HADRON SPECTROSCOPY AT THE LHC

- QCD
- Beauty baryons
- Pentaquarks
- Tetraquarks
- The χ_{c1} (3872) state

On behalf of the LHCb collaboration, with input from ATLAS and CMS

07/07/2021 — LISHEP C

Patrick Koppenburg

[v@pkoppenburg] [patrick.koppenburg@nikhef.nl]

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [1 / 47]

59 novos hádrons c contando 11000 Xb(3P) • Xb2(3P) Yb1(3P) 59 new hadrons at the LHC 10500 -7000 7 0^{Bc(25)*} B;(25) Tetet B.(25) A.(6152) E.(6227)-A.(6146) (6227) B;(5970)+.0 5920) =.(6100) -6000 -B.(5840)+.0 A_b(6070 A. (5912) Σ_b(6097)⁺ B.(6114) Σ.(6097) 8.(6063) Aass [MeV/c² 5000 -X(4700) X(4500) X(4685) X(4630) P.(4450) P.(4457)+ bā X(4274) (4440) Z-(4220) X(4140) P.(438) (4312) cčlaā Z. (4000) X(3842) 4000 cret ==== сà cāad D. (3000)+.0 baa E.(2939) D*(2860)* X. (2900) 3000 D(3000)0 A-(2860) Xa(2900) caa D.(2760)* E.(2923) D:(2760) D.(2740) D.o(2590)* ccaga D(2580) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Date Niklhef Patrick Koppenburg Hadron spectroscopy at the LHC

[LAPE UFRJ @facebook]

07/07/2021 — LISHEP C [2 / 47]

THE LARGE HADRON COLLIDER AT CERN

lhcb

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [3 / 47]

De Beliacio Richard Hawkings, Luca Malgeri,

THE LARGE HADRON COLLIDER AT CERN

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [4 / 47]

Luca Malgeri Luciano Musa

STANDARD MODEL

Nik]hef

a

Standard Hadrons

Exotic Hadrons

Murray Gell-Mann Nik hef Patrick Koppenburg

George Zweig

André Petermann

See also [Petrov, arXiv:1412.8681]

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [6 / 47]

Confinement

The QCD potential is **postulated**. The mathematical proof that QCD produces such a potential is an unsolved problem. Solve it and claim your \$1M prize with the Clay Mathematics Institute [Millenium problems].

Patrick Koppenburg

Hadron spectroscopy at the LHC

Bound states with d, u, s, c quarks

The meson 4-quark multiplet

The baryon 4-quark multiplet

[PDG]

MASSES OF GROUND STATES

Patrick Koppenburg

Nik[hef

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [9 / 47]

[PDG]

[CMS, PRL 126 (2021) 252003, arXiv:2102.04524]

Isodoublet of Ξ_b^0 (bsu) and Ξ_b^- (bsd)

Patrick Koppenburg

Hadron spectroscopy at the LHC

[CMS, PRL 126 (2021) 252003, arXiv:2102.04524]

Observation of the $\Xi_b(6100)^-$ resonance

100

Using 130 fb⁻¹ 2016–18 data, CMS study $\Xi_b^- \pi^+ \pi^-$ combinations. \rightarrow new baryon $\Xi_b(6100)^-$ with mass $6100.3 \pm 0.2 \pm 0.1 \pm 0.6$ MeV/ c^2 Consistent with the orbitally excited $J^P = \frac{3}{2}^-$ state with $j_{ds} = 1$, as the $\Xi_{c}(2815).$

07/07/2021 - LISHEP C [12 / 47]

[LHCb, PRL 118 (2017) 182001, arXiv:1703.04639]

Five new Ω_c^0 resonances in $\Xi_c^+ K^-$

- Reconstruct $\Xi_c^+ \rightarrow p K^- \pi^+$
- Combine with prompt K⁻

Niklhef

- → Wow-effect: Five peaks!
 - Clearly five narrow states, two of which are very narrow.
 - Maybe there is a sixth wider state

[LHCb, LHCb-PAPER-2021-012, in preparation]

Excited
$$\Omega_c^0$$
 in $\Omega_b^- \to \Xi_c^+ K^- \pi^+$

Using $9 \, \text{fb}^{-1}$ 2011–18 data reconstruct $\Omega_b^- \to \Xi_c^+ K^- \pi^+$ and study Ω_c^0 in $\Xi_c^+ K^-$

- See 4 of the 5 states of [PRL 118 (2017) 182001]
 - → Angular fit to determine quantum numbers

Candidates / (2.5 MeV)

07/07/2021 - LISHEP C [14 / 47]

Hadron spectroscopy at the LHC

[LHCb, LHCb-PAPER-2021-012, in preparation]

Excited \varOmega^0_c in $\varOmega^-_b\to \varXi^+_c K^-\pi^+$

07/07/2021 - LISHEP C [15 / 47]

Hadron spectroscopy at the LHC

Patrick Koppenburg

[LHCb, PRL 124 (2020) 082002, arXiv:2001.00851]

Observation of excited Ω_{h}^{-} Number of candidates / 1 MeV I HCb + Data - Full fit — Signals Background 20 10 550 $M(\Xi_b^0 K^-) - M(\Xi_b^0)$ [MeV]

4 new states are seen at masses of 6316, 6330, 6340 and 6350 MeV/ c^2

• Karliner and Roser argue they are excitations of the spin-1 $s\overline{s}$ diquark with $J^P = 1/2^-, 1/2^-, 3/2^-, 3/2^-$. A $5/2^-$ is missing. [PRD 102 (2020) 014027]

• Liang and Oset argue for molecules [PRD 101 (2020) 554033] Nik[hef Patrick Koppenburg Hadron spectroscopy at the LHC 07

Hadron spectroscopy at the LHC

ENERGY LEVELS: NEUTRAL CHARMONIUM STATES

ENERGY LEVELS: CHARGED CHARMONIUM STATES

[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

2015 Pentaquark observation

Using 3 fb^{-1} 2011–12 data find 26000 \pm 170 $\Lambda_b^0 \rightarrow$ $J\!/\psi p K^-$ decays.

A 6-dimensional angular analysis needs two exotic contributions:

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
J^P	$\frac{3}{2}^{-}$	$\frac{5}{2}^{+}$
Mass [MeV/ c^2]	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width [MeV]	$205\pm18\pm86$	$39\pm5\pm19$
Significance	9σ	12σ

Also > 3σ evidence for P_c^+ in Cabibbosuppressed $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ [PRL 117 (2016) 082003]

Hadron spectroscopy at the LHC

BREIT-WIGNER BEHAVIOUR OF PENTAQUARKS

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [21 / 47]

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]

I HCh

Observation of NARROW PENTAQUARKS

Update of Run 1 analysis [PRL 115 (2015) 072001]

- → Revisit this channel with an updated BDT: 246 000 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays (10 times Run 1) and 6.4% background.
 - Reflections from B_s^0 vetoed
 - Re-optimised BDT including PID (new)
 - Only 2 dimensions used: $J/\psi p$ and $\cos \theta$
 - No sensitivity to Argand diagram

a 300

2000 E

100

 $\Lambda(1520)$

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]

Observation of NARROW PENTAQUARKS

LHCb

Three states are observed:

- $P_c(4312)^+$ $\Gamma \sim 10~{\rm MeV}~(7\sigma),$ which we could not see with $3~{\rm fb}^{-1}$
- $P_c(4440)^+$ $\Gamma \sim 20 \text{ MeV}$ and
- $P_c(4457)^+~\Gamma\sim 6$ MeV. The significance of the 2-peak structure is 5.4σ

× No sensitivity to the wide $P_c(4380)^+$

It is striking that the $P_c(4312)^+$ and the $P_c(4457)^+$ sit at the $\Sigma_c D$ and $\Sigma_c D^*$ thresholds

Patrick Koppenburg

Niklhet

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [23 / 47]

[ATLAS-CONF-2019-048]

With Run 1 data, ATLAS find 2270 \pm 300 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays

 $\bullet\,$ With the same data, LHCb see 26 000 $\pm\,170$ with hardly any background

[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

[ATLAS-CONF-2019-048]

P_c^+ states at ATLAS

With Run 1 data, ATLAS find 2270 \pm 300 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays

- Good fits with 4 P_c^+ LHCb states of [PRL 122 (2019) 222001] $(p\sim 69\%)$
 - (also with 2 P_c^+ of [PRL 115 (2015) 072001], excluded by LHCb, $p\sim 56\%$)
- Fit with only Λ is not $(p \sim 9 \times 10^{-3})$

Niklhef

[LHCb, LHCb-PAPER-2021-018, in preparation]

Amplitude analysis of $B^0_s \rightarrow J/\psi p \overline{p}$

With 9 fb⁻¹ 2011–18 data, find 800 $B_s^0 \rightarrow J/\psi p \overline{p}$ with 15% background. Flavour is untagged.

X Some structure at 4.3 GeV

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [26 / 47]

[LHCb, LHCb-PAPER-2021-018, in preparation]

Amplitude analysis of $B^0_s ightarrow J\!/\psi p \overline{p}$

✓ Good fit with a
$$P_c^+$$
 state (3.1 σ)
 $M = 4337^{+7}_{-4} \pm 2 \text{ MeV}$
 $\Gamma = 29^{+26}_{-12} \pm 14 \text{ MeV}$

$$\mathbf{Ni}_{\mathbf{k} \mathbf{h} \mathbf{e}^{T}}$$

Patrick Koppenburg Ha

WHAT IS A PENTAQUARK?

[Guo, Meissner, Wang, PRD92 (2015) 071502, arXiv:1507.04950]

PENTAQUARKS AS TRIANGLE DIAGRAMS

[LHCb, arXiv:2103.01803, submitted to PRD]

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [31 / 47]

[LHCb, arXiv:2103.01803, submitted to PRD]

07/07/2021 - LISHEP C [32 / 47]

Patrick Koppenburg Hadron spectroscopy at the LHC

BEST

$Z_{cs}(3985)^+$ VERSUS $Z_{cs}(4000)^+$

State seen in $D_s^- D^{*0}$ and $D_s^{*-} D^0$

$$m(Z_{cs}^{-}) = 3982.5 + \frac{1.8}{-2.6} \pm 2.1 \text{ MeV}/c^{2}$$

$$\Gamma(Z_{cs}^{-}) = 12.8 + \frac{5.3}{-4.4} \pm 3 \text{ MeV}$$

See Yingne
Wang Markov
See Yingne

[PRL 126 (2021) 102001]

State seen in $J/\psi K^+$

$$\begin{split} m(Z_{cs}^{-}) &= 4003 \pm 6 \,{}^{+4}_{-41}\,\text{MeV}/c^2 \\ \Gamma(Z_{cs}^{-}) &= 131 \pm 15 \pm 26\,\text{MeV} \end{split}$$

[LHCb, arXiv:2103.01803, submitted to PRD]

07/07/2021 - LISHEP C [33 / 47]

[LHCb, arXiv:2103.01803, submitted to PRD]

$Z_{cs}(3985)^+$ VERSUS $Z_{cs}(4000)^+$

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [34 / 47]

[LHCb-FIGURE-2021-001] [Updates here]

All exotic resonances observed at the LHC in a mass versus submission date plot. Hollow markers indicate superseded states.

Patrick Koppenburg

Hadron spectroscopy at the LHC

[Belle, PRL 91, 262001 (2003), arXiv:hep-ex/0309032]

Observation of the X(3872) Resonance

Belle reported a clear peak in the $J/\psi\pi^+\pi^$ mass spectrum above the $\psi(2S)$ in $B^+ \rightarrow J/\psi\pi^+\pi^-K^+$ decays (36 ± 7 events)

$$M_X = 3872.0 \pm 0.6 \pm 0.5 \, \text{MeV}/c^2$$

 $\Gamma < 2.3 \, \text{MeV}$

close to the $\overline{D}{}^0 D^{*0}$ threshold

Moon-Mars

07/07/2021 - LISHEP C [37 / 47]

[LHCb, PRL 110 (2013) 222001, arXiv:1302.6269]

X(3872) QUANTUM NUMBERS

• Five-dimensional angular analysis of $B^+ \rightarrow X(3872)K^+$ with $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ using 2011 data $\rightarrow 313 \pm 26$ decays in 38 000

 $B^+
ightarrow J\!/\psi \pi^+ \pi^- K^+$ candidates

✓ Unambiguous assignment $J^{PC} = 1^{++}$ at 8σ . This rules out the η_{c2} (1¹ D_2) hypothesis.

INCH

Patrick Koppenburg

BREIT-WIGNER

For narrow resonances far away from the threshold, the Breit-Wigner parametrisation is suitable

$$\mathcal{A}(s) = \frac{\alpha}{M_{\rm BW}^2 - s - i\sqrt{s}\,\Gamma_{\rm BW}} \simeq \frac{\alpha}{M_{\rm BW}^2 - s - i\,M_{\rm BW}\,\Gamma_{\rm BW}} \qquad \text{[PDG]}$$

Niklhef

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

LHCb

LINESHAPE OF THE $\chi_{c1}(3872)$ Meson

Using 3 fb^{-1} 2011–12 detached J/ $\psi \pi^+ \pi^-$ data, study the $\chi_{c1}(3872)$ lineshape (15k signal). $\psi(2S)$ is used as control.

 $m = 3871.70 \pm 0.07 \pm 0.07 \pm 0.01 \, {
m MeV}$

 $\Gamma=1.39\pm0.24\pm0.10\,\text{MeV}$

First measurement of the BW width!

Is the $\chi_{c1}(3872)$ above or below $D^{*0}\overline{D}$ threshold?

$$m(D^{*0}\overline{D}) = 3871.69 \pm 0.06$$
 MeV

Niklhef

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Patrick Koppenburg

For a resonance near threshold with coupled channels, the Flatté parametrisation is to be used [Yu, Kalashnikova, Nefediev, PRD80 (2009) 074004]

$$\frac{dR(J/\psi\pi^{+}\pi^{-})}{dE} \propto \frac{\Gamma_{\rho}(E)}{\left|E - E_{f} + \frac{i}{2}\left[g\left(k_{1} + k_{2}\right) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_{0}\right]\right|^{2}}$$

$$E_{f} = m_{0} - (m_{D^{0}} + m_{D^{*0}})$$

$$\Gamma_{f} : \text{ various decay modes}$$

$$\text{mode} = 3871.69 \stackrel{+0.00}{_{-0.04}} \stackrel{+0.05}{_{-0.13}} \text{ MeV}$$

$$\text{FWHM} = 0.22 \stackrel{+0.07}{_{-0.06}} \stackrel{+0.11}{_{-0.13}} \text{ MeV}$$

$$\frac{\left[\frac{1}{2}\right]_{0}}{\frac{1}{2}} \stackrel{\text{def}}{_{-0}} \stackrel{\text{d$$

RESONANCES

The physical states appear as poles of the S-matrix as a BOUND STATE on the real axis below threshold, on the physical sheet VIRTUAL STATE on the real axis above threshold, on the physical sheet RESONANCE off the real axis, on the unphysical sheet.

→ Real part: *m*, imaginary part: $\Gamma/2$

Patrick Koppenburg

Niklhef

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Analytic continuation of Flatté function in complex space.

Poles found:

Sheet II :(0.0569 - 0.1256 i) MeV Sheet III :(-3.5780 - 1.2165 i) MeV

 χ_{c1} (3872) looks like a quasi-bound* state of $D^{*0}\overline{D}$ with binding energy of 24 keV ($E_b < 100$ keV at 90% CL)

 * In the limit of all other couplings being switched off

Phase on complex E plane, with trajectory when other couplings are moved to 0.

[LHCb, PRL 126 (2021) 092001, arXiv:2009.06619]

$\chi_{c1}(3872)$ production versus multiplicity

Ratio of $\psi(2S)$ and $\chi_{c1}(3872)$ production, for prompt and *b* decays. The from-*b* ratio is consistent with being flat. 5σ slope for prompt, compared with predictions from [Esposito, Ferreiro, Pilloni, Polosa, Salgado, arXiv:2006.15044].

Patrick Koppenburg

Outlook

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [45 / 47]

[LHCb-FIGURE-2021-001] [Updates here]

New hadrons found at the LHC

59 hadrons found so far, and still counting

Patrick Koppenburg

Nik[hef

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [46 / 47]

- The LHC is a hadron discovery machine: 59 new hadrons to date
- 17 exotic hadrons discovered, but their nature is uncertain
- Study of baryons helps understanding diquarks
- Detailed study of χ_{c1} (3872) indicates it has a bound $D^* \overline{D}^0$ component

Contact: [y@pkoppenburg] [patrick.koppenburg@nikhef.nl]

Backup

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [48 / 47]

 ${\cal L}=2\cdot 10^{33}~{\rm cm}^{-2}{\rm s}^{-1}$ requires some new detectors and 40 MHz read-out clock new electronics

 $\operatorname{VELO:}$ New pixel vertex detector

 $\mathrm{Trackers:}\ New$ scintillating fibre tracker.

The upstream tracker is also replaced

PID: Hybrid photodetectors replaced by multi-anode PMTs

→ 50 fb⁻¹ by Run 4.

 ✓ We are preparing another upgrade for Run 5
 → 300 fb⁻¹

Upgrade TDR] [Velo] [PID] [Sci-Fi] [Trigger] [Phase-II Eol] khef Patrick Koppenburg Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [49 / 47]

LHCb $\operatorname{Trigger}$ in Run 2

LHCb 2012 Trigger Diagram

LHCb $\operatorname{Trigger}$ in Run 2

Events are buffered on disk (10 PB) while calibrations are being run.

- → Offline-quality trigger objects available for analysis.
 - Disk → more CPU. The full reconstruction can also be run during LHC downtime.

LHCb $\operatorname{Trigger}$ in Run 2

Events are buffered on disk (10 PB) while calibrations are being run.

- → Offline-quality trigger objects available for analysis.
 - Disk → more CPU. The full reconstruction can also be run during LHC downtime.

07/07/2021 - LISHEP C [52 / 47]

Tetraquarks

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [53 / 47]

PRODUCTION MECHANISM OF EXOTIC CHARMONIA

	1				0		C	·
$P_c^+(4380)$ $P_c^+(4450)$		Colour coding: neutral — charged						
		X(4160)		Z(4025)				
		X(3940)		Z(3885)				
			Z(3930)					
				Z(4020)				
Z(4248)								
Z(4051)								
Z(4430)			1					
				=(3500)				
				Z(3900)		<u> </u>		
			~(4350)		7(4140)			
			X(4350)		X(4140)			
			~(3915)					
Y(2972)								
A(3832)			X(4220)					
X(2070)	r (4630)							
X(3872)					X(3872)	X(3872)		
ģč	$e^+ \sim \gamma^* \sim c$	$e^+ \checkmark \gamma^* \checkmark J/\psi$	γ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z†	In pp	In pp		
W++ C		·	and the second s	Y(4260)				
	Z(4051) Z(4248) P_c^+(4380)	Y(4260) Y(4360) Y(4630) Y(4630) X(3872) X(3872) X(3872) X(34274) X(4140) X(4274) X(4274) X(4200) Z(4200) Z(4201) Z(4430) Z(4051) Z(4248) P_c^+(4380)	Y(4260) Y(4360) Y(4360) Y(4630) X(3872) X(3832) X(3872) X(3872) X(3872) X(3872) X(3872) X(3872) X(3872) X(3872) X(3872) X(4140) X(4274) X(4700) Z(4200) Z(4240) Z(4430) Z(4430) Z(4051) Z(4248) X(3940) X(3940) X(4160)	Y(4260) Y(4360) Y(460) Y(4630) X(3872) X(3832) Y(4630) X(3872) X(3872) X(3915) X(390) X(4140) X(4140) X(4274) X(4260) X(4200) Z(4200) Z(4430) Z(4430) Z(4430) Z(4430) Z(4430) Z(4430) Z(430) Z(4430) Z(4430) Z(4430) Z(4430) Z(4430) Z(4430) Z(4430) Z(4430) Z(420) Z(420) Z(3930)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Exotic Charmonia Timeline

First observations of X(3872) [Belle, PRL 91 262001 (2003), arXiv:hepex/0309032], Y(3940) [Belle, PRL 94 182002 (2005), arXiv:hep-ex/0408126], Y(4260) [BABAR, PRL 95 142001 (2005), arXiv:hep-ex/0506081], Y(4360) [BABAR, PRL 98 212001 (2007), arXiv:hep-ex/0610057]

2003 Belle sees X(3872) by accident in

 $B^+
ightarrow J\!/\!\psi K^+ \pi^+ \pi^-$ [Belle, PRL 91 262001 (2003), arXiv:hep-ex/0309032]

2005 Belle then searched for it in $B^+ \rightarrow J/\psi K^+ \omega$ but found the Y(3940) [Belle, PRL 94 182002 (2005). arXiv:hep-ex/0408126]

2005 BaBar searched for it in $e^+e^- \rightarrow X(3872)$ with ISR but did not find it. They found the Y(4260) instead.

[BABAR, PRL 95 142001 (2005), arXiv:hep-ex/0506081]

2006 BaBar then looked whether the Y(4260) decayed to $\psi(2S)\pi^+\pi^-$ with ISR. Instead they found the Y(4360). [BABAR, PRL 98 212001 (2007), arXiv:hep-ex/0610057]

Patrick Koppenburg

Niklhef

Exotic Charmonia Timeline

First observations of X(3872) [Belle, PRL 91 262001 (2003), arXiv:hep-ex/0309032], Y(3940) [Belle, PRL 94 182002 (2005), arXiv:hep-ex/0408126], Y(4260) [BABAR, PRL 95 142001 (2005), arXiv:hep-ex/0506081], Y(4360) [BABAR, PRL 98 212001 (2007), arXiv:hep-ex/0610057]

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [56 / 47]

Structure in $J\!/\!\psi J\!/\!\psi$

Using 9 fb^{-1} Run 1+2 data look at pairs of J/ $\!\psi$ mesons.

- → Revisit mass distribution of [JHEP 06 (2017) 047] (280 pb⁻¹)
 - Require $p_{\rm T} > 5.2 \, {\rm GeV}/c$ to maximise single over double parton scattering

Candidates / (2 MeV/c²)

Patrick Koppenburg

Nik hef

Structure in $J/\psi J/\psi$

Peaks seen at $6.9 \,\text{GeV}/c^2$ and at threshold

Structure in $J\!/\!\psi J\!/\!\psi$

Patrick Koppenburg

Nikhef

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [59 / 47]

Structure in $J\!/\!\psi J\!/\!\psi$

Nik[hef

Structure in $J\!/\!\psi J\!/\!\psi$

Model II: BW interfering with NRSPS, p = 15.5%

Structure in $J\!/\!\psi J\!/\!\psi$

Or parametrise with a single BW

Nik[hef

Structure in $J\!/\!\psi J\!/\!\psi$

BW interfering with SPS continuum

Structure in $J\!/\!\psi J\!/\!\psi$

Model I with another BW at $7.2 \text{ GeV}/c^2$

Nikhef

Structure in $J/\psi J/\psi$

LHCD

In all cases a new state $T_{cccc}(6900)$ is observed.

Mass and width, and cross-section \mathcal{R} relative to $J/\psi J/\psi$, based on the no-interference fit:

 $M = 6905 \pm 11 \pm 7 \text{ MeV}/c^{2}$ $\Gamma = 80 \pm 19 \pm 33 \text{ MeV}/c^{2}$ $\mathcal{R} = 2.6 \pm 0.6 \pm 0.8\%$

And with an interfering resonance:

 $M = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$ $\Gamma = 168 \pm 33 \pm 69 \text{ MeV}/c^2$

Structure in $J\!/\!\psi J\!/\!\psi$

Model I fit in bins of $p_{\rm T}$.

Structure in $J\!/\!\psi J\!/\!\psi$

Model II fit in bins of $p_{\rm T}$.

Nik[hef

Amplitude analysis of $B^+ \rightarrow D^- D^+ K^-$

[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]

Nik hef

[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]

Nik[hef

[LHCb, PRD 102 (2020) 112003, arXiv:2009.00026]

[LHCb, arXiv:2103.01803, submitted to PRD]

Strange tetraquarks in ${\cal B}^+ ightarrow J\!/\psi \phi {\cal K}^+$

 $9\,fb^{-1}~update~of~3\,fb^{-1}~_{[PRL~118~(2017)~022003]}$ [PRD 95 (2017) 012002]

• 24 220 \pm 170 $B^+ \rightarrow J/\psi \phi K^+$ candidates with 4% background and 2% $B^+ \rightarrow J/\psi K^+ K^- K^+$

Patrick Koppenburg

Page 2 6 fb.

 $m(\phi K^+)$ [GeV]

(10 We A) 100

Strange tetraquarks in ${\cal B}^+ ightarrow J\!/\psi \phi {\cal K}^+$

 $9\,fb^{-1}~update~of~3\,fb^{-1}~_{[PRL~118~(2017)~022003]}$ [PRD 95 (2017) 012002]

• 24 220 \pm 170 $B^+ \rightarrow J/\psi \phi K^+$ candidates with 4% background and 2% $B^+ \rightarrow J/\psi K^+ K^- K^+$

→ Run 2 almost 5 times Run 1 sample

Strange tetraquarks in ${\cal B}^+ ightarrow J\!/\psi \phi {\cal K}^+$

 $9\,fb^{-1}~update~of~3\,fb^{-1}~_{[PRL~118~(2017)~022003]}~_{[PRD~95~(2017)~012002]}$

- Try run-1 model with 5 $K^+\phi$ and 4 $J\!/\psi\phi$ resonances
 - → $J/\psi K^+$ distribution poorly modelled

Patrick Koppenburg

Strange tetraquarks in ${\cal B}^+ ightarrow J\!/\psi \phi {\cal K}^+$

 $9\,fb^{-1}$ update of $3\,fb^{-1}$ $_{[PRL\ 118\ (2017)\ 022003]}$ $_{[PRD\ 95\ (2017)\ 012002]}$

- Try run-1 model with 5 $K^+\phi$ and 4 $J/\psi\phi$ resonances
- Add more resonances: lower-mass kaons, two Z_{cs} and two more X.

Patrick Koppenburg

Strange tetraquarks in ${\cal B}^+ ightarrow J\!/\psi \phi {\cal K}^+$

 $9\,{\rm fb}^{-1}$ update of $3\,{\rm fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002]

- Try run-1 model with 5 $K^+\phi$ and 4 $J\!/\psi\phi$ resonances
- Add more resonances: lower-mass kaons, two Z_{cs} and two more X.
- Clear need of J/ ψ K⁺ tetraquarks: Z_{cs}(4000)⁺ and Z_{cs}(4220)⁺

Strange tetraquarks in ${\cal B}^+ ightarrow J\!/\psi \phi {\cal K}^+$

- $9\,{\rm fb}^{-1}$ update of $3\,{\rm fb}^{-1}$ [PRL 118 (2017) 022003] [PRD 95 (2017) 012002]
 - Try run-1 model with 5 $K^+\phi$ and 4 $J\!/\psi\phi$ resonances
 - Add more resonances: lower-mass kaons, two Z_{cs} and two more X.
 - Clear need of J/ ψ K $^+$ tetraquarks: Z_{cs}(4000)^+ and Z_{cs}(4220)^+
 - ✓ Resonant behaviour of $Z_{cs}(4000)^+$

Strange tetraquarks in $B^+ \rightarrow J/\psi \phi K^+$

Angular moments of $J/\psi\phi$ helicity angle versus $J/\psi\phi$ mass

Angular moments of ϕK^+ helicity angle versus ϕK^+ mass

Angular moments of $J/\psi K^+$ helicity angle versus $J/\psi K^+$ mass

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [78 / 47]

Strange tetraquarks in $B^+ \rightarrow J/\psi \phi K^+$

	Cor	ntribution	Significance $[\times \sigma]$	<i>M</i> ₀ [MeV]	Γ ₀ [MeV]	FF [%]
		All $K(1^+)$				$25 \pm 4^{+6}_{-15}$
	$2^{1}P_{1}$	$K(1^+)$	4.5 (4.5)	$1861 \pm 10 {}^{+ 16}_{- 46}$	$149 \pm 41 {}^{+ 231}_{- 23}$	- 15
	$2^{3}P_{1}$	$K'(1^+)$	4.5 (4.5)	$\begin{array}{c} 1861 \pm 10 {}^{+16}_{-46} \\ 1911 \pm 37 {}^{+124}_{-48} \end{array}$	$149 \pm 41 \ _{-23} \ 276 \pm 50 \ _{-159}^{+319}$	
	$1^{3}P_{1}$	$K_1(1400)$	9.2 (11)	1403	174	$15 \pm 3 {}^{+}_{-11} {}^{3}_{-11}$
		All K(2 ⁻)				$2.1 \pm 0.4 \substack{+2.0 \\ -1.1}$
	$1^{1}D_{2}$	$K_2(1770)$	7.9 (8.0)	1773	186	
	1^3D_2	$K_2(1820)$	5.8 (5.8)	1816	276	
		All $K(1^{-})$				$50 \pm 4^{+10}_{-19}$
	$1^{3}D_{1}$	$K^{*}(1680)$	4.7 (13)	1717	322	$50 \pm 4 \pm 16$ $14 \pm 2 \pm 35$ $20 \pm 5 \pm 11$
	$2^{3}S_{1}$	$K^{*}(1410)$	7.7 (15)	1414	232	14 ± 2 8 38 ± 5 + 11 -17
		$K(2^{+})$				
	$2^{3}P_{2}$	$K_{2}^{*}(1980)$	1.6 (7.4)	$1988 \pm 22 {}^{+ 194}_{- 31}$	$318\pm82{}^{+481}_{-101}$	$2.3\pm0.5\pm0.7$
		$K(0^{-})$				
	2^1S_0	K(1460)	12 (13)	1483	336	$10.2 \pm 1.2 {}^{+1.0}_{-3.8}$
		$X(2^{-})$				
		X(4150)	4.8 (8.7)	$4146\pm18\pm33$	$135\pm28{}^{+59}_{-30}$	$2.0\pm0.5^{+0.8}_{-1.0}$
		$X(1^{-})$				
		X(4630)	5.5 (5.7)	$4626 \pm 16 {}^{+}_{-110} {}^{18}_{-110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$
		All $X(0^+)$. 10	$20 \pm 5^{+14}_{-724}$
		X(4500)	20 (20)	$4474 \pm 3 \pm 3$	$77 \pm 6^{+10}_{-18}$	$5.6 \pm 0.7 \substack{+2.4 \\ -0.6}$
		X(4700)	17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$20 \pm 5 - \frac{7}{7}$ $5.6 \pm 0.7 - \frac{9.6}{9}$ $8.9 \pm 1.2 - \frac{1.4}{1.4}$ $28 \pm 8 + \frac{19}{-11}$
		$NR_{J/\psi\phi}$	4.8 (5.7)			$28 \pm 8^{+19}_{-11}$
		All $X(1^+)$. 10	. 24	$26 \pm 3^{+8}_{-10}$ $17 \pm 3^{+19}_{-6}$
		X(4140)	13 (16)	$4118 \pm 11 ^{+19}_{-36}$	$162\pm21{}^{+24}_{-49}$	$17 \pm 3^{+19}_{-6}$
		X(4274)	18 (18)	$\begin{array}{r} 4294 \pm 4 \substack{+ 3 \\ - 6 \\ 4684 \pm 7 \substack{+ 13 \\ - 16 \end{array}} \end{array}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5 ^{+0.8}_{-0.4} \\ 7.2 \pm 1.0 ^{+4.0}_{-2.0}$
		X(4685)	15 (15)	$4684 \pm 7^{+13}_{-16}$	$126\pm15{}^{+37}_{-41}$	
		All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$
		$Z_{cs}(4000)$	15 (16)	$4003 \pm 6^{+ 4}_{- 14}$	$131\pm15\pm26$	$9.4 \pm 2.1 \pm 3.4$
Ε.		$Z_{cs}(4220)$	5.9 (8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$
Ni	k[hef					

Patrick Koppenburg Hadro

TETRAQUARKS INTERPRETATION

Some comments by Richard Lebed:

- $Z_{cs}(4000)$ could be the strange SU(3) partner of $Z_c(3900)$ [BESIII, PRL 110 (2013) 252001]
- $Z_{cs}(4220)$ could be the strange SU(3) partner of $Z_c(4020)$ [BESIII, PRL 111 (2013) 242001]
 - However these states are not seen in *B* decays and wider

X(4630) is close in mass to Y(4626) seen in $D^+D_s(2536)^-$ [Belle, PRD 100 (2019) 111103]

X(4150) is below 5σ . It could be the $\eta_{c2}(2D)$. The mass is predicted to be 4158 MeV [Barnes, Godfrey, Swanson, PRD 72 (2005) 054026]

Niklhef

χ_{c1} (3872) saga

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [81 / 47]

Hidden charm states decaying to $J/\psi \pi^+\pi^-$

Patrick Koppenburg

[Belle, PRL 91, 262001 (2003), arXiv:hep-ex/0309032]

Observation of the X(3872) Resonance

Belle reported a clear peak in the $J/\psi \pi^+\pi^$ mass spectrum above the $\psi(2S)$ in $B^+ \rightarrow$ $J/\psi \pi^+\pi^- K^+$ decays (36 ± 7 events)

$$M_X = 3872.0 \pm 0.6 \pm 0.5 \, \text{MeV}/c^2$$

 $\Gamma < 2.3 \, \text{MeV}$

close to the $\overline{D}{}^0 D^{*0}$ threshold

Moon-Mars

07/07/2021 - LISHEP C [83 / 47]

[Belle, PRL 91, 262001 (2003), arXiv:hep-ex/0309032]

Observation of the X(3872) Resonance

in the $J/\psi \pi^+\pi^-$

Belle reported a clear peak in the $J/\psi \pi^+ \pi^$ mass spectrum above the $\psi(2S)$ in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decays (36 ± 7 events)

 $\pi^+\pi^-$ spectrum consistent with ρ^0

A search in $B^+\to \gamma\chi_{c1}K^+$ yields no signal, contradicting a $^3D_{c2}$ explanation

Patrick Koppenburg

Nik|hef

LHCb was first to observe the $\chi_{c1}(3872)$ meson in pp collisions (CDF saw it in $p\overline{p}$ [PRL96 (2016) 102002])

- Using 2010 data corresponding to 35 pb⁻¹, see 500 $\chi_{c1}(3872)$ and 4000 $\psi(2S)$ in $J/\psi\pi^+\pi^-$.
- Cross-section times BF in 25 < y < 4.5 and $5 < \rho_{\rm T} < 20~{\rm GeV}/c$ is

 $5.4\pm1.3\pm0.8~\text{nb}$

• The mass is also measured to be $3871 \pm 0.48 \pm 0.12 \text{ MeV}/c^2$

Niklhet

[LHCb, PRL 110 (2013) 222001, arXiv:1302.6269]

X(3872) QUANTUM NUMBERS

• Five-dimensional angular analysis of $B^+ \rightarrow X(3872)K^+$ with $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ using 2011 data $\rightarrow 313 \pm 26$ decays in 38 000

 $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ candidates

✓ Unambiguous assignment $J^{PC} = 1^{++}$ at 8σ . This rules out the η_{c2} (1¹ D_2) hypothesis.

Patrick Koppenburg

INCH

defined as $\ell_{xy} > 100\,\mu\text{m}$

Nikhef

m(J/w π⁺π⁻) [GeV]

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [88 / 47]

EVIDENCE FOR $X(3872) \rightarrow \psi(2S)\gamma$

- The nature of the X(3872) is not clear. The ratio R_{ψγ} of decay widths to ψ(2S)γ and J/ψγ is expected to be very different for a cc state or a pure DD* molecule
- BaBar and Belle results were not conclusive

Niklhe

EVIDENCE FOR $X(3872) \rightarrow \psi(2S)\gamma$

- The nature of the X(3872) is not clear. The ratio R_{ψγ} of decay widths to ψ(2S)γ and J/ψγ is expected to be very different for a cc state or a pure DD* molecule
- We reconstruct $B^+ \rightarrow J/\psi \gamma K^+$ and fit for the X

 $m_{J/\psi\gamma K^+}$

Niklhef

EVIDENCE FOR $X(3872) \rightarrow \psi(2S)\gamma$

- The nature of the X(3872) is not clear. The ratio $R_{\psi\gamma}$ of decay widths to $\psi(2S)\gamma$ and $J/\psi\gamma$ is expected to be very different for a $c\overline{c}$ state or a pure DD^* molecule
- We reconstruct $B^+ \rightarrow J/\psi \gamma K^+$ and fit for the X
- Same for B⁺ →ψ(2S)γK⁺: 4.4σ evidence

 $m_{\psi(2S)\gamma K^+}$

Niklhef

EVIDENCE FOR $X(3872) \rightarrow \psi(2S)\gamma$

- The nature of the X(3872) is not clear. The ratio $R_{\psi\gamma}$ of decay widths to $\psi(2S)\gamma$ and $J/\psi\gamma$ is expected to be very different for a $c\overline{c}$ state or a pure DD^* molecule
- We reconstruct $B^+ \rightarrow J/\psi \gamma K^+$ and fit for the X
- The ratio is measured to be $\frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$

This disfavours the DD^* molecule at 4.4 σ

Niklhet

X(3872) QN WITH $X(3872) \rightarrow \rho^0 J/\psi$

- The X(3872) state was observed by Belle [PRL 91 (2013) 26001] in $B \rightarrow XK$ and $X \rightarrow \pi^+\pi^- J/\psi$. Its nature is unknown.
- CDF determined the quantum numbers to be $J^{PC} = 1^{++}$ or 2^{-+}

[PRL 98 (2007) 132002]

- LHCb determined $J^{PC} = 1^{++}$ [PRL 110 (2013) 222001] (1 fb⁻¹)
 - → One of the PDG highlights of the 2014 edition
- ✗ Both assumed the decay to be dominated by the lowest angular momentum L_{min}.

Highlights of the 2014 edition of the Review of Particle Physics 5

HIGHLIGHTS OF THE 2014 EDITION OF THE REVIEW OF PARTICLE PHYSICS

899 new papers with 3283 new measurements

- Over 330 papers from LHC experiments (ATLAS, CMS, and LHCb).
- Extensive Higgs boson coverage from 138 papers with 258 measurements.
- Supersymmetry: 123 papers with major exclusions, many from LHC experiments.
- Top quark: 51 new papers, many from LHC experiments.
- Cosmology reviews updated to include 2013 Planck.
- Latest from B-meson physics: 183 papers with 803 measurements, including first observation of B_s → µ⁺µ[−] from LHCb and CMS.
- Updated and new results in neutrino mixing on Δm² and mixing angle measurements, including the first Δm²₃₂ result from reactor experiment.
- Final assignment of 1⁺⁺ quantum numbers to the X(3872) by LHCb.
- Observation of charmonium-like states X(3900) and X(4020) (BESIII and BES3).
- Observation of bottomonium-like states X(10620) and X(10650) (Belle).
- Heavily revised Atomic-Nuclear Properties website.

112 reviews (most are revised or new)

• New reviews on:

- Higgs Boson Physics
- Dark Energy
- Monte Carlo Neutrino Generators
- Resonances
- · Significant update/revision to reviews on:
 - The Top Quark
 - Dynamical Electroweak Symmetry Breaking
 - Astrophysical Constants
 - Dark Matter
 - Big-Bang Nucleosynthesis
 - Neutrino Cross Section Measurements
 - Accelerator Physics of Colliders
 - High-Energy Collider Parameters
 - Total Hadronic Cross Sections Plots

See pdgLive.lbl.gov for online access to PDG database

See pdg.lbl.gov/AtomicNuclearProperties for Atomic Properties of Materials

X(3872) QN WITH X(3872) $\rightarrow \rho^0 J/\psi$

- The X(3872) state was observed by Belle [PRL 91 (2013) 26001]
- CDF determined the quantum numbers to be $J^{PC} = 1^{++}$ or 2^{-+}

[PRL 98 (2007) 132002]

- LHCb determined $J^{PC} = 1^{++}$ [PRL 110 (2013) 222001] (1 fb⁻¹)
 - → One of the PDG highlights of the 2014 edition
- ✗ Both assumed the decay to be dominated by the lowest angular momentum L_{min}.
- Here we present a re-analysis using 3 fb⁻¹ without this

.k]hef	assumptionrg
	waterer, who be united

	B_{LS}	
J^{PC}	Any L value	Minimal L value
0^{-+}	B_{11}	B_{11}
0^{++}	B_{00}, B_{22}	B_{00}
1^{-+}	$B_{10}, B_{11}, B_{12}, B_{32}$	B_{10}, B_{11}, B_{12}
1^{++}	B_{01}, B_{21}, B_{22}	B_{01}
2^{-+}	$B_{11}, B_{12}, B_{31}, B_{32}$	B_{11}, B_{12}
2^{++}	$B_{02}, B_{20}, B_{21}, B_{22}, B_{42}$	B_{02}
3^{-+}	$B_{12}, B_{30}, B_{31}, B_{32}, B_{52}$	B_{12}
3^{++}	$B_{21}, B_{22}, B_{41}, B_{42}$	B_{21}, B_{22}
4^{-+}	$B_{31}, B_{32}, B_{51}, B_{52}$	B_{31}, B_{32}
4^{++}	$B_{22}, B_{40}, B_{41}, B_{42}, B_{62}$	B_{22}

Parity-allowed LS couplings in $X \! \rightarrow \rho^0 J \! / \! \psi$

X(3872) QN WITH X(3872) $\rightarrow \rho^0 J/\psi$

- Here we present a re-analysis using 3 fb⁻¹ without this assumption.
- Use 1011 \pm 38 $B^+ \rightarrow XK^+$, $X \rightarrow
 ho^0 J/\psi$ decays
- The phase space is limited

Nik|hef

X(3872) QN WITH X(3872) $\rightarrow \rho^0 J/\psi$

- Here we present a re-analysis using 3 fb⁻¹ without this assumption.
- Use $1011 \pm 38 \ B^+ \rightarrow XK^+$, $X \rightarrow \rho^0 J/\psi$ decays
- The phase space is limited
- Use helicity formalism to fit 5-dimensional angular distributions

Niklhef

X(3872) QN WITH X(3872) $\rightarrow \rho^0 J/\psi$

- Here we present a re-analysis using 3 fb⁻¹ without this assumption.
- Use 1011 \pm 38 $B^+ \rightarrow XK^+$, $X \rightarrow \rho^0 J/\psi$ decays
- The phase space is limited
- Use helicity formalism to fit 5-dimensional angular distributions
- Only $J^{PC} = 1^{++}$ fits and the fraction of D-wave is found to be less than 4%

→ Compatible with tetraquark, molecule or $\chi_{c1}(2^3P_1)$ hypotheses (possibly mixed). It excludes any other charmonium state. Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [98 / 47]

[ATLAS, JHEP01(2017)117, arXiv:1610.09303]

ψ (25) and χ_{c1} (3872) at 8 TeV

Study of $\psi(2S)$ and X(3872) production using the final state $J/\psi(\mu^+\mu^-)\pi^+\pi^-$ with 8 TeV data.

• Prompt and non-prompt components disentangled by pseudo-lifetime fits

[ATLAS, JHEP01(2017)117, arXiv:1610.09303]

ψ (25) and χ_{c1} (3872) at 8 TeV

Study of $\psi(2S)$ and X(3872) production using the final state $J/\psi(\mu^+\mu^-)\pi^+\pi^-$ with 8 TeV data.

- Prompt and non-prompt components disentangled by pseudo-lifetime fits
- Prompt X(3872) production consistent with NLO NRQCD predictions [Artoisenet and Braaten, PRD81 114018, arXiv:0911.2016]. Also consistent with CMS [JHEP 04 (2013) 154, arXiv:1302.3968].

Niklhef

[ATLAS, JHEP01(2017)117, arXiv:1610.09303]

ψ (25) and χ_{c1} (3872) at 8 TeV

Study of $\psi(2S)$ and X(3872) production using the final state $J/\psi(\mu^+\mu^-)\pi^+\pi^-$ with 8 TeV data.

- Prompt and non-prompt components disentangled by pseudo-lifetime fits
- Non-prompt X(3872) production consistently low compared to predictions

[Cacciari et al., JHEP 10 (2012) 137, arXiv:1205.6344]

Ratio assuming same mix of *b*-hadrons:

$$rac{\mathcal{B}(b o X(3872)(\mu^+\mu^-)$$
any)}{\mathcal{B}(b o \psi(2S)(\mu^+\mu^-)any)} = (3.95 \pm 0.32 \pm 0.08)%

But if B_c^+ component is fitted, it is found that $(25 \pm 13 \pm 2 \pm 5 \text{ (spin)})\%$ of non-prompt X(3872) come from $B_c^+ \rightarrow \text{Puzzling!}$

Patrick Koppenburg

[Compass, PLB 783 (2018) 334, arXiv:1707.01796]

COMPA

X(3872) MUOPRODUCTION

• Placeholder

Patrick Koppenburg

Nik]hef

[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]

Observation of $\Lambda_b^0 \rightarrow \chi_{c1}(3872) \rho K^-$

 $\chi_{c1}(3872)pK^{-} \text{ with } \chi_{c1}(3872) \rightarrow \psi(2S)\pi^{+}\pi^{-}$

$$R_{\psi(2S)} = \frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1}(3872)\rho K^-)}{\mathcal{B}(\Lambda_b^0 \to \psi(2S)K^-)} \\ \times \frac{\mathcal{B}(\chi_{c1}(3872) \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(\psi(2S) \to J/\psi \pi^+ \pi^-)} \\ = (5.4 \pm 1.1 \pm 0.2) \times 10^{-2}$$

The combined BF is $(1.2 \pm 0.3 \pm 0.2) \times 10^{-6}$ Nik(hef Patrick Koppenburg Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [103 / 47]

[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]

Observation of $\Lambda_b^0 \rightarrow \chi_{c1}(3872) \rho K^-$

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [104 / 47]

[LHCb, JHEP 09 (2019) 028, arXiv:1907.00954]

Observation of $\Lambda_b^0 \rightarrow \chi_{c1}(3872) p K^-$

Patrick Koppenburg

Niklhef

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [105 / 47]

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Using 3 fb^{-1} 2011–12 detached $J/\psi \pi^+\pi^-$ data, study the $\chi_{c1}(3872)$ lineshape (15k signal). $\psi(2S)$ is used as control.

 $m = 3871.70 \pm 0.07 \pm 0.07 \pm 0.01$ MeV

 $\Gamma =$ $1.39 \pm 0.24 \pm 0.10$ MeV

First measurement of the BW width!

Is the $\chi_{c1}(3872)$ above or below $D^{*0}\overline{D}$ threshold?

$$m(D^{*0}\overline{D}) = 3871.69 \pm 0.06$$
 MeV

Niklhef

07/07/2021 - LISHEP C [107 / 47]

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Patrick Koppenburg

For a resonance near threshold with coupled channels, the Flatté parametrisation is to be used [Yu, Kalashnikova, Nefediev, PRD80 (2009) 074004]

$$\frac{dR(J/\psi\pi^{+}\pi^{-})}{dE} \propto \frac{\Gamma_{\rho}(E)}{\left|E - E_{f} + \frac{i}{2}\left[g\left(k_{1} + k_{2}\right) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_{0}\right]\right|^{2}}$$

$$E_{f} = m_{0} - (m_{D^{0}} + m_{D^{*0}})$$

$$\Gamma_{f} : \text{ various decay modes}$$

$$\text{mode} = 3871.69 + \frac{0.00}{-0.04} + \frac{0.05}{-0.13} \text{ MeV}$$

$$\text{FWHM} = 0.22 + \frac{0.07}{-0.06} - \frac{0.13}{-0.13} \text{ MeV}$$

$$\frac{\left[\frac{1}{2}\right]_{0}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{3}{2}} \frac{1}{\frac{1}{2}} \frac{1}{2} \frac{$$

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Hadron spectroscopy at the LHC

Analytic continuation of Flatté function in complex space.

Poles found:

Sheet II : (0.0569 – 0.1256 i) MeV Sheet III : (-3.5780 - 1.2165 i) MeV

 $\chi_{c1}(3872)$ looks like a quasi-bound* state of $D^{*0}\overline{D}$ with binding energy of 24 keV ($E_b < 100$ keV at 90% CL)

* In the limit of all other couplings being switched off

Patrick Koppenburg

Phase on complex E plane, with trajectory when other couplings are moved to 0

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Analytic continuation of Flatté function in complex space.

Poles found:

Sheet II :(0.0569 - 0.1256 i) MeV Sheet III :(-3.5780 - 1.2165 i) MeV

 χ_{c1} (3872) looks like a quasi-bound* state of $D^{*0}\overline{D}$ with binding energy of 24 keV ($E_b < 100$ keV at 90% CL)

 * In the limit of all other couplings being switched off

Phase on complex E plane, with width of D^{*0} taken into account

[LHCb, PRD 102 (2020) 092005, arXiv:2005.13419]

LINESHAPE OF THE $\chi_{c1}(3872)$ MESON

Analytic continuation of Flatté function in complex space.

Poles found:

Sheet II : (0.0569 - 0.1256 i) MeV Sheet III : (-3.5780 - 1.2165 i) MeV

 χ_{c1} (3872) looks like a quasi-bound* state of $D^{*0}\overline{D}$ with binding energy of 24 keV ($E_b < 100$ keV at 90% CL)

 * In the limit of all other couplings being switched off

Niklhef

[LHCb, PRL 126 (2021) 092001, arXiv:2009.06619]

$\chi_{c1}(3872)$ production versus multiplicity

Ratio of $\psi(2S)$ and $\chi_{c1}(3872)$ production, for prompt and *b* decays. The from-*b* ratio is consistent with being flat. 5σ slope for prompt, compared with predictions from [Esposito, Ferreiro, Pilloni, Polosa, Salgado, arXiv:2006.15044].

Patrick Koppenburg

[CMS, PRL 125 (2020) 152001, arXiv:2005.04764]

Observation of $B_s^0 \rightarrow \chi_{c1}(3872)\phi$

Using 140 fb $^{-1}$ 13 TeV data, find 300 \pm 40 $B^0_s \rightarrow \chi_{c1}({\rm 3872})\phi$

$$\begin{aligned} &\frac{\mathcal{B}(B_s^0 \to \chi_{c1}(3872)\phi) \,\mathcal{B}(\chi_{c1}(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B_s^0 \to \psi(2S)\phi) \,\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (2.21 \pm 0.29 \pm 0.17)\% \\ &\mathcal{B}(B_s^0 \to \chi_{c1}(3872)\phi) \,\mathcal{B}(\chi_{c1}(3872) \to J/\psi\pi^+\pi^-) = (4.14 \pm 0.54 \pm 0.32 \pm 0.46 \,(\mathcal{B})) \times 10^{-6} \\ &\mathcal{B}(B_s^0 \to \chi_{c1}(3872)\phi) /\mathcal{B}(B^+ \to \chi_{c1}(3872)K^+) = 0.482 \pm 0.063 \pm 0.037 \pm 0.070 \,(\mathcal{B}) \end{aligned}$$

Which may indicate a different production mechanism in B_s^0 and B^+ (B_s^0 is consistent with B^0) Nikhef Patrick Koppenburg Hadron spectroscopy at the LHC 07/07/2021 — LISHEP C [112 / 47]

[CMS, arXiv:2102.13048]

$\chi_{c1}(3872)$ production in PBPB

Patrick Koppenburg

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [114 / 47]

OBSERVATION OF TWO PENTAQUARKS

OBSERVATION OF TWO PENTAQUARKS

We knew there was something strange in Λ^0_b o $J\!/\psi p K^-$ [JHEP 07 (2014) 103]

[PLB 734 (2014) 122] [PRL 111 (2013) 102003]

- \clubsuit Revisit this channel with a clean selection: 26000 \pm 170 decays
 - Reflections from B_s^0 vetoed
 - Re-optimised boosted decision tree trained on simulated signal and data background.

Niklhef

OBSERVATION OF TWO PENTAQUARKS

Patrick Koppenburg

Nik[hef

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [117 / 47]

Observation of two pentaquarks

Observation of two pentaquarks

EFFICIENCIES? Can it be sculpted by efficiencies?

- Efficiencies vary smoothly by a factor two over Dalitz
- Modelled using phase-space Simulation. Our detector response is well validated in many similar analyses.

BACKGROUND? We look in the sidebands and find nothing peaking.

- Peaking B^0 and B_s^0 are vetoed.
- Reconstruction artefacts are investigated.

Observation of two pentaquarks

Observation of two pentaquarks

Matrix Elements with only Λ^* resonances:

Observation of two pentaquarks

Two different implementations of the fitter, done by two groups on two continents. They differ by the background treatment

- ${
 m CFIT}$: Sideband data are used to construct 6D model of background shape.
- SFIT: Background is statistically subtracted using sPlot weights from mass fit [Le Diberder, Pivk, NIM A 555 356 (2005)].

It is common practice in LHCb to have these two approaches.

Observation of two pentaquarks

State	J^P	M_0 (MeV)	Γ_0 (MeV)	Red.	Ext.
$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3/2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9/2^{+}$	2350	150		6
$\Lambda(2585)$?	\approx 2585	200		6
				64	146

Last columns show number of parameters are left free. Masses and Width are fixed. Red.: Reduced model (fast). Ext.: Allows for more helicity (*LS*) couplings.

Observation of two pentaquarks

All known Λ^* resonances get the pK^- mass right, but not the $J/\psi p$ mass.

- We use the extended model in this fit
 - → Adding more A resonances does not help [PRL 117 (2016) 082002]
- Letting the width and masses float does not help
- Adding $\Delta I = \frac{1}{2}$ -suppressed Σ^{*0} $(I = \frac{3}{2})$, resonances does also not help

When you have eliminated the impossible, whatever remains, however improbable, must be the truth

07/07/2021 - LISHEP C [124 / 47]

Observation of two pentaquarks

All known Λ^* resonances get the pK^- mass right, but not the $J/\psi p$ mass.

g Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [125 / 47]

Observation of two pentaquarks

All known Λ^* resonances get the pK^- mass right, but not the $J/\psi p$ mass.

State	J^P	M_0 (MeV)	Γ_0 (MeV)	Red.	Ext.
A(1405)	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3/2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
A(2350)	$9/2^{+}$	2350	150		6
A(2585)	?	≈ 2585	200		6
				64	146

Last columns show number of parameters are left free. Masses and Width are fixed.

Red.: Reduced model (fast). Ext.: Allows for more helicity (LS) couplings.

Observation of two pentaquarks

Matrix Elements with a Pentaquark:

Observation of two pentaquarks

There is an obvious peak at m_{J/ψp} = 4.45 GeV/c²: Add one P_c⁺ state with free J^P.
✗ Unsatisfactory fit. J^P = ⁵/₂⁺.

LHCh

Observation of two pentaquarks

0

0

free J^P .	bvious peak GeV/ c^2 : Add ctory fit. J^P =	d one P_c^+ state with
Add another	P_c^+	
🖌 Good fit	C	
	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
JP	$\frac{3}{2}^{-}$	$\frac{5}{2}^{+}$
Mass [MeV/ c^2]	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width [MeV]	$205\pm18\pm86$	$39\pm5\pm19$
Significance	9σ	12σ

Observation of two pentaquarks

			A
free J^P .	GeV/c^2 : Ad	d one P_c^+ sta	te with
🗡 Unsatisfa	ctory fit. J^P =	$=\frac{5}{2}$ '.	
 Add another 		2	
🖌 Good fit			
	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$	
JP	3-	5+	
Mass [MeV/ c^2]	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2$	2.5
Width [MeV]	$205\pm18\pm86$	$39\pm5\pm19$	
Significance	9σ	12σ	
🗸 The angular d	distributions	are well repro	duced
• Also OK: $\left(\frac{3}{2}\right)^+$	$(\frac{5}{2})$ or $(\frac{5}{2})$	$^{+}, \frac{3}{2}^{-})$	
→ In any ca	se opposite pa	rities	

• Minimal quark content: *c*cuud

OBSERVATION OF TWO PENTAQUARKS

Amplitude analysis:

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [131 / 47]

Observation of two pentaquarks

The interference pattern confirms the opposite parities:

- At $\cos \theta_{P_c^+} \sim -1$, low $m_{{\it K}{\it p}}$: negative interference.
- At $\cos \theta_{P_c^+} \sim +1$, high m_{Kp} : positive interference.

Patrick Koppenburg

07/07/2021 — LISHEP C [132 / 47]

Observation of two pentaquarks

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [133 / 47]

OBSERVATION OF TWO PENTAQUARKS

The Argand diagram shows the typical phase motion of a resonance for the $P_c(4450)^+$. For the $P_c(4380)^+$, one point is off by 2σ .

Patrick Koppenburg

Nik|hef

tetraquarks

Patrick Koppenburg

Nikhef

4.5

m Int [GeV]

4.5

m

Observation of two pentaquarks

Source	M ₀	(MeV)	Γ ₀ (MeV)		Fit f	fractions (%	(6)
	4380	4450	4380	4450	4380	4450	<u>Л(1405)</u>	<i>Л</i> (1520)
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
$arLambda^*$ masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < ho_{ m p} < 100$ GeV	0	1.2	1	1	0.09	0.03	0.31	0.01
Non-resonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^{P}(\frac{3}{2}^{+},\frac{5}{2}^{-})$ or $(\frac{5}{2}^{+},\frac{3}{2}^{-})$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 { m GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_b} \Lambda^0_b o P^+_c(4380/4450) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c} P_c^+ (4380/4450) \to J/\psi p$	4	0.4	31	7	0.63	0.37		
${\cal L}^{A^*_n}_{\Lambda^0_L}\ \Lambda^0_b o {J\!/\!\psi}\Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $arLambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

Uncertainties added in quadrature. "4380": $P_c(4380)^+$, "4450": $P_c(4450)^+$

Patrick Koppenburg

Nik|hef

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [136 / 47]

Observation of two pentaquarks

State	J^P	Mass [MeV/ c^2]	Width [MeV]	Fit Fraction [%]
	$\frac{3}{2}^{-}$	$4380\pm8\pm29$	$205\pm18\pm86$	$8.4\pm0.7\pm4.2$
$P_{c}(4450)^{+}$	$\frac{1}{2}^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	$4.1\pm0.5\pm1.1$
$\Lambda(1405)$	-			$15\pm1\pm6$
A(1520)				$19\pm1\pm4$

These fit fractions are converted into branching fractions

[LHCb, Chin. Phys. C40 (2016) 011001, arXiv:1509.00292]

$$\mathcal{B}(\Lambda_b^0 \to P_c^+(4380)K^-) \times \mathcal{B}(P_c^+ \to J/\psi p) = \left(2.56 \pm 0.22 \pm 1.28 \substack{+0.46 \\ -0.36}\right) \times 10^{-5}$$
$$\mathcal{B}(\Lambda_b^0 \to P_c^+(4450)K^-) \times \mathcal{B}(P_c^+ \to J/\psi p) = \left(1.25 \pm 0.15 \pm 0.33 \substack{+0.22 \\ -0.18}\right) \times 10^{-5}$$

	$\Delta(-2\ln\mathcal{L})$	Significance
$0 ightarrow 1P_c^+$	14.7 ²	12σ
$1 \rightarrow 2P_c^+$	11.6^{2}	9σ
$0 \rightarrow 2P_c^+$	18.7 ²	15σ

Hadron spectroscopy at the LHC

Niklhef

Patrick Koppenburg

The significances are determined using the extended model.

07/07/2021 - LISHEP C [137 / 47]

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]

Exotics in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

 $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ re-analysed after 2014 observation [JHEP 07 (2014) 103] with full angular fit, as in [PRL 115 (2015) 072001].

Need to describe all N resonances (Δ negligible)

State	J^P	Mass (MeV)	Width (MeV)	RM	EM	
NR $p\pi$	$1/2^{-}$	-	-	4	4	
N(1440)	$1/2^{+}$	1430	350	3	4	
N(1520)	$3/2^{-}$	1515	115	3	3	
N(1535)	$1/2^{-}$	1535	150	4	4	
N(1650)	$1/2^{-}$	1655	140	1	4	
N(1675)	$5/2^{-}$	1675	150	3	5	
N(1680)	$5/2^{+}$	1685	130	-	3	
N(1700)	$3/2^{-}$	1700	150	-	3	
N(1710)	$1/2^{+}$	1710	100	-	4	
N(1720)	$3/2^{+}$	1720	250	3	5	
N(1875)	$3/2^{-}$	1875	250	-	3	
N(1900)	$3/2^{+}$	1900	200	-	3	
N(2190)	$7/2^{-}$	2190	500	-	3	
N(2300)	$1/2^{+}$	2300	340	-	3	
N(2570)	$5/2^{-}$	2570	250	-	3	
Free para	meters			40	106	
k∏hef						
~ F	Patrick	Koppenburg	Hadron	spect	roscopy	/ at the

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]

Exotics in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [139 / 47]

[LHCb, PRL 117 (2016) 082003, arXiv:1606.06999]

Exotics in $\Lambda_b^0 \to J/\psi p \pi^-$

The fit fractions are

$$\begin{aligned} &P_c(4380): 5.1 \pm 1.5 ^{+2.1}_{-1.6} \% \\ &P_c(4450): 1.6 ^{+0.8}_{-0.6} \overset{+0.6}_{-0.5} \% \\ &Z_c(4200): 7.7 \pm 2.8 \overset{+3.4}_{-4.0} \% \end{aligned}$$

There is a 3.3σ significance for the presence of exotic states. The fit does not allow to say which.

No
$$P_c^+$$
 would require $(17.2 \pm 3.5)\%$
 $Z_c(4200)$, which is much more than
in $B^0 \rightarrow J/\psi K^+\pi^-$ [Belle, PRD 90 (2014)
112009]

Patrick Koppenburg

Niklhef

Exotics in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

The fit fractions are

$$\begin{aligned} & P_c(4380) : 5.1 \pm 1.5 \substack{+2.1 \\ -1.6} \% \\ & P_c(4450) : 1.6 \substack{+0.8 \\ -0.6 \ -0.5} \% \\ & Z_c(4200) : 7.7 \pm 2.8 \substack{+3.4 \\ -4.0} \% \end{aligned}$$

There is a 3.3σ significance for the presence of exotic states. The fit does not allow to say which.

No P_c^+ would require (17.2 \pm 3.5)% Z_c (4200), which is much more than in $B^0 \rightarrow J/\psi K^+ \pi^-$ [Belle, PRD 90 (2014) 112009]

Niklhef

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]

OBSERVATION OF NARROW PENTAQUARKS

Update of Run 1 analysis [PRL 115 (2015) 072001]

- → Revisit this channel with an updated BDT: 246 000 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays (10) times Run 1) and 6.4% background.
 - Reflections from B_{ϵ}^{0} vetoed
 - Re-optimised BDT including PID (new)

Hadron spectroscopy at the LHC

LHCb

07/07/2021 - LISHEP C [142 / 47]

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]

I HCh

Observation of NARROW PENTAQUARKS

Update of Run 1 analysis [PRL 115 (2015) 072001]

- → Revisit this channel with an updated BDT: 246 000 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays (10 times Run 1) and 6.4% background.
 - Reflections from B_s^0 vetoed
 - Re-optimised BDT including PID (new)
 - Only 2 dimensions used: $J/\psi p$ and $\cos \theta$
 - No sensitivity to Argand diagram

a 300

2000 E

 $\Lambda(1520)$

07/07/2021 — LISHEP C [143 / 47]

[LHCb, PRL 122 (2019) 222001, arXiv:1904.03947]

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [144 / 47]

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [145 / 47]

Observation of NARROW PENTAQUARKS

- Peak at 4312 MeV/ c^2
- The *P_c*(4450)⁺ is composed of two structures

Observation of NARROW PENTAQUARKS

To maximise the sensitivity, the data is weighted as function of $\cos \theta_{P_c^+}$, as Λ^* resonances are at positive $\cos \theta_{P_c^+}$.

The default fit uses these weights. Other fits are used for systematic studies.

07/07/2021 — LISHEP C [147 / 47]

Observation of NARROW PENTAQUARKS

Three states are observed: $P_c(4312)^+ \ \Gamma \sim 10 \text{ MeV} (7\sigma)$, which we could not see with 3 fb^{-1} $P_c(4440)^+ \ \Gamma \sim 20 \text{ MeV}$ and

 $P_c(4457)^+~\Gamma\sim 6$ MeV. The significance of the 2-peak structure is 5.4σ

× No sensitivity to the wide $P_c(4380)^+$

	State	<i>M</i> [MeV]	Г [MeV]	(95% CL)	R [%]
	$P_{c}(4312)^{+}$	$4311.9 \pm 0.7 {}^{+ 6.8}_{- 0.6}$	$9.8 \pm 2.7 {}^{+ 3.7}_{- 4.5}$	(< 27)	$0.30 \pm 0.07 {}^{+ 0.34}_{- 0.09}$
	$P_{c}(4440)^{+}$	$4440.3 \pm 1.3 {}^{+ 4.1}_{- 4.7}$	$20.6 \pm 4.9 {}^{+ 8.7}_{- 10.1}$	(< 49)	$1.11 \pm 0.33 {}^{+ 0.22}_{- 0.10}$
	$P_{c}(4457)^{+}$	$4457.3 \pm 0.6 {}^{+4.1}_{-1.7}$	$6.4 \pm 2.0 {+ 5.7 \\ - 1.9}$		$0.53 \pm 0.16 {}^{+ 0.15}_{- 0.13}$
۱i	Thef			· ·	

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [148 / 47]

Observation of NARROW PENTAQUARKS

Systematic uncertainties:

INTERFERENCE: The $m_{J/\psi p}$ fit has no sensitivity, thus several combinations are tried. The default is incoherent.

BACKGROUND MODEL: Polynomial versus polynomial plus BW (default)

DATA SELECTION: the fits for full, $m_{pK} > 1.9 \text{ GeV}$ and weighted (default) samples are compared.

	State	<i>M</i> [N		Г [MeV]	(95% CL)	R [%]				
	$P_{c}(4312)^{+}$	$4311.9\pm$	$0.7 \stackrel{+ 6.8}{- 0.6}$	$9.8 \pm 2.7 {}^{+ 3.7}_{- 4.5}$	(< 27)	$0.30 \pm 0.07 {}^{+ 0.34}_{- 0.09}$				
$P_{c}(4457)^{+}$ 4457		$4440.3 \pm 1.3 {}^{+ 4.1}_{- 4.7}$		$20.6 \pm 4.9 {}^{+ 8.7}_{- 10.1}$	(< 49)	$1.11 \pm 0.33 {}^{+ 0.22}_{- 0.10}$				
		4457.3 \pm	$0.6 + \frac{4.1}{-1.7}$	$6.4 \pm 2.0 {+ 5.7 \atop - 1.9}$	(< 20)	$0.53 \pm 0.16 {}^{+ 0.15}_{- 0.13}$				
Nikhef										
Patrick Koppenburg Had				pectroscopy at the LHC		07/07/2021 — LISH				

07/07/2021 — LISHEP C [149 / 47]

Observation of NARROW PENTAQUARKS

Three states are observed:

- $P_c(4312)^+$ $\Gamma \sim 10~{\rm MeV}~(7\sigma)$, which we could not see with $3~{\rm fb}^{-1}$
- $P_c(4440)^+$ $\Gamma \sim 20 \text{ MeV}$ and
- $P_c(4457)^+~\Gamma\sim 6~{\rm MeV}.$ The significance of the 2-peak structure is 5.4σ

× No sensitivity to the wide $P_c(4380)^+$

It is striking that the $P_c(4312)^+$ and the $P_c(4457)^+$ sit at the $\Sigma_c D$ and $\Sigma_c D^*$ thresholds

Patrick Koppenburg

Niklhet

Hadron spectroscopy at the LHC

07/07/2021 - LISHEP C [150 / 47]

With Run 1 data, ATLAS find 2270 \pm 300 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays

ullet With the same data, LHCb see 26 000 \pm 170 with hardly any background

[LHCb, PRL 115 (2015) 072001, arXiv:1507.03414]

P_c^+ states at ATLAS

With Run 1 data, ATLAS find 2270 \pm 300 $\Lambda^0_b \rightarrow$ J/ $\psi p K^-$ decays

- Good fits with 4 P_c^+ LHCb states of [PRL 122 (2019) 222001] $(p\sim 69\%)$
 - (also with 2 P_c^+ of [PRL 115 (2015) 072001], excluded by LHCb, $p\sim 56\%$)
- Fit with only \varLambda is not $(p\sim9\times10^{-3})$

Niklhef

P_c^+ states at ATLAS

[LHCb, LHCb-PAPER-2021-018, in preparation]

Amplitude analysis of $B^0_s \rightarrow J/\psi p \overline{p}$

With 9 fb⁻¹ 2011–18 data, find 800 $B_s^0 \rightarrow J/\psi p \overline{p}$ with 15% background. Flavour is untagged.

X Some structure at 4.3 GeV

Patrick Koppenburg

Hadron spectroscopy at the LHC

07/07/2021 — LISHEP C [157 / 47]

[LHCb, LHCb-PAPER-2021-018, in preparation]

Amplitude analysis of $B^0_s \rightarrow J/\psi p \overline{p}$

✓ Good fit with a
$$P_c^+$$
 state (3.1 σ)
 $M = 4337^{+7}_{-4} \pm 2 \text{ MeV}$
 $\Gamma = 29^{+26}_{-12} \pm 14 \text{ MeV}$

Hadron spectroscopy at the LHC

Patrick Koppenburg

07/07/2021 — LISHEP C [158 / 47]

[Nakamura, PRD 103 (2021) 111503, arXiv:2103.06817]

P_c^+ as kinematical effect

 $\overline{\overline{D}^{(*,0)}}^{p}$

(b)

Double triangle singularities can cause the bumps

Various thresholds are at play

Not everyone is convinced

Niklhef

[Nakamura, PRD 103 (2021) 111503, arXiv:2103.06817]

P_c^+ as kinematical effect

 $\Lambda^{(*,**\nu}_{\cdot}$

 $\bar{D}^{(*)}$

(b)

Double triangle singularities can cause the bumps

Various thresholds are at play

Good fit of the data [PRL 122 (2019) 222001]

Not everyone is convinced

07/07/2021 - LISHEP C [160 / 47]

[Guo, Meissner, Wang, PRD92 (2015) 071502, arXiv:1507.04950]

PENTAQUARKS AS TRIANGLE DIAGRAMS

P_c^+ REFIT

Du et al. redo the fit to LHCb data [LHCb, PRL 122 (2019) 222001, arXiv:1904.03947] and find a 1.3σ excess at 4380 MeV/ c^2 , where a missing $\Sigma_c^*\overline{D}$ state is expected.

