
New Physics from 
Precision at High Energy

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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(2) New physics from precision measurements
(1) Precision measurements at high energy

(3) Machine learning + measurements + BSM

https://www.kitp.ucsb.edu/activities/precision21
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What does 
“precision” mean?
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Mass Measurements

In several areas, we have reached an era 
of ultra-precision - what does this mean for 
the experimental and pheno communities? 

Fun fact: beam energy uncertainty (   ) recently improved - significant impact on ttbar cross-section uncertainty!
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https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.20.081003
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“Measurements” with ~100% uncertainty 
are still in the “search” mode.
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“Measurements” with ~100% uncertainty 
are still in the “search” mode.
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Example: Higgs to muons

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-14/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-14/fig_02.pdf
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“Measurements” with ~100% uncertainty 
are still in the “search” mode.

Example: Four top quarks

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-003/
http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-003/


13SM @ 10%

“Measurements” with 10% uncertainty can 
begin to probe differential cross sections.
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Example: Dijets

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-03/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-03/
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“Measurements” with 10% uncertainty can 
begin to probe differential cross sections.
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Example: vector boson scattering
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are reaching 1%

Matching or 
exceeding precision 

of corresponding 
calculations

At this level of 
precision need to be 

careful what is 
measured!   

(e.g. parton != particle)

(one of many 
examples)

https://arxiv.org/abs/1803.08856


16SM @ 0.1%

Figure 1: Inclusive dimuon invariant mass distribution of Z ! µ+µ� candidate events. The upper panel shows the
invariant mass distribution for data and for simulation. The points show the data after correction for local charge-
dependent momentum biases. The continuous line corresponds to the simulation with the momentum corrections
applied. The band represents the total systematic uncertainty on the momentum corrections. The lower panel shows
the data to simulation ratio. No subtraction of the background (expected to be at the level of 0.5% and with a
non-peaking distribution) is applied, and the simulation is normalised to the data.

of ⌘, � and pT, and is found to be about 20 MeV for the average momentum of muons from Z ! µ+µ�
decays.

The invariant mass distributions of dimuons from Z ! µ+µ� decays in data and simulation after such
corrections are compared in Figure 1. After corrections data and simulation agree to better than 3% for
the description of the Z-boson decay lineshape.

5 Photon and electron reconstruction, identification and calibration

Photon and electron candidates are reconstructed from clusters of energy deposited in the electromagnetic
calorimeter [87]. Clusters without a matching track or reconstructed conversion vertex in the inner
detector are classified as unconverted photons. Those with a matching reconstructed conversion vertex
or a matching track, consistent with originating from a photon conversion, are classified as converted
photons. Clusters matched to a track consistent with originating from an electron produced in the beam
interaction region are considered electron candidates.

The energy measurement for reconstructed electrons and photons is performed by summing the energies
measured in the EM calorimeter cells belonging to the candidate cluster. The energy is measured from a
cluster size of�⌘⇥�� = 0.075⇥0.175 in the barrel region of the calorimeter and�⌘⇥�� = 0.125⇥0.125
in the calorimeter endcaps. The calibration strategy for the energy measurement of electrons and photons

6
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Figure 11: The value of �2 ln⇤ as a function of mH for the individual channels H ! Z Z⇤ ! 4` and H ! ��, and
their combination (blue, red, and black respectively). The dashed lines show the statistical component of the mass
measurements.

Table 9: Main sources of systematic uncertainty on the combined mass mH .

Source Systematic uncertainty on mH [MeV]

LAr cell non-linearity 90
LAr layer calibration 90
Non-ID material 60
ID material 50
Lateral shower shape 50
Z ! ee calibration 30
Muon momentum scale 20
Conversion reconstruction 20

27

CONF-2017-046

Even though newest fundamental particle, mH very well known

Requires superb understanding of muon momentum 
scale and e/𝛾 energy scale and resolution

https://cds.cern.ch/record/2273853/files/ATLAS-CONF-2017-046.pdf


17SM @ 0.01% - Ultra Precision: W mass
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Even though it is 7 TeV, 
the W mass measurement 

was published in 2018

To achieve a 20 MeV 
uncertainty, need not 
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dedicated calibrations 
(e.g. with Z pT)
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Eur. Phys. J. C 78 (2018) 110

recoil not ɸ-symmetric 
due to beamspot offset

https://arxiv.org/abs/1701.07240
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(2) New physics from precision measurements
(1) Precision measurements at high energy

(3) Machine learning + measurements + BSM

Something no one ever said
With great precision comes 

great responsibility

Image credit: Mavel (Spiderman)

https://www.kitp.ucsb.edu/activities/precision21
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Many searches are not 
limited by uncertainties

Looking for 
“big” effects
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Looking for 
“big” effects
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There are some exceptions where precision 
is also required for direct searches

https://arxiv.org/abs/1804.02716
http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-17-013/index.html
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Many searches are not 
limited by uncertainties

Looking for 
“big” effects
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Many searches are not 
limited by uncertainties

Looking for 
“big” effects

Indirect searches with precision measurements 
instead look for “small” deviations
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Many searches are not 
limited by uncertainties

Looking for 
“big” effects

Indirect searches with precision measurements 
instead look for “small” deviations

Often the result of new particles beyond the kinematic each
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Running of the strong coupling constant 
What if there are new colored particles?

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-025/
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Running of the strong coupling constant 
What if there are new colored particles?
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Figure 1: The next-to-leading order solutions to the renormalization group equation including a new fermion
with mass mX = 200 GeV transforming under representations of dimension 3, 8, 6 and 10, respectively.

At next-to-leading order, the transverse energy-energy correlation function can be ex-
pressed as a second-order polynomial in ↵s(Q), i.e. [18]

1

�

d⌃

d cos�
/

↵s(Q)

⇡
F (�)


1 +

↵s(Q)

⇡
G(�)

�
, (8)

where F (�) and G(�) are functions of the azimuth to be determined in the perturbative
calculation; and ↵s(Q) is the solution to Eq. 4, which at NLO is given by

↵s(Q) =
1

�0 log z


1�

�1

�
2
0

log (log z)

log z

�
; z =

Q
2

⇤2
QCD

. (9)

With these ingredients, one can obtain the theoretical predictions for the TEEC functions
using NLOJet++ [22, 23], together with the NNPDF 3.0 parton distribution functions [24]
In addition to the truncation in the fixed-order perturbative series, the resulting predictions
for the TEEC functions involve three additional approximations. The first approximation
is independent of BSM: we avoid from regions of phase space with significant collinear
enhancement since we do not include higher order resummation in the calculation. In
practice, this is accomplished by restricting cos� to be away from ±1. Next, we neglect
the impact of new fermions on the proton parton distribution functions (PDFs). This is
justified because the TEEC is a ratio of 3-jet to 2-jet cross-sections and so the e↵ects of
PDF variations largely cancel [18]. This is further supported by the fact that the theoretical
uncertainties due to the PDF were shown to be negligible in Ref. [19, 20]. A more detailed
analysis in Ref. [11] also found that the contribution from PDF variations was negligible for
ratio observables. The third approximation is that we neglect real emissions of new fermions.
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Measure in bins of ~pT and 
compare to theory predictions.  

Uncertainties are %-level.
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Figure 2: Theoretical predictions for the TEEC (top) and ATEEC functions (bottom) for two sample
intervals of HT2 provided by the ATLAS measurement [27, 20]. The Standard Model prediction is shown,
together with the data, on the top panel for each subfigure. The bottom panels display the ratio of the
theoretical predictions in four sample BSM models with respect to the Standard Model prediction, showing
a clear increase for each bin of the distribution.
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TEEC = Transverse energy-
energy correlation functions
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Figure 7: The CLs value calculated over the entire ne↵ , mX plane using the TEEC distributions. A
contour indicates where the CLs surface crosses the 0.05 line for both the data (observed) and from the SM
prediction (expected). As is convention for direct searches, the surface is interpolated in the significance
(
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Using the TEEC, we have set stringent exclusion limits on 
colored BSM (except when neff ~ 1 (e.g. single squark)

neff = 3 for a gluino

J. Llorente and BN, Nucl. Phys. B 936 (2018) 106



32Jets as a precision probe for BSM

You may ask:  

But I thought limits on 
gluinos were >(>) 1 TeV?? 
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neff = 3 for a gluino

There may be gaps!

J. Evans and D. McKeen, 1803.01880
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Figure 3. Limits on RPV decays of light gluinos, g̃ ! jjj. The recast performed in this
work of the UA2 study [43] is in blue, the CDF limit is in red [33], the lowest LHC constraint
from ATLAS is in green [37], and the robust lower bound of 51 GeV from LEP jet data is in
gold [5].

cross-section for R-parity violating decays to within 2-3 times the expected values across
the entire light gluino to three-jet gap.

4 Discussion

In this work, we illustrated that six-jet event data from UA2 constrains the allowed
cross-section for all-hadronic, three-body decays of gluinos in R-parity violating SUSY
with masses from 51–76 GeV, between the sensitivity of LEP and CDF. While unable
to close the light gluino to three-jet gap, the UA2 data does exlcude gluino production
cross-sections that are a factor of 2–3 larger than the expected values, setting what is
presently the strongest bound within this region.

As discussed in the introduction, high-multiplicity, all-hadronic gluino decays, g̃ !

n partons with n � 4, have been excluded for mg̃ & 300 GeV by LHC searches [1, 38,
42]. However, these states are not currently robustly constrained at lower masses, as
the decay products become too collimated for the existing multi-jet searches to have

– 7 –

Jets as a precision probe for BSM

J. Llorente and BN, Nucl. Phys. B 936 (2018) 106

Indirect searches tend to have less/
different assumptions than direct 
searches and are thus essential.
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Measure thisWant this

i.e. remove detector distortions
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Measure thisWant this

p(meas. | true) = “response matrix” or “point spread function”

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Example: Unfolding (Deconvolution)
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p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Example: Unfolding (Deconvolution)
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p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Simulation-based (likelihood-free) inference

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Example: Unfolding (Deconvolution)



48

I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.



49Reweighting

I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

Reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)



51Classification for reweighting

Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(or something monotonically related to it in a known way)
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58Example: unfold all particles in Z+jets
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features

59Example: unfold all particles in Z+jets
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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The MultiFold neural networks are composed of three
hidden layers of 100 nodes each.

For each iteration of OmniFold and MultiFold, the
neural network was trained with 120 and 20 epochs, re-
spectively, and included an early stopping condition based
on validation loss improvement. The validation sample
was constructed from a random 20% of the events. The
models are randomly initialized in the first iteration and
subsequently warm-started using the model from the pre-
vious iteration. All neural networks are implemented
using Keras [95] with the Tensorflow backend [96]
and optimized with Adam [97].

IV. HEAVY SCALAR DECAY STUDY

First, we study the case of mh = 250 GeV where 10%
of the data is BSM physics. This composition and signal
model relative to the Z+jets background are qualitatively
similar to the example presented in Ref. [69], which used
generative models.

Figure 2 shows the detector-level and truth-level distri-
butions of Z+jet invariant mass before and after unfolding.
At detector-level, which corresponds to the first step in
an iteration of the OmniFold method, the distributions
exhibit good agreement after unfolding: the height and
width of the mass peak are reproduced accurately, espe-
cially in the MultiFold case. At truth-level, the peaks
are not reproduced as sharply. In the MultiFold case,
the height and width of the peak are similar to that seen
at detector level, and in the OmniFold case, the peak is
considerably broader.

Part of the broadening is an inherent challenge with
non-trivial resolutions and limited statistics. The truth-
level peak quality can be recovered by modifying the
Generation. We are free to choose whatever Generation
we want as OmniFold is a maximum likelihood estimator
that is prior-independent. However, the closer the prior is
to the data, the more accurate the unfolding will be with
finite statistics. To test this idea, the same Truth sample
was used as above, with 180,000 SM events and 20,000
h æ Za, a æ gg, where mh = 250 GeV and ma = 16
GeV. However, now the Generation was taken to include
200,000 SM events, 10,000 h æ Za, a æ gg events with
mh = 125 GeV for each of ma = 0.5, 1, 2, 4, 8, and 16
GeV, and 10,000 h æ Za, a æ gg events with mh = 250
GeV for each of the same ma values, for a total of 320,000
events. The truth-level results of unfolding with the same
OmniFold setup discussed above are shown in Fig. 3.
Here, both the height and weight of the truth-level peak
are reproduced well by the reweighted sample. The fact
that this works well, when an application of OmniFold
with SM-only events did not, shows the importance of
su�ciently covering the relevant regions of phase space.

Adding BSM physics to the Generation sample begs the
question of what the invariant mass distribution would
look like after unfolding if the Data does not itself contain
BSM physics. To test this, the same Generation sample

FIG. 2. Distributions of the Z+jet invariant mass spectrum
for both MultiFold (top row) and OmniFold (bottom row).
Distributions are shown for both detector-level (Data and
Simulation) and truth-level (Truth and Generation) values.
The Truth and Data distributions are a combination of 180,000
Pythia 8 Z+jet events and 20,000 h æ Za, a æ gg, where mh

= 250 GeV and ma = 16 GeV. The Generation and Simulation
are 200,000 SM-only events. The weights are taken after 5
iterations of the respective unfolding procedure. The triangular
discriminator [98–100] �(p, q) =

s
d⁄ (p(⁄)≠q(⁄))2

p(⁄)+q(⁄) is used to
quantify the di�erence between distributions.

FIG. 3. Truth-level distribution of Z+jet invariant mass for
the case that OmniFold is performed with BSM events in
Generation. The BSM event included in the Generation were
drawn from events with mh = 125 GeV and mh = 250 GeV.
The weights are taken after 5 OmniFold iterations.

P. Komiske, W. P. McCormack, BN, 2105.09923

Z+jets with BSM in 
data, but not 

simulation

Non-local BSM is 
well-preserved; 

local BSM is 
preserved if (a) it is 
big enough and (b) 
it is in a region with 

enough phase 
space overlap with 

the background
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This is only a taste of both the 
physics and methodology; there 
is also a rich program in direct 
searches (with and without ML)

Today I have focused on 
indirect searches for new 

physics with precision 
measurements.  I also 

discussed how ML may help.

The full phase space of our experiments is now explorable, 
and with new measurements combined with new theory 

insight, we will be able to be maximally sensitive to BSM!
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N.B. if you just apply 
p(ideal | measured), you 
would have gotten the 

wrong answer!



88Results - resonance mass
Correct answer

N.B. not everyone reported an uncertainty (answer - true)/uncert

(order is arbitrary)
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90Parameter estimationFitting in 3D with DCTR

Mean and standard deviation over 20 runs: 

1D:

Similar  
uncertainty

Similar 
spread

The meaning of this “uncertainty” is discussed later.



91Pythia versus Herwigpp Reweighting 
Pythia & Herwig
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No hyper-parameter tuning - out of the box!
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