Hadron spectroscopy at the LHC

- QCD
- Beauty baryons
- Pentaquarks
- Tetraquarks
- The $\chi_{c 1}(3872)$ state

On behalf of the LHCb collaboration, with input from ATLAS and CMS

07/07/2021 - LISHEP C

Patrick Koppenburg
[ఇ@pkoppenburg] [patrick.koppenburg@nikhef.ni]

59 novos hádrons e contando!

A lista completa dos novos hádrons encontrados no LHC, organizada por ano de descoberta (eixo horizontal) e massa
de particula (eixo vertical). As cores e formas denotam o conteúdo de quark desses estados. (Imagem: LHCb / CERN)

The Large hadron Colider at cern

Standard Model

FORCE CARRIERS

QuARKS

Confinement

The QCD potential is postulated. The mathematical proof that QCD produces such a potential is an unsolved problem. Solve it and claim your $\$ 1 \mathrm{M}$ prize with the Clay Mathematics Institute [milenium problems.

BoUnd states with d, u, s, c QUARKS

The meson 4-quark multiplet

The baryon 4-quark multiplet

Masses of Ground States

ISODOUBLET OF $\Xi_{b}^{0}(b s u)$ AND Ξ_{b}^{-}(bsd)

? [LHCb'18]

ObSERVATION of THE $\Xi_{b}(6100)^{-}$RESONANCE

Using $130 \mathrm{fb}^{-1} 2016-18$ data, CMS study $\Xi_{b}^{-} \pi^{+} \pi^{-}$combinations.
\rightarrow new baryon $\Xi_{b}(6100)^{-}$with mass $6100.3 \pm 0.2 \pm 0.1 \pm 0.6 \mathrm{MeV} / c^{2}$
Consistent with the orbitally excited $J^{P}=\frac{3}{2}^{-}$state with $j_{d s}=1$, as the $\Xi_{c}(2815)$.

$\Xi_{b}(6100)^{-} \rightarrow \Xi_{b}^{-} \pi^{+} \pi^{-}$with
fully reconstructed Ξ_{b}^{-}

Also visible with partially reconstructed $\Xi_{b}^{-} \rightarrow J / \psi \Sigma^{0} K^{-}$

Five new Ω_{c}^{0} Resonances in $\Xi_{c}^{+} K^{-}$

Using $3.3 \mathrm{fb}^{-1}$ at 7,8 and 13 TeV search for Ω_{c}^{0} (css) states

- Reconstruct $\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}$
- Combine with prompt K^{-}
\rightarrow Wow-effect: Five peaks!
- Clearly five narrow states, two of which are very narrow.
- Maybe there is a sixth wider state

Excited Ω_{c}^{0} IN $\Omega_{b}^{-} \rightarrow \Xi_{c}^{+} K^{-} \pi^{+}$

Using $9 \mathrm{fb}^{-1}$ 2011-18 data reconstruct $\Omega_{b}^{-} \rightarrow \Xi_{c}^{+} K^{-} \pi^{+}$and study Ω_{c}^{0} in $\Xi_{c}^{+} K^{-}$

- See 4 of the 5 states of [PRL 118 (2017) 182001]
\rightarrow Angular fit to determine quantum numbers

Excited Ω_{c}^{0} IN $\Omega_{b}^{-} \rightarrow \Xi_{c}^{+} K^{-} \pi^{+}$

Using $9 \mathrm{fb}^{-1}$ 2011-18 data reconstruct $\Omega_{b}^{-} \rightarrow \Xi_{c}^{+} K^{-} \pi^{+}$and study Ω_{c}^{0} in $\Xi_{c}^{+} K^{-}$

- See 4 of the 5 states of [PRL 118 (2017) 182001]
\rightarrow Angular fit to determine quantum numbers

Spin assignments inconclusive. $\Omega_{c}(3050)^{0}$ and $\Omega_{c}(3065)^{0}$ are not $J=\frac{1}{2}(2 \sigma, 3 \sigma$ resp. $)$

Observation of excited Ω_{b}^{-}

4 new states are seen at masses of $6316,6330,6340$ and $6350 \mathrm{MeV} / \mathrm{c}^{2}$

- Karliner and Roser argue they are excitations of the spin-1 s्̄s diquark with $J^{P}=1 / 2^{-}, 1 / 2^{-}, 3 / 2^{-}, 3 / 2^{-}$. A $5 / 2^{-}$is missing. [PRD 102 (2020) 014027]
- Liang and Oset argue for molecules [PRD 101 (2020) 554033]

Energy Levels: neutral charmonium states

Observed conventional $c \bar{c}$, exotic states

Energy Levels: charged charmonium states

2015 Pentaquark observation

Using $3 \mathrm{fb}^{-1} 2011-12$ data find 26000 ± 170 $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays.
A 6-dimensional angular analysis needs two exotic contributions:

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
J^{P}	$\frac{3}{2}^{-}$	$\frac{5}{2}^{+}$
Mass $\left[\mathrm{MeV} / c^{2}\right]$	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width $[\mathrm{MeV}]$	$205 \pm 18 \pm 86$	$39 \pm 5 \pm 19$
Significance	9σ	12σ

Also $>3 \sigma$ evidence for P_{c}^{+}in Cabibbosuppressed $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$[PRL 117 (2016) 082003]

Breit-Wigner behaviour of pentaquarks

ObSERVATION OF NARROW PENTAQUARKS

Update of Run 1 analysis [PRL 115 (2015) 072001]
\rightarrow Revisit this channel with an updated BDT: $246000 \Lambda_{b}^{0} \rightarrow \mathrm{~J} / \psi p K^{-}$decays (10 times Run 1) and 6.4% background.

- Reflections from B_{s}^{0} vetoed
- Re-optimised BDT including PID (new)
- Only 2 dimensions used: $J / \psi p$ and $\cos \theta$
\rightarrow No sensitivity to
Argand diagram

Observation of narrow Pentaquarks

Three states are observed:
$P_{c}(4312)^{+} \Gamma \sim 10 \mathrm{MeV}(7 \sigma)$, which we could not see with $3 \mathrm{fb}^{-1}$
$P_{c}(4440)^{+} \Gamma \sim 20 \mathrm{MeV}$
and
$P_{c}(4457)^{+} \Gamma \sim 6 \mathrm{MeV}$. The
significance of the 2-peak structure is 5.4σ
X No sensitivity to the wide $P_{c}(4380)^{+}$

It is striking that the $P_{c}(4312)^{+}$and the $P_{c}(4457)^{+}$sit at the $\Sigma_{c} D$ and $\Sigma_{c} D^{*}$ thresholds

P_{c}^{+}states at ATLAS

With Run 1 data, ATLAS find $2270 \pm 300 \Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays

- With the same data, LHCb see 26000 ± 170 with hardly any background [LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

P_{c}^{+}states at ATLAS

With Run 1 data, ATLAS find $2270 \pm 300 \Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays

- Good fits with $4 P_{c}^{+}$LHCb states of $[$PRL 122 (2019) 222001] ($p \sim 69 \%$) - (also with $2 P_{c}^{+}$of [PRL 115 (2015) 072001], excluded by LHCb, $p \sim 56 \%$)
- Fit with only Λ is not $\left(p \sim 9 \times 10^{-3}\right)$

Amplitude analysis of $B_{s}^{0} \rightarrow J / \psi p \bar{p}$

With $9 \mathrm{fb}^{-1} 2011-18$ data, find $800 B_{s}^{0} \rightarrow$ $J / \psi p \bar{p}$ with 15% background. Flavour is untagged.
x Some structure at 4.3 GeV

Amplitude analysis of $B_{s}^{0} \rightarrow J / \psi p \bar{p}$

With $9 \mathrm{fb}^{-1} 2011-18$ data, find $800 B_{s}^{0} \rightarrow$ $J / \psi p \bar{p}$ with 15% background. Flavour is untagged.
\checkmark Good fit with a P_{c}^{+}state (3.1 σ)

$$
\begin{aligned}
M & =4337_{-4}^{+7} \pm 2 \mathrm{MeV} \\
\Gamma & =29_{-12}^{+26} \pm 14 \mathrm{MeV}
\end{aligned}
$$

What is a Pentaquark?

1200 papers citing the 1st P_{c}^{+}paper, with many possible interpretations.

Pentaquarks as triangle diagrams

P_{c}^{+}enhacements could be caused by triangle singularities

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

LHCb

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002] $24220 \pm 170 \mathrm{~B}^{+} \rightarrow \mathrm{J} / \psi \phi K^{+}$ candidates with 4% background and $2 \% B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$

\rightarrow Data $9 \mathrm{fb}^{-1}$

- Total fit
- -- - Background
- $K_{0} \mathbf{0}^{-}$
$-K 1^{+}$
- K $\mathbf{1}^{-}$
$-K 2^{+}$
$-K 2^{-}$
$\rightarrow X(4630)$
$\rightarrow X(4500)$
$\rightarrow X(4700)$
$\rightarrow X$ NR
$\rightarrow X(4140)$
$\rightarrow X(4274)$
$\rightarrow X(4685)$
$-X(4150)$
푸 $Z_{c s}(4000)$
.... $Z_{c s}(4220)$

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

LHCh

\rightarrow Data $9 \mathrm{fb}^{-1}$

- Total fit
- --- Background
- K^{-}
$-K 1^{+}$
- $K 1^{-}$
$-K 2^{+}$
- K $\mathbf{2}^{-}$
$\rightarrow X(4630)$
$\rightarrow X(4500)$
$\rightarrow X(4700)$
$\rightarrow X$ NR
$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002] $24220 \pm 170 B^{+} \rightarrow J / \psi \phi K^{+}$ candidates with 4% background and $2 \% B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$
$\rightarrow X(4140)$
$\rightarrow X(4274)$
$\rightarrow X(4685)$
- $X(4150)$

풀 $Z_{c s}(4000)$

- .-. $Z_{c s}(4220)$

$Z_{c s}(3985)^{+}$VERSUS $Z_{\text {cs }}(4000)^{+}$

BESIII L HCP

State seen in $D_{s}^{-} D^{* 0}$ and $D_{s}^{*-} D^{0}$

$$
\begin{aligned}
& m\left(Z_{c s}^{-}\right)=3982.5_{-2.6}^{+1.8} \pm 2.1 \mathrm{MeV} / c^{2} \\
& \Gamma\left(Z_{c s}^{-}\right)=12.8_{-4.4}^{+5.3} \pm 3 \quad M \mathrm{eV} \\
& \text { [PRL } 126 \text { (2021) 102001] }
\end{aligned}
$$

State seen in $J / \psi K^{+}$

$$
\begin{aligned}
m\left(Z_{c s}^{-}\right) & =4003 \pm 6_{-41}^{+4} \mathrm{MeV} / c^{2} \\
\Gamma\left(Z_{c s}^{-}\right) & =131 \pm 15 \pm 26 \mathrm{MeV}
\end{aligned}
$$

[LHCb, arXiv:2103.01803, submitted to PRD]

$Z_{c s}(3985)^{+}$VERSUS $Z_{c s}(4000)^{+}$

BESII ${ }^{L H C D}$

Multiplet: For [Maiani, Polosa,
Solution 1
Riquer, ariv::2103.08331] they are an $S U(3)$ multiplet

Threshold effects: For
[Ge, Liu, Ke, arxi:2103.05282] they are threshold effects

Virtual states: For [ortega,

Entem, Fermander, arxiv:2103.07871] the

Description of LHCb data [arXiv:2103.01803] HC

$Z_{c s}$ are the same virtual state in different coupled-channels environment.

All exotic hadrons found at the LHC cms lheb

All exotic resonances observed at the LHC in a mass versus submission date plot. Hollow markers indicate superseded states.

Observation of the X (3872) Resonance

Belle reported a clear peak in the $J / \psi \pi^{+} \pi^{-}$ mass spectrum above the $\psi(2 S)$ in $B^{+} \rightarrow$ $J / \psi \pi^{+} \pi^{-} K^{+}$decays (36 ± 7 events)

$$
\begin{aligned}
M_{X} & =3872.0 \pm 0.6 \pm 0.5 \mathrm{MeV} / c^{2} \\
\Gamma & <2.3 \mathrm{MeV}
\end{aligned}
$$

close to the $\bar{D}^{0} D^{* 0}$ threshold

Moon-Mars

$X(3872)$ QUANTUM NUMBERS

- Five-dimensional angular analysis of $B^{+} \rightarrow X(3872) K^{+}$with $X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$using 2011 data
$\rightarrow 313 \pm 26$ decays in 38000
$B^{+} \rightarrow J / \psi \pi^{+} \pi^{-} K^{+}$candidates
\checkmark Unambiguous assignment $J^{P C}=1^{++}$at 8σ. This rules out the $\eta_{c 2}\left(1^{1} D_{2}\right)$ hypothesis.

Breit-Wigner

For narrow resonances far away from the threshold, the Breit-Wigner parametrisation is suitable

$$
\begin{equation*}
\mathcal{A}(s)=\frac{\alpha}{M_{\mathrm{BW}}^{2}-s-i \sqrt{s} \Gamma_{\mathrm{BW}}} \simeq \frac{\alpha}{M_{\mathrm{BW}}^{2}-s-i M_{\mathrm{BW}} \Gamma_{\mathrm{BW}}} \tag{PDG}
\end{equation*}
$$

Lineshape of the $\chi_{c 1}$ (3872) MESON

Using $3 \mathrm{fb}^{-1}$ 2011-12 detached $J / \psi \pi^{+} \pi^{-}$data, study the $\chi_{c 1}(3872)$ lineshape (15k signal). $\psi(2 S)$ is used as control.

$$
\begin{aligned}
m & =3871.70 \pm 0.07 \pm 0.07 \pm 0.01 \mathrm{MeV} \\
\Gamma & =1.39 \pm 0.24 \pm 0.10 \mathrm{MeV}
\end{aligned}
$$

First measurement of the BW width!
Is the $\chi_{c 1}(3872)$ above or below $D^{* 0} \bar{D}$ threshold?

$$
m\left(D^{* 0} \bar{D}\right)=3871.69 \pm 0.06 \mathrm{MeV}
$$

Lineshape of the $\chi_{c 1}$ (3872) MESON

For a resonance near threshold with coupled channels, the Flatté parametrisation is to be used (Yu, Kalashnikova, Nefediev, PRD80 (2009) 074004]

$$
\begin{aligned}
\frac{d R\left(J / \psi \pi^{+} \pi^{-}\right)}{d E} & \propto \frac{\Gamma_{\rho}(E)}{\left|E-E_{f}+\frac{i}{2}\left[g\left(k_{1}+k_{2}\right)+\Gamma_{\rho}(E)+\Gamma_{\omega}(E)+\Gamma_{0}\right]\right|^{2}} \\
E_{f} & =m_{0}-\left(m_{D^{0}}+m_{D^{* 0}}\right)
\end{aligned}
$$

Γ_{f} : various decay modes
mode $=3871.69{ }_{-0.04}^{+0.00}+0.13 \mathrm{MeV}$
FWHM $=0.22{ }_{-0.06}^{+0.07}{ }_{-0.13}^{+0.11} \mathrm{MeV}$

Resonances

The physical states appear as poles of the S-matrix as a
Bound state on the real axis below threshold, on the physical sheet
Virtual state on the real axis above threshold, on the physical sheet
ReSONANCE off the real axis, on the unphysical sheet.
\rightarrow Real part: m, imaginary part: $\Gamma / 2$

Lineshape of the $\chi_{c 1}$ (3872) MESON

Analytic continuation of Flatté function in complex space.

Poles found:
Sheet II :($0.0569-0.1256$ i) MeV
Sheet III :(-3.5780-1.2165i) MeV
$\chi_{c 1}(3872)$ looks like a quasi-bound* state of $D^{* 0} \bar{D}$ with binding energy of $24 \mathrm{keV}\left(E_{b}<100 \mathrm{keV}\right.$ at $\left.90 \% \mathrm{CL}\right)$

* In the limit of all other couplings being switched off

Phase on complex E plane, with trajectory when other couplings are moved to 0 .

$\chi_{c 1}$ (3872) PRODUCTION VERSUS MULTIPLICITY

Ratio of $\psi(2 S)$ and $\chi_{c 1}(3872)$ production, for prompt and b decays.
The from- b ratio is consistent with being flat. 5σ slope for prompt, compared with predictions from [Esposito, Ferreiro, Pilloni, Polosa, Salgado, arxiv:2006.15044].

New hadrons found at the LHC

NH Ch

59 hadrons found so far, and still counting

- The LHC is a hadron discovery:machine: 59 new hadrons to date
- 17 exotic hadrons discovered, but their nature is uncertain
- Study of baryons helps understanding diquarks
- Detailed study of $\chi_{c 1}(3872)$ indicates it has a bound $D^{*} D^{0}$ component

Contact: [y@pkoppenburg] [patrick.koppenburg@nikhef.nl]

Backup

LHCb Upgrade

$\mathcal{L}=2 \cdot 10^{33} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$ requires some new detectors and 40 MHz read-out clock new electronics

Velo: New pixel vertex detector
Trackers: New scintillating fibre tracker.
The upstream tracker is also replaced
PID: Hybrid photodetectors replaced by multi-anode PMTs
$\rightarrow 50 \mathrm{fb}^{-1}$ by Run 4.
\checkmark We are preparing another upgrade for Run 5
$\rightarrow 300 \mathrm{fb}^{-1}$
[Upgrade TDR] [Velo] [PID] [Sci-Fi] [Trigger] [Phase-II Eol]

LHCb Trigger in Run 2

LHCb 2012 Trigger Diagram

40 MHz bunch crossing rate

LHCb Run 2 Trigger Diagram

40 MHz bunch crossing rate

Software High Level Trigger

LHCb Trigger in Run 2

Events are buffered on disk (10 PB) while calibrations are being run.
\rightarrow Offline-quality trigger objects available for analysis.

- Disk \rightarrow more CPU. The full reconstruction can also be run during LHC downtime.

LHCb Run 2 Trigger Diagram

40 MHz bunch crossing rate

Software High Level Trigger

LHCb Trigger in Run 2

Events are buffered on disk (10 PB) while calibrations are being run.
\rightarrow Offline-quality trigger objects available for analysis.

- Disk \rightarrow more CPU. The full reconstruction can also be run during LHC downtime.

LHCb Run 2 Trigger Diagram

40 MHz bunch crossing rate

Software High Level Trigger

Tetraquarks

[Chen, Chen, Liu, Zhu, Physics Reports 639, 1, arXiv:1601.02092]

Production mechanism of exotic charmonia

Channel	$\stackrel{+}{4}$	$e_{\gamma^{+}}^{+}$	$e_{e^{+}} \operatorname{rim}_{\gamma^{*}} \sum_{J / \psi}^{\bar{c}}$			In $p \bar{p}$	In $p p$
$J / \psi \pi^{+} \pi^{-}$	X(3872)	$\begin{aligned} & Y(4008) \\ & Y(4260) \\ & \hline \end{aligned}$				X(3872)	X(3872)
$\psi(2 S) \pi^{+} \pi^{-}$		$\begin{aligned} & Y(4360) \\ & Y(4660) \\ & \hline \end{aligned}$					
$\Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$		$Y(4630)$					
$\psi(2 S) \gamma$	X(3872)						
$\chi_{c 1}(1 P) \gamma$	X(3832)						
$\chi_{c 1}(1 P) \omega$				$Y(4220)$			
$J / \psi \omega$	$\begin{aligned} & \hline X(3872) \\ & X(3940) \\ & \hline \end{aligned}$			X (3915)			
$J / \psi \phi$	$\begin{aligned} & X(4140) \\ & X(4274) \\ & X(4500) \\ & X(4700) \\ & \hline \end{aligned}$			X(4350)		$X(4140)$	
$J / \psi \pi^{+}$	$\begin{aligned} & Z(4200) \\ & Z(4240) \\ & Z(4430) \end{aligned}$				Z(3900)		
$\psi(2 S) \pi^{+}$	$Z(4430)$						
$\chi \chi_{c 1}(1 P) \pi^{+} \pi^{+}$	$\begin{aligned} & Z(4051) \\ & Z(4248) \\ & \hline \end{aligned}$						
$h_{c}(1 P) \pi^{+}$					Z(4020)		
$D \bar{D}$				Z(3930)			
$D \bar{D}^{*}$			$X(3940)$		Z(3885)		
$D^{*} \bar{D}^{*}$			$X(4160)$		Z(4025)		
$J / \psi p$	$\begin{aligned} & P_{c}^{+}(4380) \\ & P_{c}^{+}(4450) \end{aligned}$				our codi	g: n	utral

Exotic Charmonia Timeline

First observations of X (3872) [Belle, PRL 91262001 (2003), arXiv:hepex/0309032], $Y(3940)$ [Belle, PRL 94182002 (2005), arXiv:hep-ex/0408126], $Y(4260)$ [BABAR, PRL 95142001 (2005), arXiv:hep-ex/0506081], Y(4360) [BABAR, PRL 98212001 (2007), arXiv:hep-ex/0610057]
2003 Belle sees $X(3872)$ by accident in $B^{+} \rightarrow J / \psi K^{+} \pi^{+} \pi^{-}{ }_{\text {[Belle, PRL } 91262001 \text { (2003), arxiv:hep-ex/0309032] }}$
2005 Belle then searched for it in $B^{+} \rightarrow J / \psi K^{+} \omega$ but found the $Y(3940)$ [Belle, PRL 94182002 (2005), arxiv:hep-ex/0408126]
2005 BaBar searched for it in $e^{+} e^{-} \rightarrow X(3872)$ with ISR but did not find it. They found the $Y(4260)$ instead. [BABAR, PRL 95142001 (2005), arXiv:hep-ex/0506081]
2006 BaBar then looked whether the $Y(4260)$ decayed to $\psi(2 S) \pi^{+} \pi^{-}$with ISR. Instead they found the $Y(4360)$. [BABAR, PRL 98212001 (2007), arxiv:hep-ex/0610057]

Exotic Charmonia Timeline

First observations of X (3872) [Belle, PRL 91262001 (2003), arXiv:hepex/0309032], Y(3940) [Belle, PRL 94182002 (2005), arXiv:hep-ex/0408126], Y(4260) [BABAR, PRL 95142001 (2005), arXiv:hep-ex/0506081], Y(4360) [BABAR, PRL 98212001 (2007), arXiv:hep-ex/0610057]

First observations of $\quad Z_{c}(4200), Z_{c}(4430) \quad[P R L 112(2014) 222002]$ $Y(4140), Y(4274), X(4500), X(4700)$ [PRL 118 (2017) 022003] $P_{c}(4380), P_{c}(4450)$ [PRL 115 (2015) 072001] $Z_{1}(4050), Z_{2}(4250)$ [Belle, PRD 78072004 (2008), arXiv:0806.4098], $Z_{C}(4200), Z_{C}(4430) \quad$ [Belle, PRD 90112009 (2014),

Structure in $J / \psi J / \psi$

Using $9 \mathrm{fb}^{-1}$ Run $1+2$ data look at pairs of J / ψ mesons.
\rightarrow Revisit mass distribution of [JHEP 06 (2017) 047]

- Require $p_{\mathrm{T}}>5.2 \mathrm{GeV} / \mathrm{c}$ to maximise single over double parton scattering

[JHEP 06 (2017) 047]

Candidates $/\left(2 \mathrm{MeV} / \mathrm{c}^{2}\right)$

$$
\left(280 \mathrm{pb}^{-1}\right)
$$

Structure in $J / \psi J / \psi$

Peaks seen at $6.9 \mathrm{GeV} / \mathrm{c}^{2}$ and at threshold

Structure in $J / \psi J / \psi$

Background-only fit. There is a peak at $6900 \mathrm{MeV} / \mathrm{c}^{2}$. How to fit the low-mass region?

Structure in $J / \psi J / \psi$

Model I: Two Breit-Wigner shapes for threshold,

$$
\chi^{2} / \mathrm{ndf}=112.7 / 89, p=4.6 \%
$$

Structure in J/ J / ψ

Model II: BW interfering with NRSPS, $p=15.5 \%$

Structure in J/ J / ψ

Or parametrise with a single BW

Structure in J/ J / ψ

BW interfering with SPS continuum

Structure in J/ J / ψ

Model I with another BW at $7.2 \mathrm{GeV} / \mathrm{c}^{2}$

Structure in $J / \psi J / \psi$

In all cases a new state $T_{c c \overline{c c}}(6900)$ is observed.
Mass and width, and cross-section \mathcal{R} relative to $\mathrm{J} / \psi \mathrm{J} / \psi$, based on the no-interference fit:

$$
\begin{aligned}
M & =6905 \pm 11 \pm 7 \mathrm{MeV} / c^{2} \\
\Gamma & =80 \pm 19 \pm 33 \mathrm{MeV} / c^{2} \\
\mathcal{R} & =2.6 \pm 0.6 \pm 0.8 \%
\end{aligned}
$$

And with an interfering resonance:

$$
\begin{aligned}
M & =6886 \pm 11 \pm 11 \mathrm{MeV} / c^{2} \\
\Gamma & =168 \pm 33 \pm 69 \mathrm{MeV} / c^{2}
\end{aligned}
$$

Structure in $J / \psi J / \psi$

Model I fit in bins of p_{T}.

Structure in $J / \psi J / \psi$

Model II fit in bins of p_{T}.

Amplitude analysis of $B^{+} \rightarrow D^{-} D^{+} K^{-}$

Amplitude analysis of $B^{+} \rightarrow D^{-} D^{+} K^{-}$

Amplitude analysis of $B^{+} \rightarrow D^{-} D^{+} K^{-}$

Amplitude analysis of $B^{+} \rightarrow D^{-} D^{+} K^{-}$

New $\overline{c s} d u$ states

$$
\begin{aligned}
& X_{0}(2900): \bar{M}=2866 \pm 7 \pm 2 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=57{ }^{-1} 12 \pm 4 \mathrm{MeV} \\
& X_{1}(2900): M=2904 \pm 5 \pm 1 \mathrm{MeV} / \mathrm{c}^{2} \\
& 下=110 \pm 11 \pm 4 \mathrm{MeV} \\
& \text { Model-independently confirmed by } \\
& \text { [LHCb, PRL } 125 \text { (2020) 242001, arXiv:2009.00025] }
\end{aligned}
$$

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

LHCb

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

- $24220 \pm 170 B^{+} \rightarrow J / \psi \phi K^{+}$candidates with 4% background and $2 \% B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

- $24220 \pm 170 B^{+} \rightarrow J / \psi \phi K^{+}$candidates with 4% background and $2 \% B^{+} \rightarrow J / \psi K^{+} K^{-} K^{+}$
\rightarrow Run 2 almost 5 times Run 1 sample

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

- Try run-1 model with $5 K^{+} \phi$ and $4 \mathrm{~J} / \psi \phi$ resonances
$\rightarrow J / \psi K^{+}$distribution poorly modelled

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}{ }_{\text {[PRL } 118 \text { (2017) 022003] [PRD } 95 \text { (2017) 012002] }}$

- Try run-1 model with $5 \mathrm{~K}^{+} \phi$ and $4 \mathrm{~J} / \psi \phi$ resonances
- Add more resonances: lower-mass kaons, two $Z_{c s}$ and two more X.

NikJhef
 Hadron spectroscopy at the LHC

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

- Try run-1 model with $5 \mathrm{~K}^{+} \phi$ and $4 \mathrm{~J} / \psi \phi$ resonances
- Add more resonances: lower-mass kaons, two $Z_{c s}$ and two more X.
- Clear need of $J / \psi K^{+}$tetraquarks: $Z_{c s}(4000)^{+}$and $Z_{c s}(4220)^{+}$

NikThef

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

$9 \mathrm{fb}^{-1}$ update of $3 \mathrm{fb}^{-1}$
[PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

- Try run-1 model with $5 \mathrm{~K}^{+} \phi$ and $4 \mathrm{~J} / \psi \phi$ resonances
- Add more resonances: lower-mass kaons, two $Z_{c s}$ and two more X.
- Clear need of $J / \psi K^{+}$tetraquarks: $Z_{c s}(4000)^{+}$and $Z_{c s}(4220)^{+}$ \checkmark Resonant behaviour of $Z_{c s}(4000)^{+}$

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

tHC

Angular moments of $J / \psi \phi$ felicity angle versus $J / \psi \phi$ mass

Angular moments of ϕK^{+}telicity angle versus ϕK^{+}mass

Angular moments of $J / \psi K^{+}$helicity angle versus $\mathrm{J} / \psi \mathrm{K}^{+}$mass

$$
\left\langle P_{\ell}^{U}\right\rangle=\sum_{i=1}^{N_{\text {decays }}} \frac{1}{\eta_{i}} P_{\ell}(\cos \theta)
$$

Strange tetraquarks in $B^{+} \rightarrow J / \psi \phi K^{+}$

Contribution		Significance $[\times \sigma]$	$M_{0}[\mathrm{MeV}]$	$\Gamma_{0}[\mathrm{MeV}]$	FF [\%]
All $K\left(1^{+}\right)$			$\begin{gathered} 1861 \pm 10_{-46}^{+16} \\ 1911 \pm 37_{-48}^{+124} \\ 1403 \end{gathered}$	$\begin{gathered} 149 \pm 41_{-23}^{+231} \\ 276 \pm 50_{-159}^{+319} \\ 174 \end{gathered}$	$25 \pm 4_{-15}^{+}$
$2^{1} \mathrm{P}_{1}$	$K\left(1^{+}\right)$	4.5 (4.5)			
$2^{3} \mathrm{P}_{1}$	$K^{\prime}\left(1^{+}\right)$	4.5 (4.5)			
$1^{3} \mathrm{P}_{1}$	$K_{1}(1400)$	9.2 (11)			$15 \pm 3_{-11}^{+}$
$\begin{aligned} & 1^{1} \mathrm{D}_{2} \\ & 1^{3} \mathrm{D}_{2} \\ & \hline \end{aligned}$	All $K\left(2^{-}\right)$		$\begin{aligned} & 1773 \\ & 1816 \\ & \hline \end{aligned}$		$2.1 \pm 0.4_{-1.1}^{+2.0}$
	$K_{2}(1770)$	7.9 (8.0)		186	
	$K_{2}(1820)$	5.8 (5.8)		276	
$\begin{aligned} & 1^{3} \mathrm{D}_{1} \\ & 2^{3} \mathrm{~S}_{1} \\ & \hline \end{aligned}$	All $K\left(1^{-}\right)$		17171414	322	$\begin{aligned} & 50 \pm 4_{-199}^{+10} \\ & 14 \pm 2_{-}^{+35} \\ & 38 \pm 5_{-17}^{+11} \\ & \hline \end{aligned}$
	$K^{*}(1680)$	4.7 (13)			
	$K^{*}(1410)$	7.7 (15)		232	
$2^{3} \mathrm{P}_{2}$	K $\left(2^{+}\right)$	1.6 (7.4)	$1988 \pm 22_{-31}^{+194}$	$318 \pm 82_{-101}^{+481}$	$2.3 \pm 0.5 \pm 0.7$
	$K_{2}^{*}(1980)$				
$2^{1} \mathrm{~S}_{0}$	$K\left(0^{-}\right)$				$10.2 \pm 1.2_{-3.8}^{+1.0}$
	$K(1460)$	12 (13)	1483	336	
	$X\left(2^{-}\right)$			$135 \pm 28_{-30}^{+59}$	$2.0 \pm 0.5_{-1.0}^{+0.8}$
	$X(4150)$	4.8 (8.7)	$4146 \pm 18 \pm 33$		
	$X\left(1^{-}\right)$			$174 \pm 27_{-}^{+134}$	$2.6 \pm 0.5_{-1.5}^{+2.9}$
	$X(4630)$	5.5 (5.7)	$4626 \pm 16_{-110}^{+18}$		
	All $X\left(0^{+}\right)$		$\begin{aligned} & 4474 \pm 3 \pm 3 \\ & 4694 \pm 4_{-}^{+16} \end{aligned}$	$\begin{aligned} & 77 \pm 6_{-}^{+10} \\ & 87 \pm 8_{-6}^{+16} \end{aligned}$	$20 \pm 5{ }_{-}^{+14}$
	$X(4500)$	20 (20)			$\begin{aligned} & 5.6 \pm 0.7_{-0.6}^{+2.4} \\ & 8.9 \pm 1.2_{-1.4}^{+4.9} \end{aligned}$
	X (4700)	17 (18)			
	$\mathrm{NR}_{J / \psi \phi}$	4.8 (5.7)			$28 \pm 8_{-11}^{+19}$
	All $X\left(1^{+}\right)$		$\begin{aligned} & 4118 \pm 11_{-36}^{+19} \\ & 4294 \pm 4_{-6}^{+3} \\ & 4684 \pm 7_{-16}^{+13} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 162 \pm 21_{-49}^{+24} \\ & 53 \pm 5 \pm 5 \\ & 126 \pm 15_{-41}^{+37} \\ & \hline \hline \end{aligned}$	$\begin{gathered} 26 \pm 3_{-10}^{+}{ }^{8} \\ 17 \pm 3_{-6}^{+19} \\ 2.8 \pm 0.5_{-0.4}^{+0.8} \\ 7.2 \pm 1.0_{-2.0}^{+4.0} \\ \hline \end{gathered}$
	$X(4140)$	13 (16)			
	$X(4274)$	18 (18)			
	$X(4685)$	15 (15)			
All $Z_{\text {cs }}\left(1^{+}\right)$			$\begin{gathered} 4003 \pm 6_{-14}^{+4} \\ 4216 \pm 24_{-30}^{+43} \\ \hline \end{gathered}$	$\begin{aligned} & 131 \pm 15 \pm 26 \\ & 233 \pm 52_{-73}^{+97} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline 25 \pm 5_{-12}^{+11} \\ 9.4 \pm 2.1 \pm 3.4 \\ 10 \pm 4_{-7}^{+10} \\ \hline \end{gathered}$
	$Z_{c s}(4000)$	15 (16)			
	$Z_{\text {cs }}(4220)$	5.9 (8.4)			

Tetraquarks interpretation

Some comments by Richard Lebed:
$Z_{c s}(4000)$ could be the strange $\operatorname{SU}(3)$ partner of $Z_{c}(3900)$ [BESIII, PRL 110 (2013) 252001]
$Z_{c s}(4220)$ could be the strange $\operatorname{SU}(3)$ partner of $Z_{c}(4020)$ [BESIII, PRL 111 (2013) 242001]

- However these states are not seen in B decays and wider
$X(4630)$ is close in mass to $Y(4626)$ seen in $D^{+} D_{s}(2536)^{-}{ }_{[B e l l e, ~ P R D ~}^{100}$ (2019) 111103]
$X(4150)$ is below 5σ. It could be the $\eta_{c 2}(2 D)$. The mass is predicted to be
4158 MeV [Barres, Godrrey, Swanson, PRD 72 (2005) 054026]

$\chi_{c 1}(3872)$ saga

Hidden charm states decaying to $J / \psi \pi^{+} \pi^{-}$

If the enhancement at $3.836 \mathrm{GeV} / \mathrm{c}^{2}$ is confirmed by future experiments, then the most likely interpretation is that it is due to a $c \bar{c}$ charmonium state. A more speculative interpretation would be that it is due to a $c \bar{c} q \bar{q}$ state. The lack of a signal in the $J / \psi \pi^{ \pm} \pi^{0}$ mass spectrum, shown in Fig. 8, and in the $J / \psi \pi^{ \pm} \pi^{ \pm}$spectra

Observation of the X (3872) Resonance

Belle reported a clear peak in the $J / \psi \pi^{+} \pi^{-}$ mass spectrum above the $\psi(2 S)$ in $B^{+} \rightarrow$ $J / \psi \pi^{+} \pi^{-} K^{+}$decays (36 ± 7 events)

$$
\begin{aligned}
M_{X} & =3872.0 \pm 0.6 \pm 0.5 \mathrm{MeV} / c^{2} \\
\Gamma & <2.3 \mathrm{MeV}
\end{aligned}
$$

close to the $\bar{D}^{0} D^{* 0}$ threshold

Moon-Mars

Observation of the X (3872) Resonance

Belle reported a clear peak in the $J / \psi \pi^{+} \pi^{-}$ mass spectrum above the $\psi(2 S)$ in $B^{+} \rightarrow$ $J / \psi \pi^{+} \pi^{-} K^{+}$decays (36 ± 7 events) $\pi^{+} \pi^{-}$spectrum consistent with ρ^{0}

A search in $B^{+} \rightarrow \gamma \chi_{c 1} K^{+}$yields no signal, contradicting a ${ }^{3} D_{c 2}$ explanation

$\chi_{c 1}$ (3872) PRODUCTION at 7 TEV

LHCb was first to observe the $\chi_{c 1}(3872)$ meson in $p p$ collisions (CDF saw it in $p \bar{p}$ [PRL96 (2016) 102002])

- Using 2010 data corresponding to $35 \mathrm{pb}^{-1}$, see $500 \chi_{c 1}(3872)$ and 4000 $\psi(2 S)$ in $J / \psi \pi^{+} \pi^{-}$.
- Cross-section times BF in $25<y<4.5$ and $5<p_{\mathrm{T}}<20 \mathrm{GeV} / c$ is

$$
5.4 \pm 1.3 \pm 0.8 \mathrm{nb}
$$

- The mass is also measured to be
$3871 \pm 0.48 \pm 0.12 \mathrm{MeV} / c^{2}$

$X(3872)$ QUANTUM NUMBERS

- Five-dimensional angular analysis of $B^{+} \rightarrow X(3872) K^{+}$with $X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$using 2011 data
$\rightarrow 313 \pm 26$ decays in 38000
$B^{+} \rightarrow J / \psi \pi^{+} \pi^{-} K^{+}$candidates
\checkmark Unambiguous assignment $J^{P C}=1^{++}$at 8σ. This rules out the $\eta_{c 2}\left(1^{1} D_{2}\right)$ hypothesis.

$\chi_{c 1}(3872)$ PRODUCTION at 7 TeV

CMS see $\chi_{c 1}(3872)$ with 2011 data $\left(4.8 \mathrm{fb}^{-1}\right)$.

- They bin in p_{T}
- And determine the non-prompt fraction, defined as $\ell_{x y}>100 \mu \mathrm{~m}$

$\chi_{c 1}(3872)$ PRODUCTION at 7 TeV

Ratio of $\sigma \times \mathcal{B}$ of $\chi_{c 1}(3872)$ and $\psi(2 S)$ versus p_{T}

Should be flat

Non-prompt fraction of $\chi_{c 1}(3872)$ versus p_{T}

$\chi_{c 1}(3872)$ PRODUCTION at 7 TeV

Ratio of $\sigma \times \mathcal{B}$ of $\chi_{c 1}(3872)$ and $\psi(2 S)$ versus p_{T}

Prompt production of $\chi_{c 1}(3872)$ versus p_{T}

Evidence for $X(3872) \rightarrow \psi(2 S) \gamma$

- The nature of the $X(3872)$ is not clear. The ratio $R_{\psi \gamma}$ of decay widths to $\psi(2 S) \gamma$ and $J / \psi \gamma$ is expected to be very different for a $c \bar{c}$ state or a pure $D D^{*}$ molecule
- BaBar and Belle results were not conclusive

Belle 2011

predictions for pure $\mathrm{c} \bar{c}$ state
prediction for pure $D \bar{D}^{\star}$ model
predictions for admixture of Cc and DD^{*}

Evidence for $X(3872) \rightarrow \psi(2 S) \gamma$

- The nature of the $X(3872)$ is not clear. The ratio $R_{\psi \gamma}$ of decay widths to $\psi(2 S) \gamma$ and $J / \psi \gamma$ is expected to be very different for a $c \bar{c}$ state or a pure $D D^{*}$ molecule
- We reconstruct $B^{+} \rightarrow J / \psi \gamma K^{+}$ and fit for the X

$m_{J / \psi \gamma}$

Evidence for $X(3872) \rightarrow \psi(2 S) \gamma$

- The nature of the $X(3872)$ is not clear. The ratio $R_{\psi \gamma}$ of decay widths to $\psi(2 S) \gamma$ and $J / \psi \gamma$ is expected to be very different for a $c \bar{c}$ state or a pure $D D^{*}$ molecule
- We reconstruct $B^{+} \rightarrow J / \psi \gamma K^{+}$ and fit for the X

$$
m_{\psi(2 S) \gamma K^{+}}
$$

- Same for $B^{+} \rightarrow \psi(2 S) \gamma K^{+}: 4.4 \sigma$ evidence

Evidence for $X(3872) \rightarrow \psi(2 S) \gamma$

- The nature of the $X(3872)$ is not clear. The ratio $R_{\psi \gamma}$ of decay widths to $\psi(2 S) \gamma$ and $J / \psi \gamma$ is expected to be very different for a $c \bar{c}$ state or a pure $D D^{*}$ molecule
- We reconstruct $B^{+} \rightarrow J / \psi \gamma K^{+}$ and fit for the X
- The ratio is measured to be

BaBar 2009

predictions for pure cc state
prediction for pure D^{\star} model
predictions for admixture of cc and DD*

$$
\frac{\mathcal{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}=2.46 \pm 0.64 \pm 0.29
$$

This disfavours the $D D^{*}$ molecule at 4.4σ

$X(3872)$ QN with $X(3872) \rightarrow \rho^{0} \mathrm{~J} / \psi$

- The $X(3872)$ state was observed by Belle [PRL 91 (2013) 26001] in
$B \rightarrow X K$ and $X \rightarrow \pi^{+} \pi^{-} J / \psi$. Its nature is unknown.
- CDF determined the quantum numbers to be $J^{P C}=1^{++}$or 2^{-+} [PRL 98 (2007) 132002]
- LHCb determined $J^{P C}=1^{++}$ [PRL 110 (2013) 222001] $\left(1 \mathrm{fb}^{-1}\right)$
\rightarrow One of the PDG highlights of the 2014 edition
X Both assumed the decay to be dominated by the lowest angular momentum $L_{\text {min }}$.

$X(3872)$ QN with $X(3872) \rightarrow \rho^{0} \mathrm{~J} / \psi$

- The $X(3872)$ state was observed by Belle [PRL 91 (2013) 26001]
- CDF determined the quantum numbers to be $J^{P C}=1^{++}$or 2^{-+} [PRL 98 (2007) 132002]
- LHCb determined $J^{P C}=1^{++}$ [PRL 110 (2013) 222001] ($1 \mathrm{fb}^{-1}$)
\rightarrow One of the PDG highlights of the 2014 edition
x Both assumed the decay to be dominated by the lowest angular momentum $L_{\text {min }}$.
- Here we present a re-analysis using $3 \mathrm{fb}^{-1}$ without this

$X(3872)$ QN with $X(3872) \rightarrow \rho^{0} \mathrm{~J} / \psi$

- Here we present a re-analysis using $3 \mathrm{fb}^{-1}$ without this assumption.
- Use $1011 \pm 38 B^{+} \rightarrow X K^{+}$, $X \rightarrow \rho^{0} \mathrm{~J} / \psi$ decays
- The phase space is limited

$X(3872)$ QN with $X(3872) \rightarrow \rho^{0} \mathrm{~J} / \psi$

- Here we present a re-analysis using $3 \mathrm{fb}^{-1}$ without this assumption.
- Use $1011 \pm 38 B^{+} \rightarrow X K^{+}$, $X \rightarrow \rho^{0} \mathrm{~J} / \psi$ decays
- The phase space is limited
- Use helicity formalism to fit 5-dimensional angular distributions

$X(3872)$ QN with $X(3872) \rightarrow \rho^{0} \mathrm{~J} / \psi$

- Here we present a re-analysis using $3 \mathrm{fb}^{-1}$ without this assumption.
- Use $1011 \pm 38 B^{+} \rightarrow X K^{+}$, $X \rightarrow \rho^{0} \mathrm{~J} / \psi$ decays
- The phase space is limited
- Use helicity formalism to fit 5-dimensional angular distributions
- Only $J^{P C}=1^{++}$fits and the fraction of D-wave is found to be less than 4\%

\rightarrow Compatible with tetraquark, molecule or $\chi_{c 1}\left(2^{3} P_{1}\right)$ hypotheses (possibly N_{Ni} 财ixed). It excludes any other charmonium state.

$\psi(2 S)$ AND $\chi_{c 1}(3872)$ AT 8 TEV

Study of $\psi(2 S)$ and $X(3872)$ production using the final state $J / \psi\left(\mu^{+} \mu^{-}\right) \pi^{+} \pi^{-}$with 8 TeV data.

- Prompt and non-prompt components disentangled by pseudo-lifetime fits

$\psi(2 S)$ And $\chi_{c 1}(3872)$ at 8 TeV

Study of $\psi(2 S)$ and $X(3872)$ production using the final state $J / \psi\left(\mu^{+} \mu^{-}\right) \pi^{+} \pi^{-}$with 8 TeV data.

- Prompt and non-prompt components disentangled by pseudo-lifetime fits
- Prompt X (3872) production consistent with NLO NRQCD predictions [Artoisenet and Braaten, PRD81 114018, arxiv:0911.2016]. Also consistent with CMS [JHEP 04 (2013) 154, arxiv:1302. 3968].

$\psi(2 S)$ And $\chi_{c 1}(3872)$ at 8 TEV

Study of $\psi(2 S)$ and $X(3872)$ production using the final state $J / \psi\left(\mu^{+} \mu^{-}\right) \pi^{+} \pi^{-}$with 8 TeV data.

- Prompt and non-prompt components disentangled by pseudo-lifetime fits
- Non-prompt X (3872) production consistently low compared to predictions
[Cacciari et al.,JHEP 10 (2012) 137, arXiv:1205.6344]

Ratio assuming same mix of b-hadrons:

$$
\frac{\mathcal{B}\left(b \rightarrow X(3872)\left(\mu^{+} \mu^{-}\right) \text {any }\right)}{\mathcal{B}\left(b \rightarrow \psi(2 S)\left(\mu^{+} \mu^{-}\right) \text {any }\right)}=(3.95 \pm 0.32 \pm 0.08) \%
$$

But if B_{c}^{+}component is fitted, it is found that $(25 \pm 13 \pm 2 \pm 5$ (spin) $) \%$ of non-prompt X (3872) come from $B_{c}^{+} \rightarrow$ Puzzling!

X(3872) MUOPRODUCTION

- Placeholder

ObSERVATION of $\Lambda_{b}^{0} \rightarrow \chi_{c 1}(3872) p K^{-}$

The $X(3872)$ is now called $\chi_{c 1}(3872)$.

Find $55 \pm 11 \quad(7 \sigma) \quad \Lambda_{b}^{0} \rightarrow$ $\chi_{c 1}(3872) p K^{-}$with $\chi_{c 1}(3872) \rightarrow$ $\psi(2 S) \pi^{+} \pi^{-}$

$$
\begin{aligned}
R_{\psi(2 S)} & =\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1}(3872) p K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \psi(2 S) K^{-}\right)} \\
& \times \frac{\mathcal{B}\left(\chi_{c 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)} \\
& =(5.4 \pm 1.1 \pm 0.2) \times 10^{-2}
\end{aligned}
$$

The combined BF is
$(1.2 \pm 0.3 \pm 0.2) \times 10^{-6}$

ObSERVATION of $\Lambda_{b}^{0} \rightarrow \chi_{c 1}(3872) p K^{-}$

The $X(3872)$ is now called $\chi_{c 1}(3872)$.
$\Lambda_{\mathrm{b}}^{0} \rightarrow \psi \mathrm{pK}^{-}$
Find $55 \pm 11 \quad(7 \sigma) \quad \Lambda_{b}^{0} \quad \rightarrow$ $\chi_{c 1}(3872) p K^{-}$with $\chi_{c 1}(3872) \rightarrow$ $\psi(2 S) \pi^{+} \pi^{-}$

$$
\begin{aligned}
R_{\psi(2 S)} & =\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \chi_{c 1}(3872) p K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \psi(2 S) K^{-}\right)} \\
& \times \frac{\mathcal{B}\left(\chi_{c 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)} \\
& =(5.4 \pm 1.1 \pm 0.2) \times 10^{-2}
\end{aligned}
$$

$$
\mathrm{B}^{+} \rightarrow \psi \pi^{+}
$$

The combined BF is
$(1.2 \pm 0.3 \pm 0.2) \times 10^{-6}$

$$
\begin{aligned}
& \mathrm{B}^{0} \rightarrow \psi \mathrm{~K}^{* 0} \\
& \mathrm{~B}^{0} \rightarrow \psi \mathrm{~K}^{0}
\end{aligned}
$$

$$
\mathrm{B}^{+} \rightarrow \psi \mathrm{K}^{0} \pi^{+}
$$

is
[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]

Observation of $\Lambda_{b}^{0} \rightarrow \chi_{c 1}(3872) p K^{-}$

LHCh

Lineshape of the $\chi_{c 1}$ (3872) MESON

Using $3 \mathrm{fb}^{-1}$ 2011-12 detached $J / \psi \pi^{+} \pi^{-}$data, study the $\chi_{c 1}(3872)$ lineshape (15k signal). $\psi(2 S)$ is used as control.

$$
\begin{aligned}
m & =3871.70 \pm 0.07 \pm 0.07 \pm 0.01 \mathrm{MeV} \\
\Gamma & =1.39 \pm 0.24 \pm 0.10 \mathrm{MeV}
\end{aligned}
$$

First measurement of the BW width!
Is the $\chi_{c 1}(3872)$ above or below $D^{* 0} \bar{D}$ threshold?

$$
m\left(D^{* 0} \bar{D}\right)=3871.69 \pm 0.06 \mathrm{MeV}
$$

Lineshape of the $\chi_{c 1}$ (3872) MESON

For a resonance near threshold with coupled channels, the Flatté parametrisation is to be used (Yu, Kalashnikova, Nefediev, PRD80 (2009) 074004]

$$
\begin{aligned}
\frac{d R\left(J / \psi \pi^{+} \pi^{-}\right)}{d E} & \propto \frac{\Gamma_{\rho}(E)}{\left|E-E_{f}+\frac{i}{2}\left[g\left(k_{1}+k_{2}\right)+\Gamma_{\rho}(E)+\Gamma_{\omega}(E)+\Gamma_{0}\right]\right|^{2}} \\
E_{f} & =m_{0}-\left(m_{D^{0}}+m_{D^{* 0}}\right)
\end{aligned}
$$

Γ_{f} : various decay modes
mode $=3871.69{ }_{-0.04}^{+0.00}+0.13 \mathrm{MeV}$
FWHM $=0.22{ }_{-0.06}^{+0.07}{ }_{-0.13}^{+0.11} \mathrm{MeV}$

Lineshape of the $\chi_{c 1}$ (3872) MESON

Analytic continuation of Flatté function in complex space.

Poles found:
Sheet II :($0.0569-0.1256$ i) MeV
Sheet III :(-3.5780-1.2165i) MeV
$\chi_{c 1}(3872)$ looks like a quasi-bound* state of $D^{* 0} \bar{D}$ with binding energy of $24 \mathrm{keV}\left(E_{b}<100 \mathrm{keV}\right.$ at $\left.90 \% \mathrm{CL}\right)$

* In the limit of all other couplings being switched off

Phase on complex E plane, with trajectory when other couplings are moved to 0 .

Lineshape of the $\chi_{c 1}$ (3872) MESON

Analytic continuation of Flatté function in complex space.

Poles found:
Sheet II :($0.0569-0.1256$ i) MeV
Sheet III :(-3.5780-1.2165i) MeV
$\chi_{c 1}(3872)$ looks like a quasi-bound* state of $D^{* 0} \bar{D}$ with binding energy of $24 \mathrm{keV}\left(E_{b}<100 \mathrm{keV}\right.$ at $\left.90 \% \mathrm{CL}\right)$

* In the limit of all other couplings being switched off

Phase on complex E plane, with width of $D^{* 0}$ taken into account

Lineshape of the $\chi_{c 1}$ (3872) MESON

Analytic continuation of Flatté function in complex space.

Poles found:
Sheet II :($0.0569-0.1256$ i) MeV Sheet III :(-3.5780-1.2165i) MeV
$\chi_{c 1}(3872)$ looks like a quasi-bound* state of $D^{* 0} \bar{D}$ with binding energy of $24 \mathrm{keV}\left(E_{b}<100 \mathrm{keV}\right.$ at $\left.90 \% \mathrm{CL}\right)$

* In the limit of all other couplings being switched off

$\chi_{c 1}$ (3872) PRODUCTION VERSUS MULTIPLICITY

Ratio of $\psi(2 S)$ and $\chi_{c 1}(3872)$ production, for prompt and b decays.
The from- b ratio is consistent with being flat. 5σ slope for prompt, compared with predictions from [Esposito, Ferreiro, Pilloni, Polosa, Salgado, arxiv:2006.15044].

ObSERVATION of $B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi$

Using $140 \mathrm{fb}^{-1} 13 \mathrm{TeV}$ data, find $300 \pm 40 B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi$

$$
\begin{aligned}
\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi\right) \mathcal{B}\left(\chi_{c 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \psi(2 S) \phi\right) \mathcal{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)} & =(2.21 \pm 0.29 \pm 0.17) \% \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi\right) \mathcal{B}\left(\chi_{c 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) & =(4.14 \pm 0.54 \pm 0.32 \pm 0.46(\mathcal{B})) \times 10^{-6} \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \chi_{c 1}(3872) \phi\right) / \mathcal{B}\left(B^{+} \rightarrow \chi_{c 1}(3872) K^{+}\right) & =0.482 \pm 0.063 \pm 0.037 \pm 0.070(\mathcal{B})
\end{aligned}
$$

Which may indicate a different production mechanism in B_{s}^{0} and $B^{+}\left(B_{s}^{0}\right.$ is consistent with $\left.B^{0}\right)$

$\chi_{c 1}(3872)$ Production in PbPb

Evidence for very enhanced $\chi_{c 1}(3872)$ production in PbPb collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5 TeV .

P_{C}^{+}saga

Patrick Koppenburg
Hadron spectroscopy at the LHC

Observation of two pentaquarks

We knew there was something strange in $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$[JHEP 07 (2014) 103] [PLB 734 (2014) 122] [PRL 111 (2013) 102003]
\rightarrow Revisit this channel with a clean selection: 26000 ± 170 decays

- Reflections from B_{s}^{0} vetoed
- Smooth efficiencies and backgrounds over Dalitz plane

Observation of two pentaquarks

We knew there was something strange in $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$[JHEP 07 (2014) 103] [PLB 734 (2014) 122] [PRL 111 (2013) 102003]
\rightarrow Revisit this channel with a clean selection: 26000 ± 170 decays

- Reflections from B_{s}^{0} vetoed
- Re-optimised boosted decision tree trained on simulated signal and data background.

Observation of two pentaquarks

Observation of two pentaquarks

Clear difference with respect to phase-space

- In $m_{K^{-}}$it is due to excited Λ resonances
- In $m_{J / \psi_{p}}$ it is very puzzling

Observation of two pentaquarks

Efficiencies? Can it be sculpted by efficiencies?

- Efficiencies vary smoothly by a factor two over Dalitz
- Modelled using phase-space Simulation. Our detector response is well validated in many similar analyses.
Background? We look in the sidebands and find nothing peaking.
- Peaking B^{0} and B_{s}^{0} are vetoed.
- Reconstruction artefacts are investigated.

Observation of two pentaquarks

If it is not an artefact, it must be physics.
\rightarrow Can it be a conspiracy of interfering Λ resonances? See also [PRL 117 (2016) 082002].

Perform 6D amplitude

 analysis in $\theta_{\Lambda_{b}^{0}}, \theta_{\Lambda^{*}}, \theta_{\psi}$, ϕ_{K}, ϕ_{μ}, and $m_{K p}$.But not $m_{J / \psi p}$.
Λ_{b} rest frame
$\phi_{\Lambda}=0$

Observation of two pentaquarks

Matrix Elements with only Λ^{*} resonances:
Λ_{b} rest frame

$$
\phi_{\Lambda}=0
$$

$$
\begin{aligned}
& \mathcal{M}_{\lambda_{\Lambda_{b}^{0}}^{0}, \lambda_{p}, \Delta \lambda_{\mu}}^{\Lambda^{*}} \equiv \sum_{n} \sum_{\lambda_{\Lambda^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{\Lambda^{*}}, \lambda_{\psi}}^{\Lambda_{b}^{0} \rightarrow \Lambda_{i}^{*} \psi} D_{\lambda_{\Lambda_{b}^{0}}, \lambda_{\Lambda^{*}}-\lambda_{\psi}}^{\frac{1}{2}}\left(0, \theta_{\Lambda_{b}^{0}}, 0\right)^{*} \\
& \mathcal{H}_{\lambda_{p}, 0}^{\Lambda_{n}^{*} \rightarrow K p} D_{\lambda_{\Lambda^{*}, \lambda_{p}}}^{J_{\Lambda_{n}^{*}}}\left(\phi_{K}, \theta_{\Lambda^{*}}, 0\right)^{*} R_{\Lambda_{n}^{*}}\left(m_{K p}\right) D_{\lambda_{\psi}, \Delta \lambda_{\mu}}^{1}\left(\phi_{\mu}, \theta_{\psi}, 0\right)^{*},
\end{aligned}
$$

OBSERVATION OF TWO PENTAQUARKS

Two different implementations of the fitter, done by two groups on two continents. They differ by the background treatment

CFIT: Sideband data are used to construct 6D model of background shape.

SFIT: Background is statistically subtracted using sPlot weights from mass fit [Le Diberder, Pivk, NIM A 555356 (2005)].
It is common practice in LHCb to have these two approaches.

Observation of two pentaquarks

State	J^{P}	$M_{0}(\mathrm{MeV})$	$\Gamma_{0}(\mathrm{MeV})$	Red.	Ext.
$\Lambda(1405)$	$1 / 2^{-}$	$1405.1_{-1.0}^{+1.3}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3 / 2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1 / 2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1 / 2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3 / 2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1 / 2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1 / 2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5 / 2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5 / 2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3 / 2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7 / 2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5 / 2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9 / 2^{+}$	2350	150		6
$\Lambda(2585)$	$?$	≈ 2585	200		6
				64	146

Last columns show number of parameters are left free. Masses and Width are fixed.
Red.: Reduced model (fast). Ext.: Allows for more helicity (LS) couplings.

ObSERVATION OF TWO PENTAQUARKS

All known Λ^{*} resonances get the $\boldsymbol{p K} K^{-}$mass right, but not the $J / \psi p$ mass.

- We use the extended model in this fit
\rightarrow Adding more Λ resonances does not help [PRL 117 (2016) 082002]
- Letting the width and masses float does not help
- Adding $\Delta I=\frac{1}{2}$-suppressed $\Sigma^{* 0}\left(I=\frac{3}{2}\right)$ resonances does also not help

When you have eliminated the impossible, whatever remains, however improbable, must be the truth

Observation of two pentaquarks

All known Λ^{*} resonances get the $\boldsymbol{p} K^{-}$mass right, but not the $J / \psi p$ mass.

When you have eliminated the

impossible, whatever remains, however improbable, must be the truth

ObSERVATION OF TWO PENTAQUARKS

All known Λ^{*} resonances get the $\boldsymbol{p} K^{-}$mass right, but not the $J / \psi p$ mass.

State	J^{P}	$M_{0}(\mathrm{MeV})$	$\Gamma_{0}(\mathrm{MeV})$	Red.	Ext.
$\Lambda(1405)$	$1 / 2^{-}$	$1405.1_{-1.0}^{+1.3}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3 / 2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1 / 2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1 / 2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3 / 2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1 / 2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1 / 2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5 / 2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5 / 2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3 / 2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7 / 2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5 / 2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9 / 2^{+}$	2350	150		6
$\Lambda(2585)$	$?$	≈ 2585	200		6
				64	146

Last columns show number of parameters are left free. Masses and Width are fixed.
Red.: Reduced model (fast). Ext.: Allows for more helicity ($L S$) couplings.

Observation of two pentaquarks

Matrix Elements with a Pentaquark:

$$
\begin{aligned}
\mathcal{M}_{\lambda_{\Lambda_{b}^{0}}^{0}, \lambda_{p}^{P_{c}}, \Delta \lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv & \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{\psi}^{P_{c}}} \mathcal{H}_{\lambda_{P_{c}}, 0}^{\Lambda_{b}^{0} \rightarrow P_{c j} K} D_{\lambda_{\Lambda_{b}^{0}}, \lambda_{P_{c}}}^{\frac{1}{2}}\left(\phi_{P_{c}}, \theta_{\Lambda_{b}^{0}}^{P_{c}}, 0\right)^{*} \\
& \mathcal{H}_{\lambda_{\psi}^{P_{c}}, \lambda_{p}}^{P_{c j} \rightarrow \psi p} D_{\lambda_{P_{c}}, \lambda_{\psi}^{P_{c}}-\lambda_{p}^{P_{c}}}^{J_{P_{c}}}\left(\phi_{\psi}, \theta_{P_{c}}, 0\right)^{*} R_{P_{c j}}\left(m_{\psi p}\right) D_{\lambda_{\psi}^{P_{c}}, \Delta \lambda_{\mu}^{P_{c}}}^{1}\left(\phi_{\mu}^{P_{c}}, \theta_{\psi}^{P_{c}}, 0\right)^{*},
\end{aligned}
$$

LHCb

Observation of two pentaquarks

- There is an obvious peak at $m_{J / \psi p}=4.45 \mathrm{GeV} / c^{2}$: Add one P_{c}^{+}state with free J^{P}.
X Unsatisfactory fit. $J^{P}=\frac{5}{2}^{+}$.

Observation of two pentaquarks

LHCh

Reduced Model - \square data - fit

- There is an obvious peak at $m_{J / \psi p}=4.45 \mathrm{GeV} / c^{2}$: Add one P_{c}^{+}state with free J^{P}.
X Unsatisfactory fit. $J^{P}=\frac{5}{2}^{+}$.
- Add another P_{c}^{+}
\checkmark Good fit

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
J^{P}	$\frac{3}{2}^{-}$	$\frac{5}{2}^{+}$
Mass $\left[\mathrm{MeV} / c^{2}\right]$	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width $[\mathrm{MeV}]$	$205 \pm 18 \pm 86$	$39 \pm 5 \pm 19$
Significance	9σ	12σ

Observation of two pentaquarks

Reduced Model - \square data - fit

- There is an obvious peak at $m_{J / \psi p}=4.45 \mathrm{GeV} / c^{2}$: Add one P_{c}^{+}state with free J^{P}.
X Unsatisfactory fit. $J^{P}=\frac{5}{2}^{+}$.
- Add another P_{c}^{+}
\checkmark Good fit

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
J^{P}	$\frac{3}{2}^{-}$	$\frac{5}{2}^{+}$
Mass $\left[\mathrm{MeV} / c^{2}\right]$	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width $[\mathrm{MeV}]$	$205 \pm 18 \pm 86$	$39 \pm 5 \pm 19$
Significance	9σ	12σ

\checkmark The angular distributions are well reproduced

- Also OK: $\left(\frac{3}{2}^{+}, \frac{5}{2}^{-}\right)$or $\left(\frac{5}{2}^{+}, \frac{3}{2}^{-}\right)$
\rightarrow In any case opposite parities
- Minimal quark content: c̄̄uud

Observation of two pentaquarks

Amplitude analysis:

Observation of two pentaquarks

$K^{-} p$ mass ranges: a) $m_{K p}<1.55$
b) $1.55<m_{K p}<1.7$ c) $1.7<m_{K p}<2$
d) $2<m_{K p}$

The interference pattern confirms the opposite parities:

- At $\cos \theta_{P_{c}^{+}} \sim-1$, low $m_{K p}$: negative interference.
- At $\cos \theta_{P_{c}^{+}} \sim+1$, high $m_{K p}$: positive interference.

Observation of two pentaquarks

- Cutting at $m_{K p}>2 \mathrm{GeV} / c^{2}$ enhances P_{c}^{+}fraction
\rightarrow Should be visible in other LHC experiments

Observation of two pentaquarks

The Argand diagram shows the typical phase motion of a resonance for the $P_{c}(4450)^{+}$. For the $P_{c}(4380)^{+}$, one point is off by 2σ.

Observation of two pentaquarks

There are no known $J / \psi K^{+}$tetraquarks, but there are the Z_{c} states decaying to $J / \psi \pi^{+}$
\checkmark No need to add $J / \psi K^{+}$ tetraquarks

OBSERVATION OF TWO PENTAQUARKS

Source	$M_{0}(\mathrm{MeV})$		$\Gamma_{0}(\mathrm{MeV})$		Fit fractions (\%)			
	4380	4450	4380	4450	4380	4450	人(1405)	$\Lambda(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^{*} masses \& widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10<p_{p}<100 \mathrm{GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Non-resonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^{P}\left(\frac{3}{2}^{+}, \frac{5}{2}^{-}\right)$or $\left(\frac{5}{2}+{ }^{+}, \frac{3}{2}^{-}\right)$	10	1.2	34	10	0.76	0.44		
$d=1.5-4.5 \mathrm{GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L_{\Lambda_{b}^{0}}^{P_{c}} \Lambda_{b}^{0} \rightarrow P_{c}^{+}(4380 / 4450) K^{-}$	- 6	0.7	4	8	0.37	0.16		
$L_{P_{c}{ }_{c}} P_{c}^{+}(4380 / 4450) \rightarrow J / \psi p$	4	0.4	31	7	0.63	0.37		
$L_{\Lambda_{b}^{0}}^{\Lambda_{n}^{*}} \Lambda_{b}^{0} \rightarrow J / \psi \Lambda^{*}$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

Uncertainties added in quadrature. "4380": $P_{c}(4380)^{+}$, "4450": $P_{c}(4450)^{+}$

Observation of two pentaquarks

State	J^{P}	Mass [MeV/c ${ }^{2}$]	Width [MeV]	Fit Fraction [\%]
$P_{c}(4380)^{+}$	$\frac{3}{2}^{-}$	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$	$8.4 \pm 0.7 \pm 4.2$
$P_{c}(4450)^{+}$	$\frac{5}{2}^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	$4.1 \pm 0.5 \pm 1.1$
$\Lambda(1405)$				$15 \pm 1 \pm 6$
$\Lambda(1520)$				$19 \pm 1 \pm 4$

These fit fractions are converted into branching fractions
[LHCb, Chin. Phys. C40 (2016) 011001, arXiv:1509.00292]

$$
\begin{aligned}
& \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow P_{c}^{+}(4380) K^{-}\right) \times \mathcal{B}\left(P_{c}^{+} \rightarrow J / \psi p\right)=\left(2.56 \pm 0.22 \pm 1.28_{-0.36}^{+0.46}\right) \times 10^{-5} \\
& \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow P_{c}^{+}(4450) K^{-}\right) \times \mathcal{B}\left(P_{c}^{+} \rightarrow J / \psi p\right)=\left(1.25 \pm 0.15 \pm 0.33_{-0.18}^{+0.22}\right) \times 10^{-5}
\end{aligned}
$$

	$\Delta(-2 \ln \mathcal{L})$	Significance
$0 \rightarrow 1 P_{c}^{+}$	14.7^{2}	12σ
$1 \rightarrow 2 P_{c}^{+}$	11.6^{2}	9σ

| $0 \rightarrow 2 P_{c}^{+}$ | $18.7^{2} \quad 15 \sigma$ |
| :--- | :--- | :--- |

The significances are determined using the extended model.

Exotics in $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$

$\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$re-analysed after 2014 observation [JHEP 07 (2014) 103] with full angular fit, as in [PRL 115 (2015) 072001].
Need to describe all N resonances (Δ negligible)

State	J^{P}	Mass (MeV)	Width (MeV)	RM	EM
$N R p \pi$	$1 / 2^{-}$	-	-	4	4
$N(1440)$	$1 / 2^{+}$	1430	350	3	4
$N(1520)$	$3 / 2^{-}$	1515	115	3	3
$N(1535)$	$1 / 2^{-}$	1535	150	4	4
$N(1650)$	$1 / 2^{-}$	1655	140	1	4
$N(1675)$	$5 / 2^{-}$	1675	150	3	5
$N(1680)$	$5 / 2^{+}$	1685	130	-	3
$N(1700)$	$3 / 2^{-}$	1700	150	-	3
$N(1710)$	$1 / 2^{+}$	1710	100	-	4
$N(1720)$	$3 / 2^{+}$	1720	250	3	5
$N(1875)$	$3 / 2^{-}$	1875	250	-	3
$N(1900)$	$3 / 2^{+}$	1900	200	-	3
$N(2190)$	$7 / 2^{-}$	2190	500	-	3
$N(2300)$	$1 / 2^{+}$	2300	340	-	3
$N(2570)$	$5 / 2^{-}$	2570	250	-	3
Free parameters			40	106	

Two fits:

- Only N states
- Add P_{c}^{+}and

$$
Z_{c}(4200)^{-} \rightarrow J / \psi \pi^{-}
$$

Exotics in $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$
The fit fractions are

$$
\begin{aligned}
& P_{c}(4380): 5.1 \pm 1.5_{-1.6}^{+2.1} \% \\
& P_{c}(4450): 1.6_{-0.6}^{+0.6_{-0.5}^{+0.6} \%} \\
& Z_{c}(4200): 7.7 \pm 2.8_{-4.0}^{+3.4} \%
\end{aligned}
$$

There is a 3.3σ significance for the presence of exotic states. The fit does not allow to say which.

No P_{c}^{+}would require (17.2 ± 3.5) \% $Z_{c}(4200)$, which is much more than in $B^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \pi^{-} \quad$ [Belle, PRD 90 (2014) 112009]

Exotics in $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$ LHCh
The fit fractions are

$$
\begin{aligned}
& P_{c}(4380): 5.1 \pm 1.5_{-1.6}^{+2.1} \% \\
& P_{c}(4450): 1.6_{-0.6}^{+0.6_{-0.5}^{+0.6} \%} \\
& Z_{c}(4200): 7.7 \pm 2.8_{-4.0}^{+3.4} \%
\end{aligned}
$$

There is a 3.3σ significance for the presence of exotic states. The fit does not allow to say which.

No P_{c}^{+}would require $(17.2 \pm 3.5) \% Z_{c}(4200)$, which is much more than in $B^{0} \rightarrow J / \psi K^{+} \pi^{-}$[Belle, PRD 90 (2014) 112009]

OBSERVATION OF NARROW PENTAQUARKS

Update of Run 1 analysis [PRL 115 (2015) 072001]
\rightarrow Revisit this channel with an updated BDT: $246000 \Lambda_{b}^{0} \rightarrow \mathrm{~J} / \psi p K^{-}$decays (10 times Run 1) and 6.4% background.

- Reflections from B_{s}^{0} vetoed
- Re-optimised BDT including PID (new)

ObSERVATION OF NARROW PENTAQUARKS

Update of Run 1 analysis [PRL 115 (2015) 072001]
\rightarrow Revisit this channel with an updated BDT: $246000 \Lambda_{b}^{0} \rightarrow \mathrm{~J} / \psi p K^{-}$decays (10 times Run 1) and 6.4% background.

- Reflections from B_{s}^{0} vetoed
- Re-optimised BDT including PID (new)
- Only 2 dimensions used: $J / \psi p$ and $\cos \theta$
\rightarrow No sensitivity to
Argand diagram

ObSERVATION OF NARROW PENTAQUARKS
 LHCD

Observation of narrow pentaquarks

Observation of narrow Pentaquarks

With the new data, more structures are
visible:

- Peak at $4312 \mathrm{MeV} / \mathrm{c}^{2}$
- The $P_{c}(4450)^{+}$is composed of two structures

Observation of narrow pentaquarks

To maximise the sensitivity, the data is weighted as function of $\cos \theta_{P_{c}^{+}}$, as Λ^{*} resonances are at positive $\cos \theta_{P_{c}^{+}}$.
The default fit uses these weights. Other fits are used for systematic studies.

OBSERVATION OF NARROW PENTAQUARKS

Three states are observed:
$P_{c}(4312)^{+}$「 $\sim 10 \mathrm{MeV}(7 \sigma)$, which we could not see with $3 \mathrm{fb}^{-1}$
$P_{c}(4440)^{+}$「 $\sim 20 \mathrm{MeV}$
and
$P_{c}(4457)^{+} \Gamma \sim 6 \mathrm{MeV}$. The
significance of the 2-peak structure is 5.4σ
X No sensitivity to the wide $P_{c}(4380)^{+}$

State	$M[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$(95 \% \mathrm{CL})$	$\mathcal{R}[\%]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	(<27)	$0.30 \pm 0.07_{-0.09}^{+0.34}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	(<49)	$1.11 \pm 0.33_{-0.10}^{+0.22}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	(<20)	$0.53 \pm 0.16_{-0.13}^{+0.15}$

ObSERVATION OF NARROW PENTAQUARKS

Systematic uncertainties:

Interference: The $m_{J / \psi p}$ fit has no sensitivity, thus several combinations are tried. The default is incoherent.

Background model: Polynomial versus polynomial plus BW (default)
Data selection: the fits for full, $m_{p K}>1.9 \mathrm{GeV}$ and weighted (default) samples are compared.

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$(95 \% \mathrm{CL})$	$\mathcal{R}[\%]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	(<27)	$0.30 \pm 0.07_{-0.09}^{+0.34}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	(<49)	$1.11 \pm 0.33_{-0.10}^{+0.22}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	(<20)	$0.53 \pm 0.16_{-0.13}^{+0.15}$

Observation of narrow Pentaquarks

Three states are observed:
$P_{c}(4312)^{+} \Gamma \sim 10 \mathrm{MeV}(7 \sigma)$, which we could not see with $3 \mathrm{fb}^{-1}$
$P_{c}(4440)^{+} \Gamma \sim 20 \mathrm{MeV}$
and
$P_{c}(4457)^{+} \Gamma \sim 6 \mathrm{MeV}$. The
significance of the 2-peak structure is 5.4σ
X No sensitivity to the wide $P_{c}(4380)^{+}$

It is striking that the $P_{c}(4312)^{+}$and the $P_{c}(4457)^{+}$sit at the $\Sigma_{c} D$ and $\Sigma_{c} D^{*}$ thresholds

P_{c}^{+}states at ATLAS

With Run 1 data, ATLAS find $2270 \pm 300 \Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays

- With the same data, LHCb see 26000 ± 170 with hardly any background [LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

P_{c}^{+}states at ATLAS

With Run 1 data, ATLAS find $2270 \pm 300 \Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays

- Good fits with $4 P_{c}^{+}$LHCb states of $[$PRL 122 (2019) 222001] ($p \sim 69 \%$) - (also with $2 P_{c}^{+}$of [PRL 115 (2015) 072001], excluded by LHCb, $p \sim 56 \%$)
- Fit with only Λ is not $\left(p \sim 9 \times 10^{-3}\right)$

P_{c}^{+}STATES AT ATLAS

P_{c}^{+}states at ATLAS

P_{c}^{+}states at ATLAS

P_{c}^{+}STATES AT ATLAS

Amplitude analysis of $B_{s}^{0} \rightarrow J / \psi p \bar{p}$

With $9 \mathrm{fb}^{-1} 2011-18$ data, find $800 B_{s}^{0} \rightarrow$ $J / \psi p \bar{p}$ with 15% background. Flavour is untagged.
x Some structure at 4.3 GeV

Amplitude analysis of $B_{s}^{0} \rightarrow J / \psi p \bar{p}$

With $9 \mathrm{fb}^{-1} 2011-18$ data, find $800 B_{s}^{0} \rightarrow$ $J / \psi p \bar{p}$ with 15% background. Flavour is untagged.
\checkmark Good fit with a P_{c}^{+}state (3.1 σ)

$$
\begin{aligned}
M & =4337_{-4}^{+7} \pm 2 \mathrm{MeV} \\
\Gamma & =29_{-12}^{+26} \pm 14 \mathrm{MeV}
\end{aligned}
$$

P_{c}^{+}AS KINEMATICAL EFFECT

(a)

(b)

Double triangle singularities can cause the bumps

Various thresholds are at play
Not everyone is convinced

P_{c}^{+}AS KINEMATICAL EFFECT

(a)

(b)

Double triangle singularities can cause the bumps

Various thresholds are at play Good fit of the data [PRL 122 (2019) 222001]

Not everyone is convinced

Pentaquarks as triangle diagrams

P_{c}^{+}enhacements could be caused by triangle singularities

P_{c}^{+}REFIT

Du et al. redo the fit to LHCb data [LHCb, PRL 122 (2019) 220001, arxiv:1904.03947] and find a 1.3σ excess at $4380 \mathrm{MeV} / c^{2}$, where a missing $\Sigma_{c}^{*} \bar{D}$ state is expected.

