineshape of the χc1(3872) meson

[B]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

Analytic continuation of Flatté function
in complex space.
Poles found:

Sheet II :( 0.0569− 0.1256 i) MeV
Sheet III :(−3.5780− 1.2165 i) MeV

χc1(3872) looks like a quasi-bound∗
state of D∗0D with binding energy of
24 keV (Eb < 100 keV at 90% CL)
∗ In the limit of all other couplings being switched off
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χc1(3872) production versus multiplicity

[B]

[LHCb, PRL 126 (2021) 092001, arXiv:2009.06619]
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Ratio of ψ(2S) and χc1(3872) production, for prompt and b decays.
The from-b ratio is consistent with being flat. 5σ slope for prompt, compared
with predictions from [Esposito, Ferreiro, Pilloni, Polosa, Salgado, arXiv:2006.15044].

.
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Observation of B0
s→ χc1(3872)φ

[CMS, PRL 125 (2020) 152001, arXiv:2005.04764]
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Using 140 fb−1 13 TeV data, find 300± 40 B0
s → χc1(3872)φ

B(B0
s → χc1(3872)φ)B(χc1(3872)→ J/ψπ+π−)
B(B0

s → ψ(2S)φ)B(ψ(2S)→ J/ψπ+π−) = (2.21± 0.29± 0.17)%

B(B0
s → χc1(3872)φ)B(χc1(3872)→ J/ψπ+π−) = (4.14± 0.54± 0.32± 0.46 (B))× 10−6

B(B0
s → χc1(3872)φ)/B(B+→ χc1(3872)K +) = 0.482± 0.063± 0.037± 0.070 (B)

Which may indicate a different production mechanism in B0
s and B+ (B0

s is consistent with B0)
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χc1(3872) production in PbPb
[CMS, arXiv:2102.13048]
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Evidence for very enhanced χc1(3872) production in PbPb collisions at √sNN =
5 TeV.
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[B]

P+
c saga
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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????

We knew there was something strange in
Λ0

b→ J/ψpK− [JHEP 07 (2014) 103] [PLB 734 (2014) 122]

[PRL 111 (2013) 102003]

Ü Revisit this channel with a clean selec-
tion: 26000± 170 decays

Reflections from B0
s vetoed

Smooth efficiencies and backgrounds
over Dalitz plane
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

We knew there was something strange in Λ0
b → J/ψpK− [JHEP 07 (2014) 103]

[PLB 734 (2014) 122] [PRL 111 (2013) 102003]

Ü Revisit this channel with a clean selection: 26000± 170 decays
Reflections from B0

s vetoed
Re-optimised boosted decision tree trained on simulated signal and data
background.
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Clear difference with respect to phase-space
In mK−p it is due to excited Λ resonances
In mJ/ψp it is very puzzling
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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(b) background

Efficiencies? Can it be sculpted by
efficiencies?

Efficiencies vary smoothly by a
factor two over Dalitz
Modelled using phase-space
Simulation. Our detector response
is well validated in many similar
analyses.

Background? We look in the
sidebands and find nothing peaking.

Peaking B0 and B0
s are vetoed.

Reconstruction artefacts are
investigated.
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Perform 6D amplitude
analysis in θΛ0

b
, θΛ∗ , θψ,

φK , φµ, and mKp.
But not mJ/ψp.

If it is not an artefact, it must be physics.
Ü Can it be a conspiracy of interfering Λ

resonances? See also [PRL 117 (2016) 082002].
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Matrix Elements with only Λ∗ resonances:
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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(b) background

Two different implementations of the
fitter, done by two groups on two con-
tinents. They differ by the background
treatment
cFit: Sideband data are used to

construct 6D model of background
shape.

sFit: Background is statistically
subtracted using sPlot weights from
mass fit [Le Diberder, Pivk, NIM A 555 356 (2005)].

It is common practice in LHCb to have
these two approaches.
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

State JP M0 (MeV) Γ0 (MeV) Red. Ext.
Λ(1405) 1/2− 1405.1+1.3

−1.0 50.5± 2.0 3 4
Λ(1520) 3/2− 1519.5± 1.0 15.6± 1.0 5 6
Λ(1600) 1/2+ 1600 150 3 4
Λ(1670) 1/2− 1670 35 3 4
Λ(1690) 3/2− 1690 60 5 6
Λ(1800) 1/2− 1800 300 4 4
Λ(1810) 1/2+ 1810 150 3 4
Λ(1820) 5/2+ 1820 80 1 6
Λ(1830) 5/2− 1830 95 1 6
Λ(1890) 3/2+ 1890 100 3 6
Λ(2100) 7/2− 2100 200 1 6
Λ(2110) 5/2+ 2110 200 1 6
Λ(2350) 9/2+ 2350 150 6
Λ(2585) ? ≈2585 200 6

64 146
Last columns show number of parameters are left free. Masses and Width are fixed.

Red.: Reduced model (fast). Ext.: Allows for more helicity (LS) couplings.
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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All known Λ∗ resonances get the pK− mass
right, but not the J/ψp mass.

We use the extended model in this fit
Ü Adding more Λ resonances does not help

[PRL 117 (2016) 082002]

Letting the width and masses float does not
help
Adding ∆I = 1

2 -suppressed Σ∗0 (I = 3
2 )

resonances does also not help

When you have eliminated the
impossible, whatever remains, however

improbable, must be the truth

Extended Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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All known Λ∗ resonances get the pK− mass
right, but not the J/ψp mass.

When you have eliminated the
impossible, whatever remains, however

improbable, must be the truth

Extended Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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All known Λ∗ resonances get the pK− mass
right, but not the J/ψp mass.

State JP M0 (MeV) Γ0 (MeV) Red. Ext.
Λ(1405) 1/2− 1405.1+1.3

−1.0 50.5± 2.0 3 4
Λ(1520) 3/2− 1519.5± 1.0 15.6± 1.0 5 6
Λ(1600) 1/2+ 1600 150 3 4
Λ(1670) 1/2− 1670 35 3 4
Λ(1690) 3/2− 1690 60 5 6
Λ(1800) 1/2− 1800 300 4 4
Λ(1810) 1/2+ 1810 150 3 4
Λ(1820) 5/2+ 1820 80 1 6
Λ(1830) 5/2− 1830 95 1 6
Λ(1890) 3/2+ 1890 100 3 6
Λ(2100) 7/2− 2100 200 1 6
Λ(2110) 5/2+ 2110 200 1 6
Λ(2350) 9/2+ 2350 150 6
Λ(2585) ? ≈2585 200 6

64 146
Last columns show number of parameters are left free. Masses and Width are

fixed.
Red.: Reduced model (fast). Ext.: Allows for more helicity (LS) couplings.

Extended Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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There is an obvious peak at
mJ/ψp = 4.45 GeV/c2: Add one P+

c state with
free JP .

7 Unsatisfactory fit. JP = 5
2

+.

Add another P+
c

4 Good fit
Pc(4380)+ Pc(4450)+

JP 3
2
− 5

2
+

Mass [ MeV/c2] 4380± 8± 29 4449.8± 1.7± 2.5
Width [ MeV] 205± 18± 86 39± 5± 19
Significance 9σ 12σ

Reduced Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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There is an obvious peak at
mJ/ψp = 4.45 GeV/c2: Add one P+

c state with
free JP .

7 Unsatisfactory fit. JP = 5
2

+.
Add another P+

c
4 Good fit

Pc(4380)+ Pc(4450)+

JP 3
2
− 5

2
+

Mass [ MeV/c2] 4380± 8± 29 4449.8± 1.7± 2.5
Width [ MeV] 205± 18± 86 39± 5± 19
Significance 9σ 12σ

Reduced Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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There is an obvious peak at
mJ/ψp = 4.45 GeV/c2: Add one P+

c state with
free JP .

7 Unsatisfactory fit. JP = 5
2

+.
Add another P+

c
4 Good fit

Pc(4380)+ Pc(4450)+

JP 3
2
− 5

2
+

Mass [ MeV/c2] 4380± 8± 29 4449.8± 1.7± 2.5
Width [ MeV] 205± 18± 86 39± 5± 19
Significance 9σ 12σ

4 The angular distributions are well reproduced
Also OK: ( 3

2
+, 5

2
−) or ( 5

2
+, 3

2
−)

Ü In any case opposite parities
Minimal quark content: ccuud

Reduced Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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Reduced Model — � data — • fit
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

The interference pattern confirms the oppo-
site parities:

At cos θP+
c
∼ −1, low mKp: negative

interference.
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c
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interference.
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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c fraction

Ü Should be visible in other LHC
experiments
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]
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The Argand diagram shows the typical phase motion of a resonance for the
Pc(4450)+. For the Pc(4380)+, one point is off by 2σ.
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

 [GeV]KψJ/m
4 4.5

E
ve

nt
s/

(1
5 

M
eV

)

0

200

(a)

 

 [GeV]KψJ/m
4 4.5

E
ve

nt
s/

(1
5 

M
eV

)

0

200

(b)

 [GeV]KψJ/m
4 4.5

E
ve

nt
s/

(1
5 

M
eV

)

0

200

(c)

 

 [GeV]KψJ/m
4 4.5

E
ve

nt
s/

(1
5 

M
eV

)

0

200

LHCb

(d)

 [GeV]KψJ/m
4 4.5

E
ve

nt
s/

(1
5 

M
eV

)

0

500
(e)

 [GeV]KψJ/m
4 4.5

E
ve

nt
s/

(1
5 

M
eV

)

0

500

data
total fit
background

(4450)cP
(4380)cP
(1405)Λ
(1520)Λ
(1600)Λ

(1670)Λ
(1690)Λ
(1800)Λ
(1810)Λ
(1820)Λ
(1830)Λ
(1890)Λ
(2100)Λ
(2110)Λ

mKp < 1.55 1.55 < mKp < 1.7

1.7 < mKp < 2 mKp > 2

all

]2 [GeVKp
2m

2 3 4 5 6

]2
 [G

eV
K

ψ
J/2

m

13
14
15
16
17
18
19
20
21
22

LHCb

There are no known J/ψK + tetraquarks,
but there are the Zc states decaying to
J/ψπ+

4 No need to add J/ψK +

tetraquarks
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

Source M0 (MeV) Γ0 (MeV) Fit fractions (%)
4380 4450 4380 4450 4380 4450 Λ(1405) Λ(1520)

Extended vs. reduced 21 0.2 54 10 3.14 0.32 1.37 0.15
Λ∗ masses & widths 7 0.7 20 4 0.58 0.37 2.49 2.45
Proton ID 2 0.3 1 2 0.27 0.14 0.20 0.05
10 < pp < 100 GeV 0 1.2 1 1 0.09 0.03 0.31 0.01
Non-resonant 3 0.3 34 2 2.35 0.13 3.28 0.39
Separate sidebands 0 0 5 0 0.24 0.14 0.02 0.03
JP ( 3

2
+, 5

2
−) or ( 5

2
+, 3

2
−) 10 1.2 34 10 0.76 0.44

d = 1.5− 4.5 GeV−1 9 0.6 19 3 0.29 0.42 0.36 1.91
LPc
Λ0

b
Λ0

b → P+
c (4380/4450)K− 6 0.7 4 8 0.37 0.16

LPc P+
c (4380/4450)→ J/ψp 4 0.4 31 7 0.63 0.37

LΛ
∗
n
Λ0

b
Λ0

b → J/ψΛ∗ 11 0.3 20 2 0.81 0.53 3.34 2.31
Efficiencies 1 0.4 4 0 0.13 0.02 0.26 0.23
Change Λ(1405) coupling 0 0 0 0 0 0 1.90 0
Overall 29 2.5 86 19 4.21 1.05 5.82 3.89
sFit/cFit cross check 5 1.0 11 3 0.46 0.01 0.45 0.13

Uncertainties added in quadrature. “4380”: Pc(4380)+, “4450”: Pc(4450)+
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Observation of two pentaquarks
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

State JP Mass [ MeV/c2] Width [ MeV] Fit Fraction [%]
Pc(4380)+ 3

2
− 4380± 8± 29 205± 18± 86 8.4± 0.7± 4.2

Pc(4450)+ 5
2

+ 4449.8± 1.7± 2.5 39± 5± 19 4.1± 0.5± 1.1
Λ(1405) 15± 1± 6
Λ(1520) 19± 1± 4

These fit fractions are converted into branching fractions
[LHCb, Chin. Phys. C40 (2016) 011001, arXiv:1509.00292]

B(Λ0
b→ P+

c (4380)K−)× B(P+
c → J/ψp) =

(
2.56± 0.22± 1.28 + 0.46

− 0.36

)
× 10−5

B(Λ0
b→ P+

c (4450)K−)× B(P+
c → J/ψp) =

(
1.25± 0.15± 0.33 + 0.22

− 0.18

)
× 10−5

∆(−2 lnL) Significance
0→ 1P+

c 14.72 12σ
1→ 2P+

c 11.62 9σ
0→ 2P+

c 18.72 15σ

The significances are deter-
mined using the extended
model.
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Exotics in Λ0
b→ J/ψpπ−

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]
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(a) LHCb

State JP Mass (MeV) Width (MeV) RM EM
NR pπ 1/2− - - 4 4
N(1440) 1/2+ 1430 350 3 4
N(1520) 3/2− 1515 115 3 3
N(1535) 1/2− 1535 150 4 4
N(1650) 1/2− 1655 140 1 4
N(1675) 5/2− 1675 150 3 5
N(1680) 5/2+ 1685 130 - 3
N(1700) 3/2− 1700 150 - 3
N(1710) 1/2+ 1710 100 - 4
N(1720) 3/2+ 1720 250 3 5
N(1875) 3/2− 1875 250 - 3
N(1900) 3/2+ 1900 200 - 3
N(2190) 7/2− 2190 500 - 3
N(2300) 1/2+ 2300 340 - 3
N(2570) 5/2− 2570 250 - 3
Free parameters 40 106

Λ0
b→ J/ψpπ− re-analysed after 2014 ob-

servation [JHEP 07 (2014) 103] with full angular fit,
as in [PRL 115 (2015) 072001].
Need to describe all N resonances (∆ neg-
ligible)
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Exotics in Λ0
b→ J/ψpπ−

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]
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Exotics in Λ0
b→ J/ψpπ−

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]

bΛθcos1− 0.5− 0 0.5 1

50

100

150

0
bΛθcos

2− 0 2

50

100

150

K
φ

*
N

θcos1− 0.5− 0 0.5 1

50

100

150

N*θcos

1− 0.5− 0 0.5 1

50

100

150 LHCb

Data

c+2PcRM N*+Z
(4450)cP
(4380)cP
(4200)cZ

1− 0.5− 0 0.5 1
0

50

100

150

ψJ/θcos

2− 0 2
0

50

100

150

µφ

θcos  [rad]φ

Y
ie

ld
s

The fit fractions are

Pc(4380) : 5.1± 1.5 +2.1
−1.6 %

Pc(4450) : 1.6 +0.8
−0.6

+0.6
−0.5 %

Zc(4200) : 7.7± 2.8 +3.4
−4.0 %

There is a 3.3σ significance for the
presence of exotic states. The fit
does not allow to say which.

No P+
c would require (17.2±3.5)%

Zc(4200), which is much more than
in B0 → J/ψK +π− [Belle, PRD 90 (2014)

112009]
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Exotics in Λ0
b→ J/ψpπ−

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]
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The fit fractions are

Pc(4380) : 5.1± 1.5 +2.1
−1.6 %

Pc(4450) : 1.6 +0.8
−0.6

+0.6
−0.5 %

Zc(4200) : 7.7± 2.8 +3.4
−4.0 %

There is a 3.3σ significance for the presence of
exotic states. The fit does not allow to say which.

No P+
c would require (17.2 ± 3.5)% Zc(4200),

which is much more than in B0→ J/ψK +π− [Belle,

PRD 90 (2014) 112009]
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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Update of Run 1 analysis [PRL 115 (2015) 072001]

Ü Revisit this channel with an updated
BDT: 246 000 Λ0

b→ J/ψpK− decays (10
times Run 1) and 6.4% background.

Reflections from B0
s vetoed

Re-optimised BDT including PID (new)

Only 2 dimensions used: J/ψp and cos θ
Ü No sensitivity to

Argand diagram
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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Update of Run 1 analysis [PRL 115 (2015) 072001]

Ü Revisit this channel with an updated
BDT: 246 000 Λ0

b→ J/ψpK− decays (10
times Run 1) and 6.4% background.

Reflections from B0
s vetoed

Re-optimised BDT including PID (new)
Only 2 dimensions used: J/ψp and cos θ

Ü No sensitivity to
Argand diagram
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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[PRL 115 (2015) 072001]
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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With the new data, more structures are
visible:

Peak at 4312 MeV/c2

The Pc(4450)+ is composed of
two structures
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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To maximise the sensitivity, the data is
weighted as function of cos θP+

c
, as Λ∗

resonances are at positive cos θP+
c

.
The default fit uses these weights.
Other fits are used for systematic stud-
ies.
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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+(4312)cP
+(4440)cP +(4457)cP

+
cPbroad 

State M [ MeV ] Γ [ MeV ] (95% CL) R [%]
Pc(4312)+ 4311.9± 0.7 + 6.8

− 0.6 9.8± 2.7 + 3.7
− 4.5 (< 27) 0.30± 0.07 + 0.34

− 0.09
Pc(4440)+ 4440.3± 1.3 + 4.1

− 4.7 20.6± 4.9 + 8.7
− 10.1 (< 49) 1.11± 0.33 + 0.22

− 0.10
Pc(4457)+ 4457.3± 0.6 + 4.1

− 1.7 6.4± 2.0 + 5.7
− 1.9 (< 20) 0.53± 0.16 + 0.15

− 0.13

Three states are observed:
Pc(4312)+ Γ ∼ 10 MeV (7σ), which

we could not see with 3 fb−1

Pc(4440)+ Γ ∼ 20 MeV
and

Pc(4457)+ Γ ∼ 6 MeV. The
significance of the 2-peak structure
is 5.4σ

7 No sensitivity to the wide
Pc(4380)+
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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State M [ MeV ] Γ [ MeV ] (95% CL) R [%]
Pc(4312)+ 4311.9± 0.7 + 6.8

− 0.6 9.8± 2.7 + 3.7
− 4.5 (< 27) 0.30± 0.07 + 0.34

− 0.09
Pc(4440)+ 4440.3± 1.3 + 4.1

− 4.7 20.6± 4.9 + 8.7
− 10.1 (< 49) 1.11± 0.33 + 0.22

− 0.10
Pc(4457)+ 4457.3± 0.6 + 4.1

− 1.7 6.4± 2.0 + 5.7
− 1.9 (< 20) 0.53± 0.16 + 0.15

− 0.13

Systematic uncertainties:
Interference: The mJ/ψp fit has no

sensitivity, thus several combinations
are tried. The default is incoherent.

Background model: Polynomial
versus polynomial plus BW (default)

Data selection: the fits for full,
mpK > 1.9 GeV and weighted (default)
samples are compared.
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Observation of narrow pentaquarks
[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]
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cΣThree states are observed:
Pc(4312)+ Γ ∼ 10 MeV (7σ), which

we could not see with 3 fb−1

Pc(4440)+ Γ ∼ 20 MeV
and

Pc(4457)+ Γ ∼ 6 MeV. The
significance of the 2-peak structure
is 5.4σ

7 No sensitivity to the wide
Pc(4380)+

It is striking that the Pc(4312)+ and the Pc(4457)+ sit at the ΣcD and ΣcD∗
thresholds
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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With Run 1 data, ATLAS find 2270± 300 Λ0
b→ J/ψpK− decays

With the same data, LHCb see 26 000± 170 with hardly any background
[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [151 / 47]

http://cdsweb.cern.ch/record/2693957
http://arxiv.org/abs/1507.03414


P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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With Run 1 data, ATLAS find 2270± 300 Λ0
b→ J/ψpK− decays

Good fits with 4 P+
c LHCb states of [PRL 122 (2019) 222001] (p ∼ 69%)

(also with 2 P+
c of [PRL 115 (2015) 072001], excluded by LHCb, p ∼ 56% )

Fit with only Λ is not (p ∼ 9× 10−3)
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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P+
c states at ATLAS

[B]

[ATLAS-CONF-2019-048]
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Amplitude analysis of B0
s→ J/ψpp

[B]

[LHCb, LHCb-PAPER-2021-018, in preparation]

LHCb preliminary

LHCb preliminary

With 9 fb−1 2011–18 data, find 800 B0
s →

J/ψpp with 15% background. Flavour is
untagged.

7 Some structure at 4.3 GeV
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Amplitude analysis of B0
s→ J/ψpp

[B]

[LHCb, LHCb-PAPER-2021-018, in preparation]

LHCb preliminary

LHCb preliminary

With 9 fb−1 2011–18 data, find 800 B0
s →

J/ψpp with 15% background. Flavour is
untagged.

4 Good fit with a P+
c state (3.1σ)

M = 4337 + 7
− 4 ± 2 MeV

Γ = 29 + 26
− 12 ± 14 MeV
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P+
c as kinematical effect

[Nakamura, PRD 103 (2021) 111503, arXiv:2103.06817]
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[PRL 122 (2019) 222001]

Not everyone is convinced
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Pentaquarks as triangle diagrams

[B]

[Guo, Meissner, Wang, PRD92 (2015) 071502, arXiv:1507.04950]
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P+
c refit

[Du, Baru, Guo, Hanhart, Meißner, Oller, Wang, PRL 124 (2020) 072001, arXiv:1910.11846]

ΣcD Σ∗c D ΣcD∗ Σ∗c D∗

Du et al. redo the fit to LHCb data [LHCb, PRL 122 (2019) 222001, arXiv:1904.03947] and find a
1.3σ excess at 4380 MeV/c2, where a missing Σ∗c D state is expected.
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