# Physics at Future Circular Colliders

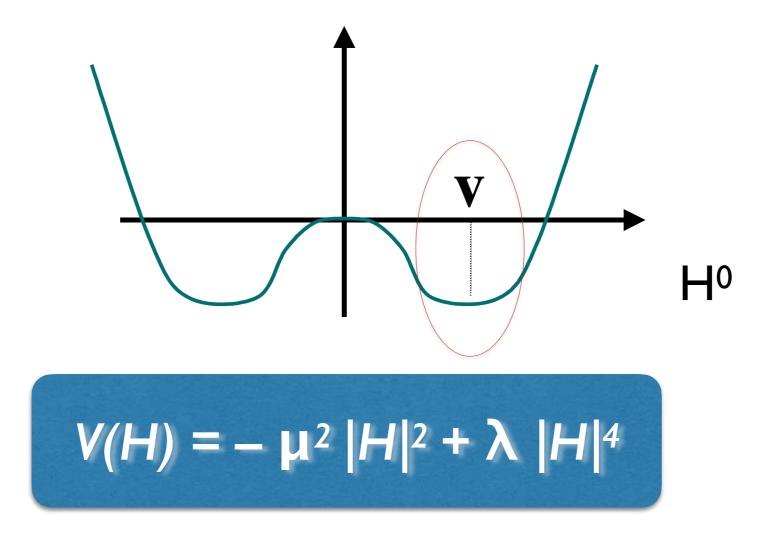
### LISHEP 2021, 6-9 July 2021

Michelangelo L. Mangano Theory Department, CERN, Geneva



# The open questions in HEP

### • Data driven:


- DM
- Neutrino masses
- Matter vs antimatter asymmetry
- Dark energy
- ...

### • Theory driven:

- The hierarchy problem and naturalness
- The flavour problem (origin of fermion families, mass/mixing pattern)
- Quantum gravity
- Origin of inflation
- ...

We have no guarantees as to where answers to these questions will come from, and what are the experiments that will eventually answer them.

### But there is one question that can only be addressed by colliders, and future collider efforts must focus on its thorough exploration



# Where does this come from?

- The search for the origin of the Higgs and EW symmetry breaking is justified independently of prejudice on the relevance of theoretical puzzles like the hierarchy problem
- It is reasonable to expect that the dynamics underlying the Higgs phenomenon sits nearby the EW scale, justifying the yet unfulfilled hope that new physics should be seen by LHC...
- .. thus many theoretical ideas are emerging, postponing to much higher energies or to alternative scenarios the framework to understand the origin of the weak scale
- The detailed experimental investigation of Higgs properties remains nevertheless a sine qua non condition to make progress no matter what is our bias

The importance of the in-depth exploration of the Higgs properties was acknowledged by the 2020 update of the European Strategy for Particle Physics:

> "An electron-positron Higgs factory is the highest-priority next collider"

- The precision measurement of Higgs properties must be a guaranteed deliverable of all future colliders
- Whether the measurements will challenge or confirm the SM properties, these measurements are a key ingredient in exploration of physics beyond the SM.
- Should they show deviations from the SM, the hint to BSM will be explicit, and the correlations among the various deviations will guide the interpretation of their origin
- Should they agree with the SM, the more accurate the measurements, the more constraining their power in identifying the microscopic origin of possible BSM effects observed in other parts of the programme
  - The LEP precision measurements are still today an essential constraint in evaluating BSM models proposed whenever some anomaly is detected in the data

# Other important open issues on the Higgs sector

- Is the Higgs the only (fundamental?) scalar field, or are there other Higgslike states (e.g. H<sup>±</sup>, A<sup>0</sup>, H<sup>±±</sup>, ..., EW-singlets, ....) ?
  - Do all SM families get their mass from the **<u>same</u>** Higgs field?
  - Do I<sub>3</sub>=1/2 fermions (up-type quarks) get their mass from the <u>same</u> Higgs field as I<sub>3</sub>=-1/2 fermions (down-type quarks and charged leptons)?
  - Do Higgs couplings conserve flavour?  $H \rightarrow \mu \tau$ ?  $H \rightarrow e \tau$ ?  $t \rightarrow Hc$ ?
- Is there a deep reason for the apparent metastability of the Higgs vacuum?
- Is there a relation among Higgs/EWSB, baryogenesis, Dark Matter, inflation?
- What happens at the EW phase transition (PT) during the Big Bang?
  - what's the order of the phase transition?
  - are the conditions realized to allow EW baryogenesis?
  - the Higgs discovery does not close the book, it opens a whole new chapter of exploration, based on precise measurements of its properties, which can only rely on a future generation of colliders

7

Key question for the future developments of HEP: Why don't we see the new physics we expected to be present around the TeV scale ?

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

These two scenarios are a priori equally likely, but they impact in different ways the future of HEP, and thus the assessment of the physics potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:

- precision  $\Rightarrow$  higher statistics, better detectors and experimental conditions
- sensitivity (to elusive signatures)  $\Rightarrow$  ditto
- •extended energy/mass reach ⇒ higher energy

From ESPP 2020:

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electronpositron Higgs and electroweak factory as a possible first stage. "

### **Answer to these challenges: Future Circular Collider**

LHC

http://cern.ch/fcc

Switzerland

France

### 100km tunnel

FCC 100 km circumference

FCC-ee: e+e- @ 91, 160, 240, 365 GeV
FCC-hh: pp @ 100 TeV
FCC-eh: ебодек ръотек @ 3.5 TeV

# What the future <u>circular</u> collider can offer

### • <u>Guaranteed deliverables</u>:

 study of <u>Higgs</u> and <u>top</u> quark properties, and exploration of <u>EWSB</u> phenomena, with the best possible precision and sensitivity

### • Exploration potential:

- exploit both direct (large Q<sup>2</sup>) and indirect (precision) probes
- enhanced mass reach for direct exploration at 100 TeV
  - E.g. match the mass scales for new physics that could be exposed via indirect precision measurements in the EW and Higgs sector
- <u>Provide firm Yes/No answers</u> to questions like:
  - is there a TeV-scale solution to the hierarchy problem?
  - is DM a thermal WIMP?
  - could the cosmological EW phase transition have been 1st order?
  - could baryogenesis have taken place during the EW phase transition?
  - could neutrino masses have their origin at the TeV scale?

• ...

# **Event rates: examples**

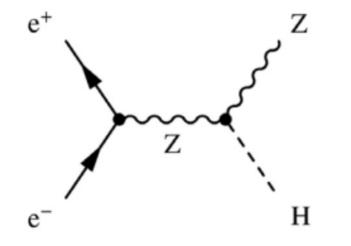
| FCC-ee | н                      | Z                       | W                          | t                       | т(←Z)                     | b(←Z)                    | c(←Z)                   |
|--------|------------------------|-------------------------|----------------------------|-------------------------|---------------------------|--------------------------|-------------------------|
|        | <b>10</b> <sup>6</sup> | 5 10 <sup>12</sup>      | 10 <sup>8</sup>            | <b>10</b> <sup>6</sup>  | <b>3 10</b> <sup>11</sup> | 1.5 10 <sup>12</sup>     | <b>10</b> <sup>12</sup> |
|        |                        |                         |                            |                         |                           |                          |                         |
|        |                        |                         |                            |                         |                           |                          |                         |
| FCC-hh |                        | н                       | b                          | t                       | W(*                       | ←t) <b>т</b> (           | ←W←t)                   |
|        | 2.5                    | <b>10</b> <sup>10</sup> | <b>10</b> <sup>17</sup>    | <b>10</b> <sup>12</sup> | 10                        | 12                       | <b>10</b> <sup>11</sup> |
|        |                        |                         |                            |                         |                           |                          |                         |
|        |                        |                         |                            |                         |                           |                          |                         |
| FCC-e  | h                      |                         | н                          |                         |                           | t                        |                         |
|        |                        |                         | <b>2.5</b> 10 <sup>6</sup> |                         |                           | <b>2</b> 10 <sup>7</sup> |                         |
|        |                        |                         |                            |                         |                           |                          |                         |

(1) guaranteed deliverables: Higgs properties

#### https://arxiv.org/pdf/1708.08912.pdf

|                | Model                           | $b\overline{b}$ | $c\overline{c}$ | gg    | WW   | au	au | ZZ   | $\gamma\gamma$ | $\mu\mu$ |
|----------------|---------------------------------|-----------------|-----------------|-------|------|-------|------|----------------|----------|
| 1              | MSSM [40]                       | +4.8            | -0.8            | - 0.8 | -0.2 | +0.4  | -0.5 | +0.1           | +0.3     |
| 2              | Type II 2HD $[42]$              | +10.1           | -0.2            | -0.2  | 0.0  | +9.8  | 0.0  | +0.1           | +9.8     |
| 3              | Type X 2HD $[42]$               | -0.2            | -0.2            | -0.2  | 0.0  | +7.8  | 0.0  | 0.0            | +7.8     |
| 4              | Type Y 2HD $[42]$               | +10.1           | -0.2            | -0.2  | 0.0  | -0.2  | 0.0  | 0.1            | -0.2     |
| 5              | Composite Higgs [44]            | -6.4            | -6.4            | -6.4  | -2.1 | -6.4  | -2.1 | -2.1           | -6.4     |
| 6              | Little Higgs w. T-parity [45]   | 0.0             | 0.0             | -6.1  | -2.5 | 0.0   | -2.5 | -1.5           | 0.0      |
| $\overline{7}$ | Little Higgs w. T-parity $[46]$ | -7.8            | -4.6            | -3.5  | -1.5 | -7.8  | -1.5 | -1.0           | -7.8     |
| 8              | Higgs-Radion $[47]$             | -1.5            | - 1.5           | +10.  | -1.5 | -1.5  | -1.5 | -1.0           | -1.5     |
| 9              | Higgs Singlet [48]              | -3.5            | -3.5            | -3.5  | -3.5 | -3.5  | -3.5 | -3.5           | -3.5     |

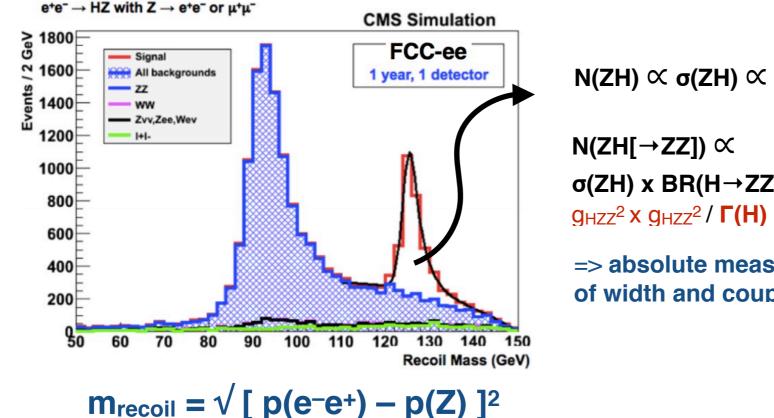
5 – 10 %


> 10%

NB: when the b coupling is modified, BR deviations are smaller than the square of the coupling deviation. Eg in model 5, the BR to b, c, tau, mu are practically SM-like

(sub)-% precision must be the goal to ensure 3-5σ evidence of deviations, and to cross-correlate coupling deviations across different channels

### <u>The absolutely unique power of $e^+e^- \rightarrow ZH$ (circular or linear):</u>


- the model independent absolute measurement of HZZ coupling, which allows the subsequent:
  - sub-% measurement of couplings to W, Z, b, T
  - % measurement of couplings to gluon and charm



 $p(H) = p(e^{-}e^{+}) - p(Z)$ 

 $= [p(e^-e^+) - p(Z)]^2$  peaks at m<sup>2</sup>(H)

reconstruct Higgs events independently of the Higgs decay mode!

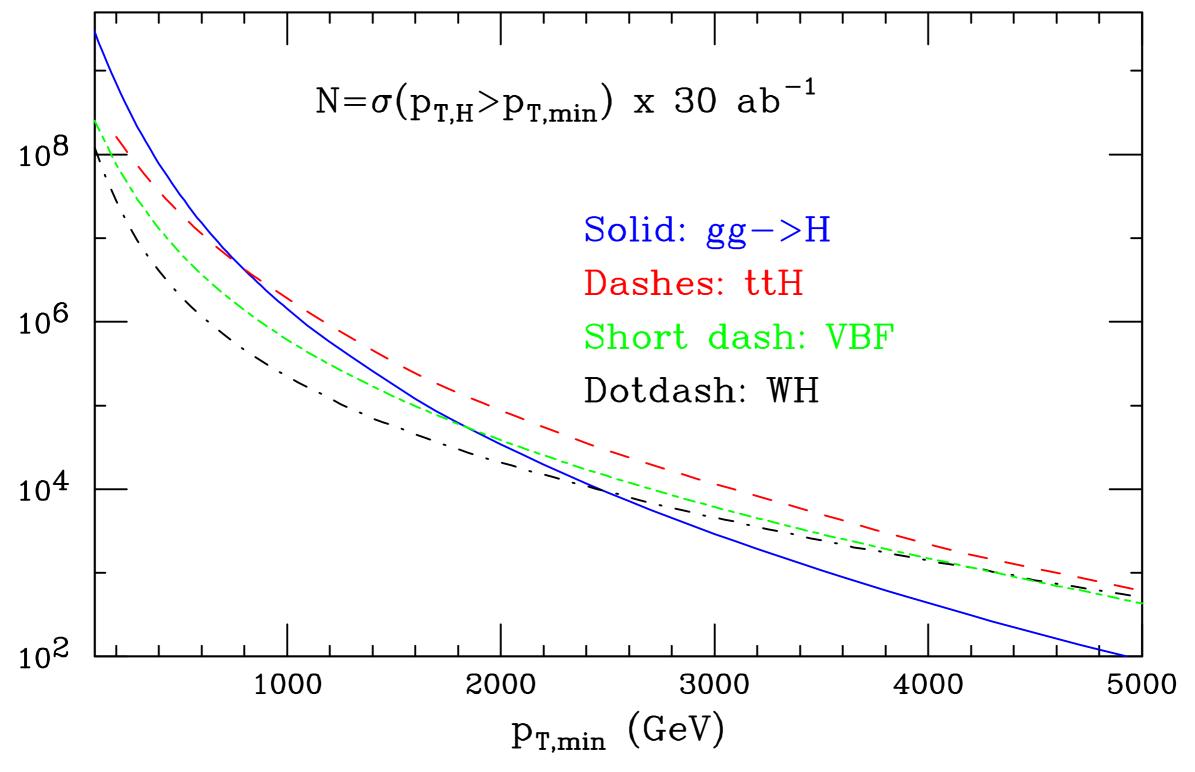


 $N(ZH) \propto \sigma(ZH) \propto g_{HZZ}^2$ 

 $\sigma$ (ZH) x BR(H $\rightarrow$ ZZ)  $\propto$ 

=> absolute measurement of width and couplings

### The absolutely unique power of pp $\rightarrow$ H+X:


- the extraordinary statistics that, complemented by the per-mille  $e^+e^-$  measurement of eg BR(H $\rightarrow$ ZZ\*), allows
  - the sub-% measurement of rarer decay modes
  - the  $\leq 5\%$  measurement of the Higgs trilinear selfcoupling
- the huge dynamic range (eg pt(H) up to several TeV), which allows to
  probe d>4 EFT operators up to scales of several TeV
  - search for multi-TeV resonances decaying to H, or extensions of the Higgs sector

|                  | gg→H                 | VBF                   | WH                    | ZH                    | ttH                   | HH                    |
|------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| N <sub>100</sub> | 24 x 10 <sup>9</sup> | 2.1 x 10 <sup>9</sup> | 4.6 x 10 <sup>8</sup> | 3.3 x 10 <sup>8</sup> | 9.6 x 10 <sup>8</sup> | 3.6 x 10 <sup>7</sup> |
| N100/N14         | 180                  | 170                   | 100                   | 110                   | 530                   | 390                   |

 $N_{100} = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1}$ 

 $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$ 

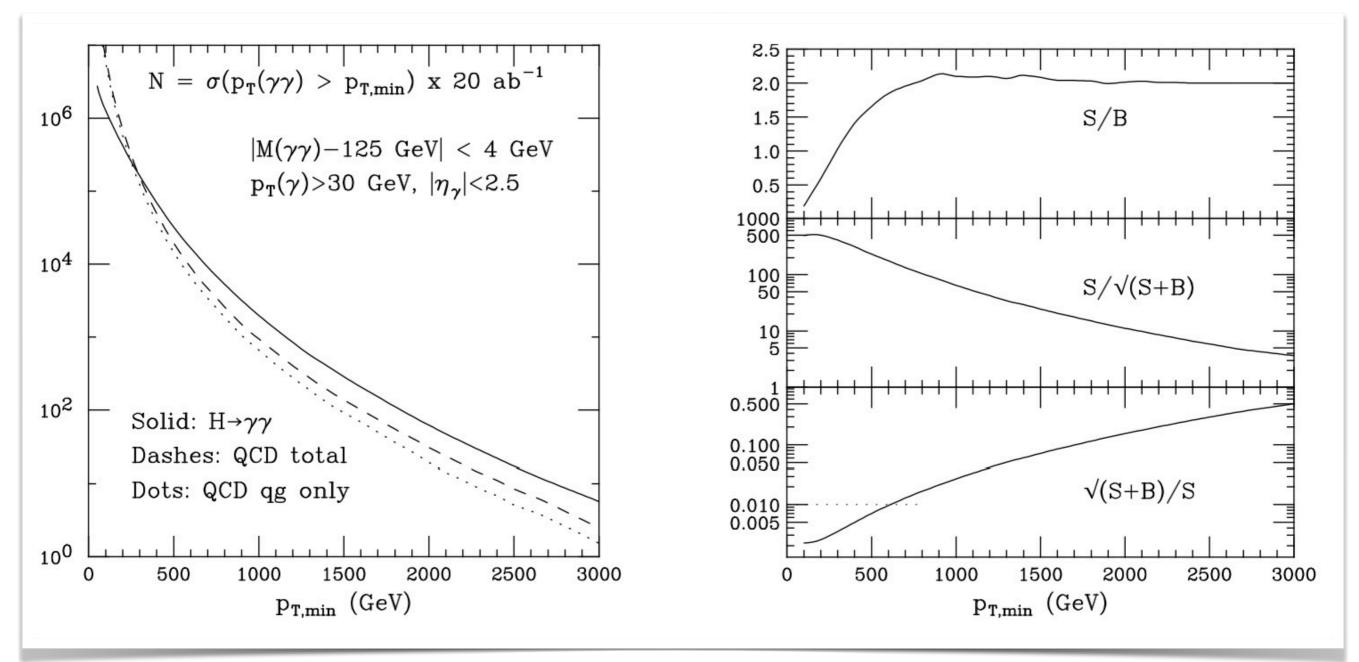
# H at large рт



- Hierarchy of production channels changes at large p<sub>T</sub>(H):
  - $\sigma(ttH) > \sigma(gg \rightarrow H)$  above 800 GeV
  - $\sigma(VBF) > \sigma(gg \rightarrow H)$  above 1800 GeV

# **Three kinematic regimes**

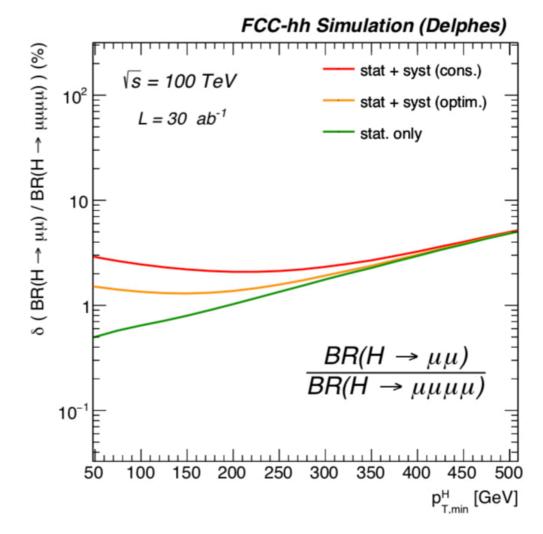
- Inclusive production,  $p_T > 0$ :
  - largest overall rates
  - most challenging experimentally:
    - triggers, backgrounds, pile-up  $\Rightarrow$  low efficiency, large systematics
  - $\blacksquare$  det simulations challenging, likely unreliable  $\Rightarrow$  regime not studied so far


### • <u>p⊤ ≳ 100 GeV :</u>

- stat uncertainty ~few × 10<sup>-3</sup> for  $H \rightarrow 4I, \gamma\gamma, ...$
- improved S/B, realistic trigger thresholds, reduced pile-up effects ?
- current det sim and HL-LHC extrapolations more robust
- ➡ focus of FCC CDR Higgs studies so far
- sweet-spot for precision measurements at the sub-% level

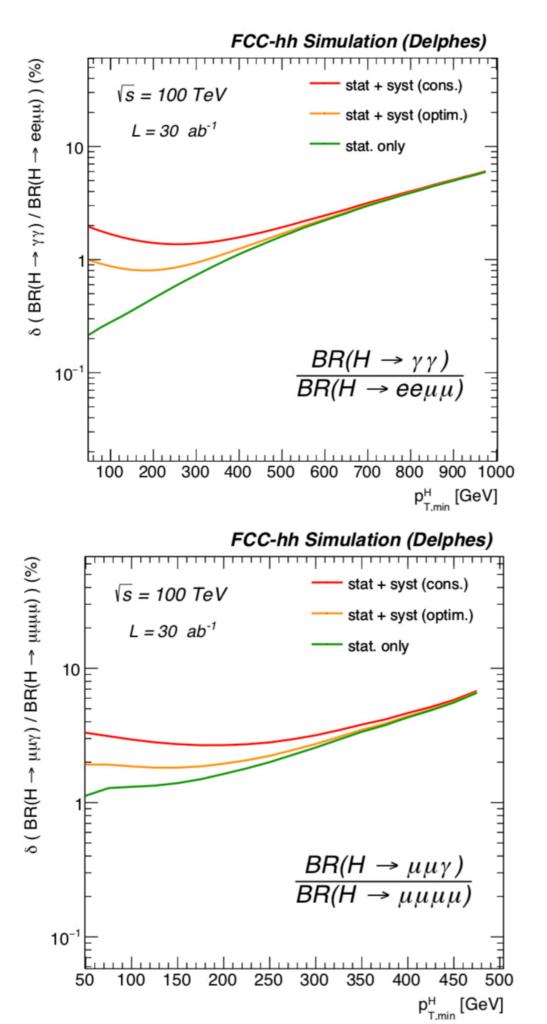
### • <u>p⊤ ≳ TeV :</u>

- stat uncertainty O(10%) up to 1.5 TeV (3 TeV) for  $H \rightarrow 4I$ ,  $\gamma\gamma$  ( $H \rightarrow bb$ )
- new opportunities for reduction of syst uncertainties (TH and EXP)
- different hierarchy of production processes
- indirect sensitivity to BSM effects at large Q<sup>2</sup> , complementary to that emerging from precision studies (eg decay BRs) at Q~m<sub>H</sub>


## $gg \rightarrow H \rightarrow \gamma \gamma$ at large $p_T$



| lacksquare | At LHC, S/B in the $H \rightarrow \gamma \gamma$ channel is O( few % ) |
|------------|------------------------------------------------------------------------|
|            |                                                                        |


- At FCC, for  $p_T(H)>300$  GeV, S/B~I
- Potentially accurate probe of the H pt spectrum up to large pt

| δ <sub>stat</sub> | р <sub>т,min</sub><br>(GeV) |
|-------------------|-----------------------------|
| 0.2%              | 100                         |
| 0.5%              | 400                         |
| 1%                | 600                         |
| 10%               | 1600                        |



# Normalize to BR(4I) from ee => sub-% precision for absolute couplings

**Future work:** explore in more depth data-based techniques, to <u>validate and</u> <u>then reduce</u> the systematics in these ratio measurements, possibly moving to lower pt's and higher stat

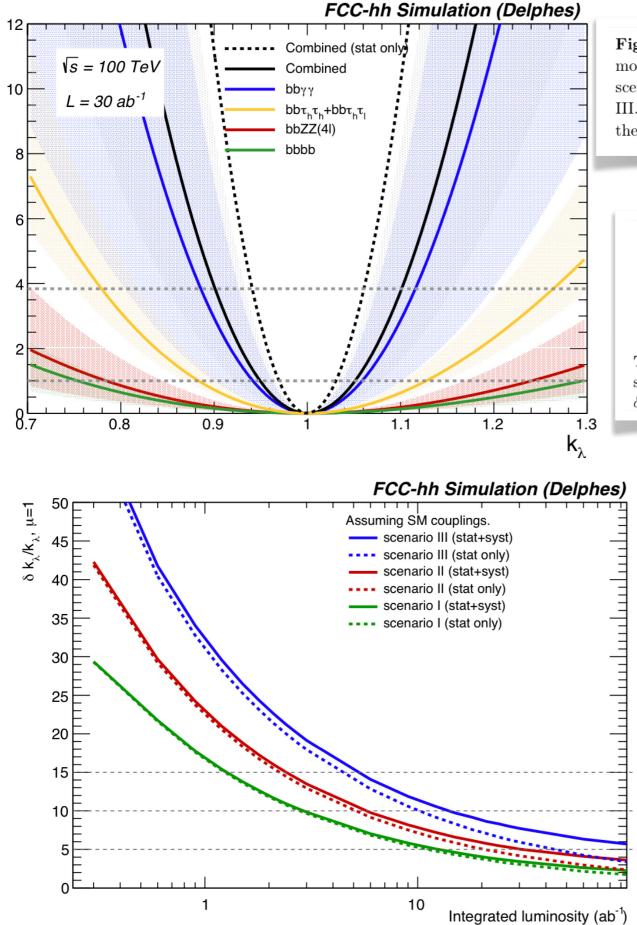


# Higgs couplings after FCC-ee / hh

|                                          | HL-LHC             | FCC-ee         | FCC-hh                            |
|------------------------------------------|--------------------|----------------|-----------------------------------|
| δΓΗ / ΓΗ (%)                             | SM                 | 1.3            | tbd                               |
| δg <sub>HZZ</sub> / g <sub>HZZ</sub> (%) | 1.5                | 0.17           | tbd                               |
| δg <sub>Hww</sub> / g <sub>Hww</sub> (%) | 1.7                | 0.43           | tbd                               |
| δд <sub>ньь</sub> / д <sub>ньь</sub> (%) | 3.7                | 0.61           | tbd                               |
| $\delta g_{Hcc} / g_{Hcc} (\%)$          | ~70                | 1.21           | tbd                               |
| δg <sub>Hgg</sub> / g <sub>Hgg</sub> (%) | 2.5 (gg->H)        | 1.01           | tbd                               |
| δg <sub>Hττ</sub> / g <sub>Hττ</sub> (%) | 1.9                | 0.74           | tbd                               |
| δg <sub>Hµµ</sub> / g <sub>Hµµ</sub> (%) | 4.3                | 9.0            | 0.65 (*)                          |
| δg <sub>Hγγ</sub> / g <sub>Hγγ</sub> (%) | 1.8                | 3.9            | 0.4 (*)                           |
| δg <sub>Htt</sub> / g <sub>Htt</sub> (%) | 3.4                | ~10 (indirect) | 0.95 (**)                         |
| δg <sub>HZγ</sub> / g <sub>HZγ</sub> (%) | 9.8                | —              | 0.9 (*)                           |
| δдннн / дннн (%)                         | 50                 | ~44 (indirect) | 5                                 |
| BR <sub>exo</sub> (95%CL)                | $BR_{inv} < 2.5\%$ | < 1%           | <b>BR</b> <sub>inv</sub> < 0.025% |

#### NB

BR(H→ZY,YY) ~O(10<sup>-3</sup>) ⇒ O(10<sup>7</sup>) evts for  $\Delta_{\text{stat}}$ ~% BR(H→µµ) ~O(10<sup>-4</sup>) ⇒ O(10<sup>8</sup>) evts for  $\Delta_{\text{stat}}$ ~%




pp collider is essential to beat the % target, since no proposed ee collider can produce more than O(10<sup>6</sup>) H's

\* From BR ratios wrt B(H $\rightarrow$ ZZ\*) @ FCC-ee

\*\* From pp $\rightarrow$ ttH / pp $\rightarrow$ ttZ, using B(H $\rightarrow$ bb) and ttZ EW coupling @ FCC-ee

### The Higgs self-coupling at FCC-hh https://arxiv.org/abs/2004.03505



-2∆ In L

Figure 13. Expected negative log-Likelihood scan as a function of the trilinear self-coupling modifier  $\kappa_{\lambda} = \lambda_3 / \lambda_3^{\text{SM}}$  in all channels, and their combination. The solid line corresponds to the scenario II for systematic uncertainties. The band boundaries represent respectively scenario I and III. The dashed line represents the sensitivity obtained including statistical uncertainties only, under the assumptions of scenario I.

Syst scenarios

|                             | @68% CL     | scenario I | scenario II | scenario III |
|-----------------------------|-------------|------------|-------------|--------------|
| S                           | stat only   | 2.2        | 2.8         | 3.7          |
| $\delta_{\mu}$              | stat + syst | 2.4        | 3.5         | 5.1          |
| s                           | stat only   | 3.0        | 4.1         | 5.6          |
| $\delta_{\kappa_{\lambda}}$ | stat + syst | 3.4        | 5.1         | 7.8          |

**Table 7**. Combined expected precision at 68% CL on the di-Higgs production cross- and Higgs self coupling using all channels at the FCC-hh with  $\mathcal{L}_{int} = 30 \text{ ab}^{-1}$ . The symmetrized value  $\delta = (\delta^+ + \delta^-)/2$  is given in %.

- I. Target det performance: LHC Run 2 conditions
- II. Intermediate performance
- III. Conservative: extrapolated HL-LHC performance, with today's algo's (eg no timing, etc)

Expected precision on the Higgs self-coupling as a function of the integrated luminosity.

3-5 ab<sup>-1</sup> are sufficient to get below the 10% level

=> within the reach of the first 5yrs of FCC-hh running,

in the "low" luminosity / low pileup phase

=> compatible with the timescale for a similar precision measurement by CLIC @ 3 TeV

### Higgs as a BSM probe: precision vs dynamic reach

$$L = L_{SM} + \frac{1}{\Lambda^2} \sum_k \mathcal{O}_k + \cdots$$

$$O = |\langle f|L|i\rangle|^2 = O_{SM} \left[1 + O(\mu^2/\Lambda^2) + \cdots\right]$$

For H decays, or inclusive production,  $\mu \sim O(v, m_H)$ 

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \implies \text{precision probes large } \Lambda$$
  
e.g.  $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$ 

For H production off-shell or with large momentum transfer Q,  $\mu \sim O(Q)$ 

 $\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$   $\Rightarrow$  kinematic reach probes large  $\Lambda$  even if precision is low e.g.  $\delta O=15\%$  at Q=1 TeV  $\Rightarrow \Lambda\sim2.5$  TeV

Precision and extensive kinematic reach provide unique complementarity and redundancy, crucial to interpret possible SM deviations manifest in either of these observabes

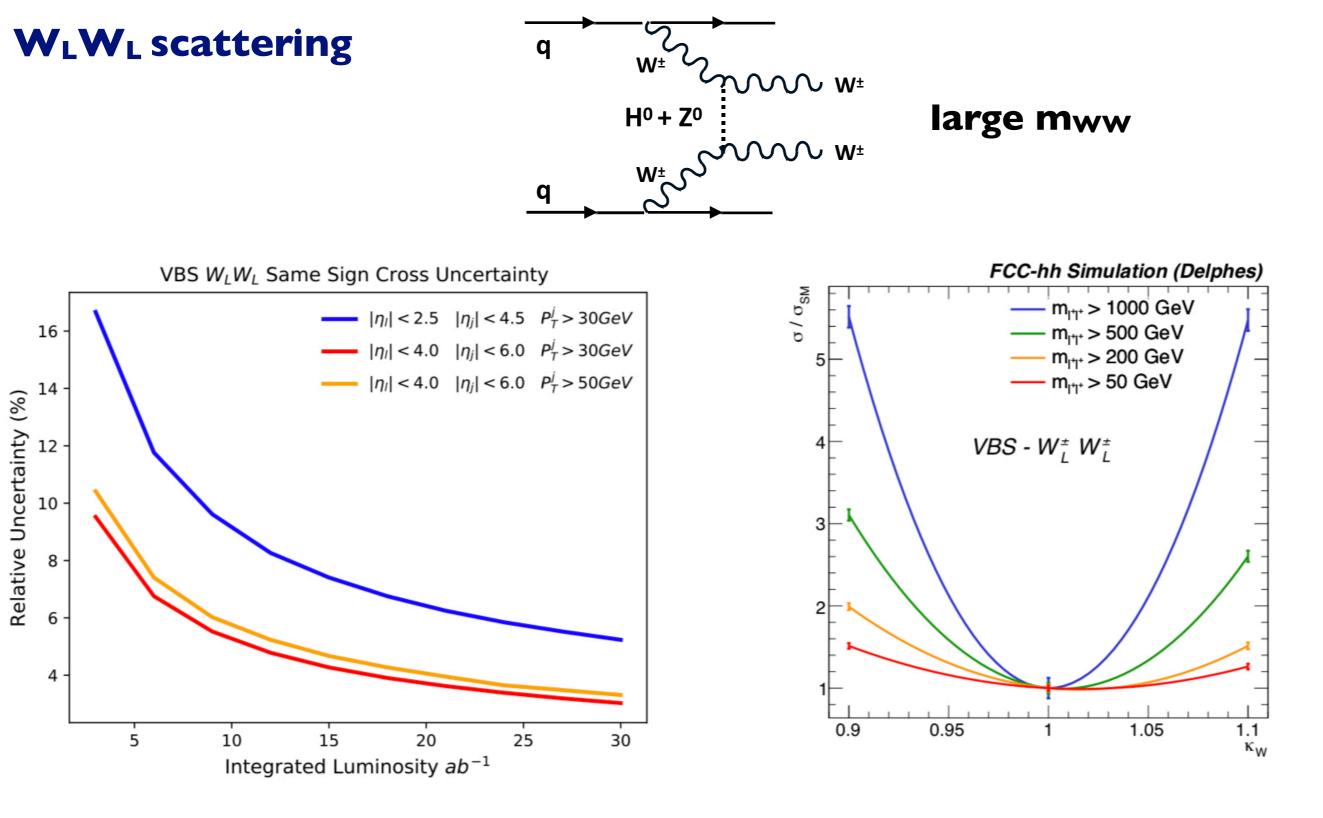


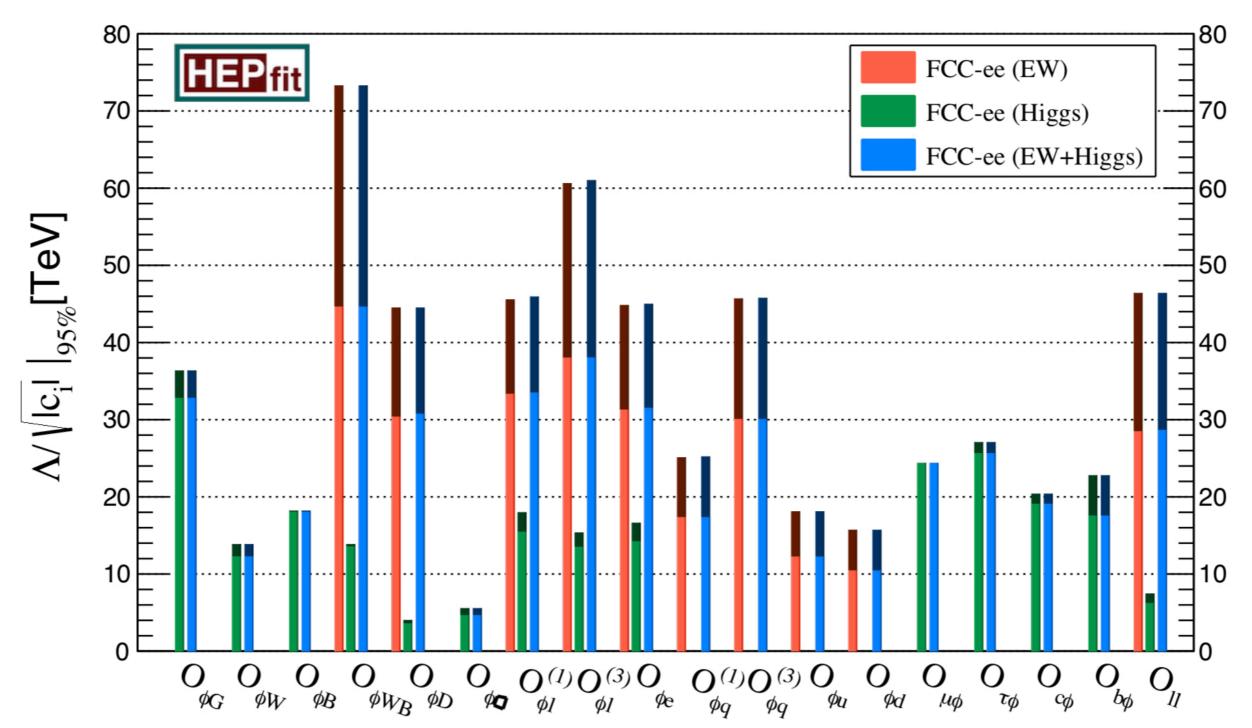

Table 4.5: Constraints on the HWW coupling modifier  $\kappa_W$  at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the  $W_L W_L \rightarrow HH$  process.

| $m_{l^+l^+}$ cut | > 50  GeV   | $> 200 { m ~GeV}$ | $> 500~{ m GeV}$ | $> 1000 { m ~GeV}$ | $\kappa_{-} - \frac{g_{HWW}}{g_{HWW}}$ |
|------------------|-------------|-------------------|------------------|--------------------|----------------------------------------|
| $\kappa_W \in$   | [0.98,1.05] | [0.99,1.04]       | [0.99,1.03]      | [0.98,1.02]        | $\kappa_W - g_{HWW}^{SM}$              |

### (I) guaranteed deliverables: EW observables

### The absolutely unique power of **Circular** e<sup>+</sup>e<sup>-</sup>:

| e+e- → Z           | e+e- → WW       | т(←Z)                     | b(←Z)                | c(←Z)                   |
|--------------------|-----------------|---------------------------|----------------------|-------------------------|
| 5 10 <sup>12</sup> | 10 <sup>8</sup> | <b>3 10</b> <sup>11</sup> | 1.5 10 <sup>12</sup> | <b>10</b> <sup>12</sup> |


=> O(10<sup>5</sup>) larger statistics than LEP at the Z peak and WW threshold

|       | Observable                                       | present value ± error | FCC-ee stat. | FCC-ee syst. |
|-------|--------------------------------------------------|-----------------------|--------------|--------------|
|       | m <sub>Z</sub> (keV)                             | 91186700±2200         | 5            | 100          |
|       | $\Gamma_{\rm Z}$ (keV)                           | 2495200±2300          | 8            | 100          |
|       | $R_l^Z$ (×10 <sup>3</sup> )                      | $20767\pm25$          | 0.06         | 0.2-1.0      |
|       | $\alpha_{s} \ (m_{Z}) \ (\times 10^{4})$         | 1196±30               | 0.1          | 0.4-1.6      |
|       | $R_{b}$ (×10 <sup>6</sup> )                      | 216290±660            | 0.3          | <60          |
|       | $\sigma_{\rm had}^{0}$ (×10 <sup>3</sup> ) (nb)  | 41541±37              | 0.1          | 4            |
|       | $N_{\nu}$ (×10 <sup>3</sup> )                    | 2991±7                | 0.005        | 1            |
|       | $\sin^2 \theta_W^{eff}$ (×10 <sup>6</sup> )      | 231480±160            | 3            | 2-5          |
| eters | $1/\alpha_{QED}(m_Z)$ (×10 <sup>3</sup> )        | 128952±14             | 4            | Small        |
| e     | $A_{\rm FB}^{b,0}$ (×10 <sup>4</sup> )           | 992±16                | 0.02         | 1-3          |
|       | $A_{\rm FB}^{{\rm pol}, \tau}$ (×104)            | 1498±49               | 0.15         | <2           |
|       | m <sub>W</sub> (MeV)                             | 80350±15              | 0.6          | 0.3          |
|       | $\Gamma_{\rm W}$ (MeV)                           | 2085±42               | 1.5          | 0.3          |
|       | $\alpha_s$ (m <sub>W</sub> ) (×10 <sup>4</sup> ) | $1170 \pm 420$        | 3            | Small        |
|       | $N_{\nu}(\times 10^3)$                           | 2920±50               | 0.8          | Small        |
|       | m <sub>top</sub> (MeV)                           | $172740\pm500$        | 20           | Small        |
|       | $\Gamma_{\rm top}$ (MeV)                         | 1410±190              | 40           | Small        |
|       | $\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$   | 1.2±0.3               | 0.08         | Small        |
|       | ttZ couplings                                    | ±30%                  | 0.5 - 1.5%   | Small        |
|       |                                                  |                       |              |              |

## EW parameters @ FCC-ee

# (2) Direct discovery reach at high mass: the power of 100 TeV

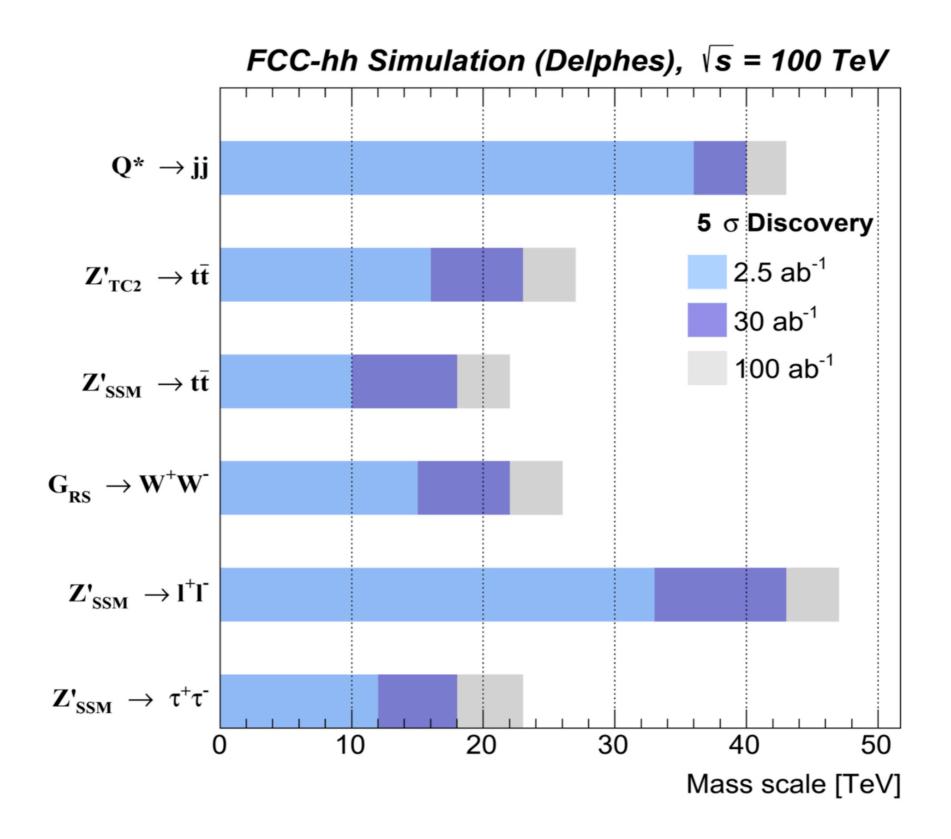
### **Global EFT fits to EW and H observables at FCC-ee**



Constraints on the coefficients of various EFT op's from a global fit of (i) EW observables, (ii) Higgs couplings and (iii) EW+Higgs combined. Darker shades of each color indicate the results neglecting all SM theory uncertainties.



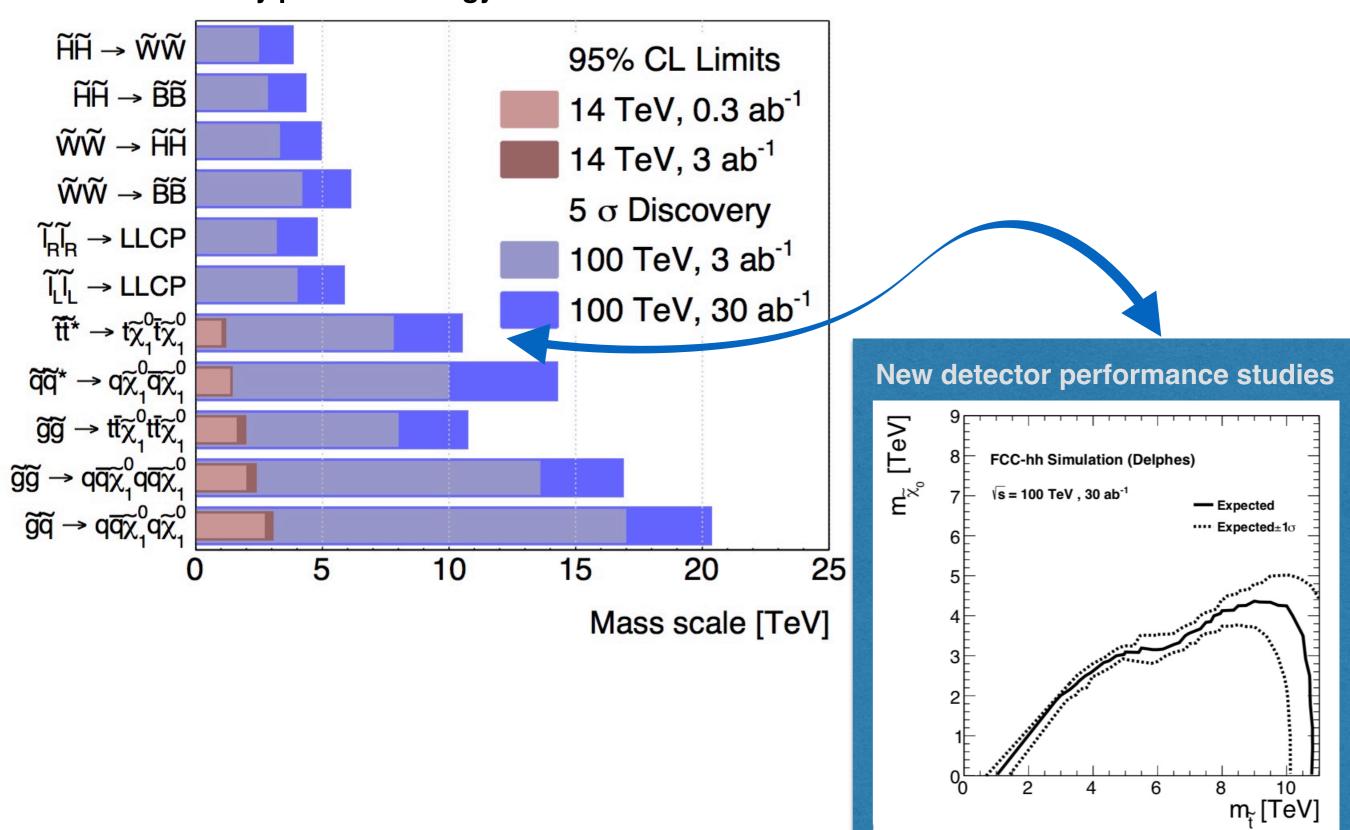
100 TeV is the appropriate CoM energy to directly search for new physics appearing indirectly through precision EW and H measurements at the future ee collider


#### ATLAS Preliminary

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

|                    | ATLAS SUSY Sear<br>Narch 2019                                                                                                                                                                                                                                        | 'ches'             | · - 95%                          | % CI                                 | L LO                 | wer Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                 | ATLAS Preliminary<br>$\sqrt{s} = 13 \text{ TeV}$             |     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|--------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----|
|                    | Model                                                                                                                                                                                                                                                                | 5                  | Signatur                         | e j                                  | f£ di [16-           | Masslimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                 | Reference                                                    |     |
|                    | $\hat{q}\hat{q}, \hat{q} \rightarrow \hat{q}\hat{t}_{1}^{0}$                                                                                                                                                                                                         | 0 a, p<br>mono-jet | 2-6 jets<br>1-3 jets             | $E_{\gamma}^{\rm triss}$             | 36.1<br>36.1         | ð [2x, 8x Digin] 0,9<br>ð [1x, 8x Digin] 0,43 0,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.55                                                                                                            | m(∂ <sup>0</sup> )<100 GeV<br>m(∂)-m(∂ <sup>0</sup> )=5 CeV                                                                                                                                                                     | 1712.00302<br>1711.00301                                     |     |
| Inclusive Searches | $33. S \rightarrow q \overline{q} \overline{r}_1^O$                                                                                                                                                                                                                  | 0 e, p             | 2-6 jets                         | $E_7^{\rm mins}$                     | \$6.1                | R Forbidden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95-1.6                                                                                                        | m(ℓ <sup>0</sup> )<200 Ce/V<br>m(ℓ <sup>0</sup> )=200 Ce/V                                                                                                                                                                      | 1712.02352<br>1712.02352                                     |     |
| e See              | <i>13. 2→490</i> 00 <sup>2</sup> 1                                                                                                                                                                                                                                   | 3 г., р<br>сс, рр  | 4 jats<br>2 jets                 | $E_7^{min}$                          | 36.1<br>36.1         | 2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.85                                                                                                            | m(ℓ) <sup>4</sup>  <800GeV<br>m(ℓ)-m(ℓ) <sup>4</sup> )=50GeV                                                                                                                                                                    | 1706.00701<br>1805.11381                                     |     |
| Arishe             | £ġ, g→qqWZŽ <sup>0</sup>                                                                                                                                                                                                                                             | 0 e, p<br>3 e, p   | 7-11 jets<br>4 jeta              | $E_7^{min}$                          | 36.1<br>36.1         | 8<br>2 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8                                                                                                             | m(8)<br>m(3)-m(7) (=200 GeV                                                                                                                                                                                                     | 1706.02794<br>1706.08731                                     |     |
| pul                | λ3. <i>δ→u</i> ? <sup>0</sup> 1                                                                                                                                                                                                                                      | 0-1 e, µ<br>3 e, µ | 3 <i>b</i><br>4 jets             | $E_7^{\rm mix}$                      | 79.8<br>36.1         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.25                                                                                                            | m(i <sup>0</sup> )<200 GeV<br>m(i)-200 GeV                                                                                                                                                                                      | ATLAS-CONF-2018-041<br>1706.03731                            |     |
|                    | $\hat{h}_1 \hat{h}_1, \hat{h}_1 {\rightarrow} \lambda \hat{t}_1^2 / d\hat{t}_1^+$                                                                                                                                                                                    |                    | Multiple<br>Multiple<br>Multiple |                                      | 36.1<br>36.1<br>36.1 | δ1         Forbidden         0.9           δ1         Forbidden         0.58-0.82           δ1         Forbidden         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m( $\vec{t}_1^2$ )=300<br>m( $\vec{t}_2^2$ )=300 GeV/                                                           | $\Pi(\hat{t}_{1}^{0})=300 \text{ GeV}, BR(\partial \hat{t}_{1}^{0})=1$<br>$GeV, BR(\partial \hat{t}_{1}^{0})=BR(\partial \hat{t}_{1}^{0})=0.5$<br>$\Pi(\hat{t}_{1}^{0})=300 \text{ GeV}, BR(\partial \hat{t}_{1}^{0})=1$        | 1708.09266, 1711.03301<br>1708.08286<br>1706.08731           |     |
| arks               | $\hat{b}_1 \hat{b}_1, \hat{b}_1 \rightarrow b \hat{\ell}_2^0 \rightarrow b h \hat{\ell}_1^0$                                                                                                                                                                         | $0 \ e_s \mu$      | 6.0                              | $E_7^{\min}$                         | 130                  | λ <sub>1</sub> Forbidden<br>δ <sub>1</sub> 0.23-0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | $(1 = 130 \text{ GeV}, m(\tilde{t}^0) = 100 \text{ GeV})$<br>$(\tilde{t}^0_1) = 130 \text{ GeV}, m(\tilde{t}^0_1) = 0 \text{ GeV})$                                                                                             | SUSY-2018-31<br>SUSY-2018-01                                 |     |
| n, squ             | $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow Wh \tilde{\xi}_1^0 \text{ at } \tilde{i}_1^0$<br>$\tilde{i}_1 \tilde{i}_1, Well-Tempered LSP$                                                                                                                      | $0\text{-}2e,\mu$  | 0-2 jets/1-2<br>Multiple         | $b E_7^{miss}$                       | 86.1<br>86.1         | λ <sub>1</sub> 1./<br>λ <sub>1</sub> 0.49-0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | $m(\hat{\xi}_1^n)=1$ GeV<br>$\chi_m(\hat{\xi}_1^n)=m(\hat{\xi}_1^n)=5$ GeV, $\hat{z}_1 \approx \hat{z}_2$                                                                                                                       | 1506.00010, 1706.04100, 1711.11520<br>1709.04150, 1711.11520 |     |
| <sup>d</sup> ge    | $\vec{s}_1 \vec{s}_1, \vec{s}_1 \rightarrow \vec{\tau}_1 h v, \vec{\tau}_1 \rightarrow \pi \vec{G}$                                                                                                                                                                  |                    | ,τ 2 jets'i λ                    |                                      | 36.1                 | II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.16                                                                                                            | m(71)=600 GeV                                                                                                                                                                                                                   | 1809.10178                                                   |     |
| 80                 | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{t}_1^0 / \tilde{c} \tilde{v}, \tilde{c} \rightarrow c \tilde{t}_1^0$                                                                                                                                      | $0 < \mu$          | 2.0                              | $E_7^{\rm mino}$                     | 36.1                 | 2 0.85<br>Ž <sub>1</sub> 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | m(?))=0GeV<br>m(2)=60GeV<br>m(2,2)-m(2))=5GeV                                                                                                                                                                                   | 1805.01649<br>1805.01649                                     |     |
|                    | $\tilde{s}_2 \tilde{s}_2, \tilde{s}_2 \rightarrow \tilde{s}_1 + h$                                                                                                                                                                                                   | 0 г.,р<br>1-2 г.,µ | 4 b                              | Enites<br>Enites                     | 36.1<br>36.1         | 7, 0.43<br>7, 0.32-0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m(\tilde{t}_{i}^{2})=0$                                                                                        | $m(\tilde{t}_1, \tilde{t}) \cdot m(\tilde{t}_1^2) = 5 \text{ GeV}$<br>$0 \text{ GeV}, m(\tilde{t}_1) \cdot m(\tilde{t}_1^2) = 180 \text{ GeV}$                                                                                  | 1711.00001<br>1700.00906                                     |     |
|                    | $\tilde{x}_1^* \tilde{x}_2^0$ via $\overline{w}Z$                                                                                                                                                                                                                    | 2-3 e.µ<br>se.µµ   | 21                               | Etiis<br>Etiis                       | 56.1<br>36.1         | 并示形 <sup>3</sup><br>式示形 <sup>3</sup> 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | $m(\tilde{\xi}_1^3)=0$<br>$m(\tilde{\xi}_1^2)=10$ CeV                                                                                                                                                                           | 1403.5294, 1505.02293<br>1712.001 (9                         |     |
|                    | $\tilde{E}_{1}^{+}\tilde{E}_{1}^{+}$ via W W                                                                                                                                                                                                                         | Z e, µ             | 21                               | $E_7^{\rm min}$                      | 139                  | 3 <sup>±</sup> 042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | $m(\hat{x}_1) - m(x_1) = 10$ GeV<br>$m(\hat{x}_1^2) = 0$                                                                                                                                                                        | ATLAS-CONF-2019-008                                          |     |
|                    | λ <sup>1</sup> <sub>1</sub> λ <sup>1</sup> <sub>2</sub> via We                                                                                                                                                                                                       | 0-1 <i>4.</i> ,µ   | 2 b                              | Erra R                               | 86.1                 | $\tilde{k}_{1}^{a}/\tilde{k}_{2}^{b}$ 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | $m(\tilde{\ell}_1^0)=0$                                                                                                                                                                                                         | 1812.09432                                                   |     |
| EW Meet            | $\mathcal{X}_{1}^{*}\mathcal{X}_{1}^{*}$ via $\tilde{b}_{1}/\tilde{r}$<br>$\mathcal{X}_{1}^{*}\mathcal{X}_{1}^{*}/\mathcal{X}_{2}^{*}, \mathcal{X}_{1}^{*} \rightarrow \tilde{r}_{1}v(\tau\tilde{r}), \mathcal{X}_{2}^{0} \rightarrow \tilde{r}_{1}v(\tau\tilde{r})$ | 2 <, µ<br>2 +      |                                  | $E_{\gamma}^{\rm miss}$              | 139<br>56.1          | $\frac{x_1^4}{\hat{x}_1^4 K_2^3}$<br>$\frac{x_1^2 K_2^3}{\hat{x}_1^2 K_2^3}$<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $m(\tilde{r}_{1}^{i})$ -                                                                                        | $m(\tilde{t}, \tilde{t}) = 0.5(m(\tilde{t}_1^+) + m(\tilde{t}_1^+))$<br>= 0, $m(\tilde{t}, \tilde{t}) = 0.5(m(\tilde{t}_1^+) + m(\tilde{t}_1^+))$<br>= 24, $m(\tilde{t}, \tilde{t}) = 0.5(m(\tilde{t}_1^+) + m(\tilde{t}_1^+))$ | ATLAS-CONF-2018-008<br>1708.07875<br>1708.07875              |     |
|                    | $\tilde{t}_{1,\mathbf{R}}\tilde{t}_{1,\mathbf{R}}, \tilde{t} \rightarrow t \hat{x}_{\perp}^{2}$                                                                                                                                                                      | 2 e, p<br>2 e, p   | 0 jets<br>≥ 1                    | $E_7^{\rm miss}$<br>$E_7^{\rm miss}$ | 139<br>36.1          | 2 0.7<br>2 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng ping ping a                                                                                                  | $m(\xi_1^2)=0$<br>$m(\xi_1^2)=0$<br>$m(\xi_1^2)=5$ GeV                                                                                                                                                                          | ATLAS-CONF-2019-008<br>1712.08119                            |     |
|                    | $\hat{H}\hat{H}, \hat{H} \rightarrow hG/ZG$                                                                                                                                                                                                                          | 0 е. µ<br>4 е. µ   | ≥3 ē<br>0 jets                   | Eyin<br>Eyin                         | 36.1<br>36.1         | R 0.13-0.23 0.29-0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | $BR(\vec{k}_1^2 \rightarrow \Lambda \vec{G}) \approx 1$<br>$BR(\vec{k}_1^2 \rightarrow Z \vec{G}) \approx 1$                                                                                                                    | 1604,0000                                                    |     |
| -lived             | $\operatorname{Direct} \mathcal{R}_1^+ \mathcal{R}_1^-$ proof., long-lived $\mathcal{R}_1^+$                                                                                                                                                                         | Disapp. 14         | k 1 jet                          | $E_7^{\rm miles}$                    | 36.1                 | $\hat{X}_{1}^{\pm} = 0.46$<br>$\hat{X}_{1}^{\pm} = 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Pure Wins<br>Pure Higgsins                                                                                                                                                                                                      | 1712.02118<br>ATL PHYS PUB 2017-019                          |     |
| Long-              | Stable ĝ R-hadron<br>Metestable ĝ R-hadron, ĝ⇔ge∛1                                                                                                                                                                                                                   |                    | Muttiple<br>Muttiple             |                                      | 36.1<br>36.1         | ž<br>∦ [r(ĝ) =10 ns. 0.2 ns]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                             | $m(\tilde{\xi}_{a}^{2})$ =100 GeV                                                                                                                                                                                               | 1902.01636.1605.04095<br>1710.04901.1803.04095               |     |
|                    | $\Box FV \; pp \!\rightarrow\! \delta_{\tau} + X_{\tau} \vartheta_{\tau} \!\rightarrow\! \epsilon \mu / \sigma \tau / \mu \tau$                                                                                                                                      | querjut            |                                  |                                      | 3.2                  | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.9                                                                                                             | $\lambda_{311}^{*}$ =0.11, $\lambda_{122/129,229}$ =0.07                                                                                                                                                                        | 1607.08079                                                   |     |
|                    | $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{2} \rightarrow WW/ZUUUvv$<br>$\tilde{\chi}_{2}^{0}, \tilde{\chi}_{-}^{0} aqg \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qaq$                                                          | 4 c.µ              | 0 jets<br>4-6 large- <i>R</i> ji | E <sup>rcito</sup><br>ets            | 36.1<br>36.1         | $\hat{x}_1^+/\hat{x}_2^- = [A_{13} \neq 0, A_{12} \neq 0]$ 0.02<br>$\hat{x}_1^- [n(\hat{x}_1^2) + 200 \text{ GeV}]$ (100 GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.33                                                                                                            | $m(\tilde{k}_{n}^{2})=100 \text{ GeV}$<br>Large $\mathcal{X}_{n}^{2}$                                                                                                                                                           | 1004.00502<br>1804.00568                                     |     |
| ΡР                 |                                                                                                                                                                                                                                                                      |                    | Multiple                         |                                      | 36.1                 | $\frac{1}{k} = [k_{112}^{\mu}/2a/4, 2a/5]$ 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 2.0                                                                                                           | $m(\tilde{\mathcal{R}}_1^0)$ -200 GeV, birs-like                                                                                                                                                                                | ATLAS-CONF-2016-019                                          |     |
| ΩC                 | $\hat{x}, \hat{t} \rightarrow \hat{x}_{1}^{0}, \hat{x}_{1}^{0} \rightarrow tbx$<br>$\hat{t}_{1}\hat{x}_{1}, \hat{t}_{1} \rightarrow bx$                                                                                                                              |                    | Multiple<br>2 jets + 2 /         | in .                                 | 86.1<br>86.7         | $\bar{x} = [\frac{1}{20}] = 20 - 5, 10 - 2[ 0.56 1. 0.56 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.42 0.61 1. 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                               | m(l <sup>0</sup> )⇒200 GeV, bino-lika                                                                                                                                                                                           | ATLAS-CONF-2015-009<br>1710.07171                            |     |
|                    | $\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow g \ell$                                                                                                                                                                                                            | 2 e.μ<br>1 μ       | 2 #<br>DV                        |                                      | 36.1<br>135          | $\frac{h}{h} = \frac{1}{20} =$ | 0.4-1.45<br>1.6                                                                                                 | BD(7)-Hgr(=100%, eccel                                                                                                                                                                                                          | 1710.05544<br>ATLAS-CONF-2019-006                            |     |
|                    | •                                                                                                                                                                                                                                                                    |                    |                                  |                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                 |                                                              |     |
| 'Only              | a selection of the available mas                                                                                                                                                                                                                                     | s limits on        | new state                        | 95 OF                                | 1                    | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 . N                                                                                                           | lass scale [TeV]                                                                                                                                                                                                                | Contraction of the second second                             |     |
| simi               | nomena is shown. Many of the li<br>silfied models, c.f. refs. for the au                                                                                                                                                                                             | ssumptions         | ased on<br>s made.               |                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                 |                                                              |     |
|                    |                                                                                                                                                                                                                                                                      |                    |                                  |                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | @14 TeV                                                                                                         |                                                                                                                                                                                                                                 | 0.4-1.4                                                      | 15  |
| ~                  |                                                                                                                                                                                                                                                                      |                    |                                  |                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The second se |                                                                                                                                                                                                                                 | 1.0                                                          | 1.6 |
|                    | Good rule of thumb to estimate FCC discovery reach at high mass: scale up by ~6x the LHC potential                                                                                                                                                                   |                    |                                  |                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                 |                                                              |     |
| E                  | olicitly verif                                                                                                                                                                                                                                                       | ied i              | in m                             | an                                   | v e                  | kamples, which helped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | THE REAL PROPERTY.                                                                                                                                                                                                              | 7                                                            |     |
|                    | etting detecto                                                                                                                                                                                                                                                       |                    |                                  |                                      | -                    | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                               |                                                                                                                                                                                                                                 | @100 Te <sup>v</sup>                                         | V   |
|                    |                                                                                                                                                                                                                                                                      |                    |                                  |                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                 |                                                              | V   |

29


### s-channel resonances



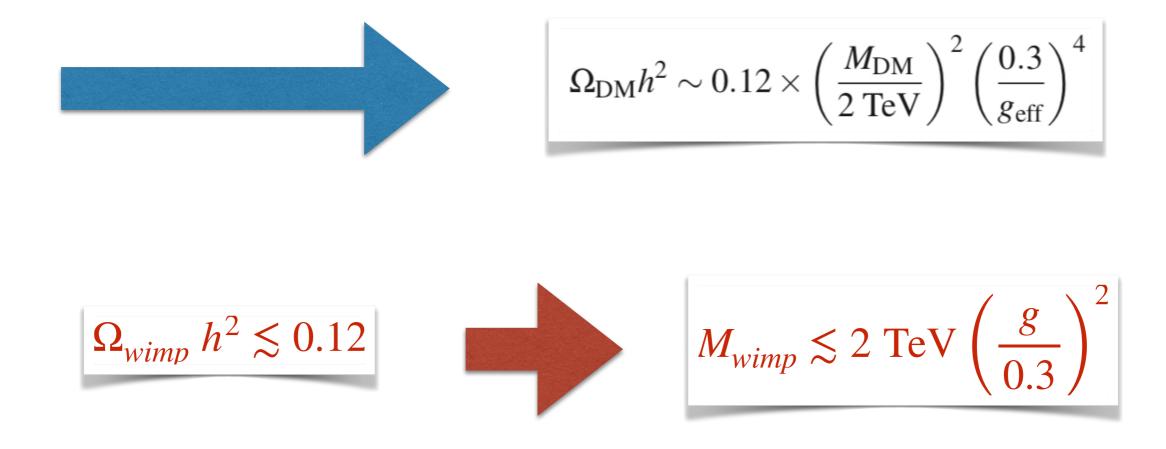
FCC-hh reach ~ 6 x HL-LHC reach

## SUSY reach at 100 TeV

Early phenomenology studies



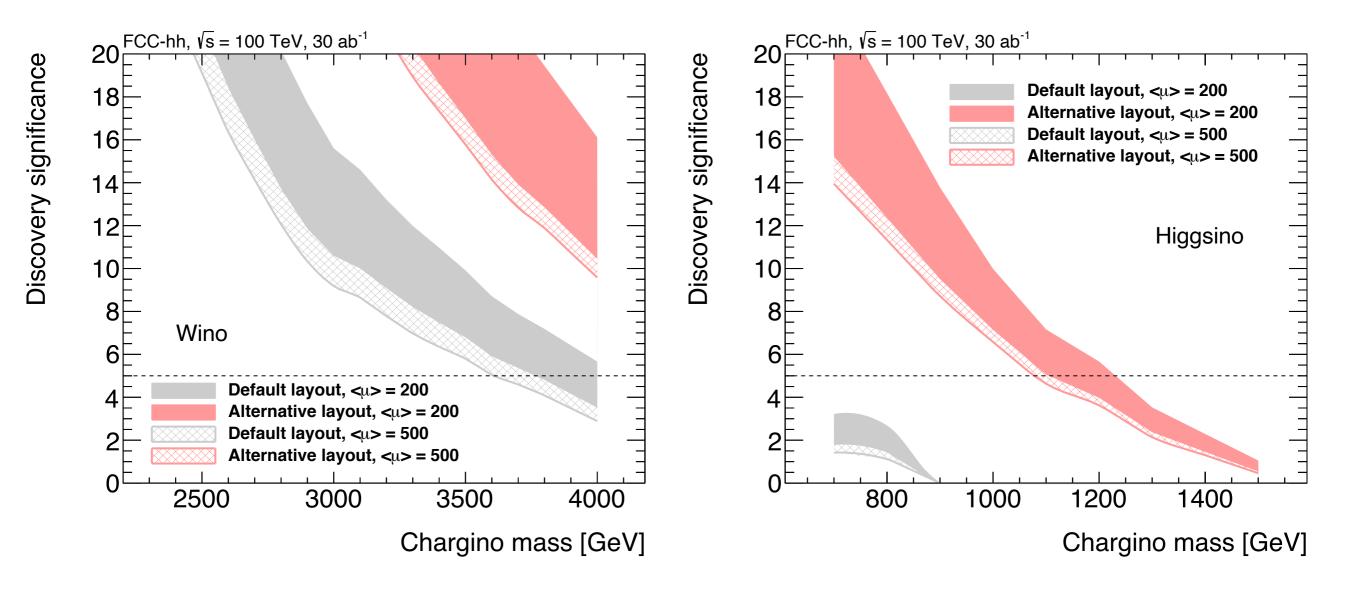
# (3) The potential for yes/no answers to important questions


# WIMP DM theoretical constraints

For particles held in equilibrium by pair creation and annihilation processes, ( $\chi \ \chi \leftrightarrow SM$ )

$$\Omega_{\rm DM} h^2 \sim rac{10^9 {
m GeV}^{-1}}{M_{
m pl}} rac{1}{\langle \sigma v 
angle}$$

For a particle annihilating through processes which do not involve any larger mass scales:


 $\langle \sigma v \rangle \sim g_{\rm eff}^4 / M_{\rm DM}^2$ 



K. Terashi, R. Sawada, M. Saito, and S. Asai, *Search for WIMPs with disappearing track signatures at the FCC-hh*, (Oct, 2018) . https://cds.cern.ch/record/2642474.

### DM WIMP searches in the most elusive, compressed scenarios:

### **Disappearing charged track analyses** (at ~full pileup)



=> coverage beyond the upper limit of the thermal WIMP mass range for both higgsinos and winos !!



# Not covered

- Countless studies of discovery potential for multiple BSM scenarios, from SUSY to heavy neutrinos, from very low masses to very high masses, LLPs, DM, etcetcetc, at FCC-ee, FCC-hh and FCC-eh
- Sensitivity studies to SM deviations in the properties of top quarks, flavour physics in Z decays: huge event rates offer unique opportunities, that cannot be matched elsewhere

 Operations with heavy ions: new domains open up at 100 TeV in the study of high-T/high-density QCD. Broaden the targets, the deliverables, extend the base of potential users, and increase the support beyond the energy frontier community

# **Final remarks**

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- The exptl program possible at a future collider facility, combining a versatile high-luminosity e<sup>+</sup>e<sup>-</sup> circular collider, with a follow-up pp collider in the 100 TeV range, offers unmatchable breadth and diversity: concrete, compelling and indispensable Higgs & SM measurements enrich a unique direct & indirect discovery potential
- The unique feature of a circular ee + pp collider is the possibility to match the indirect high-mass-scale sensitivity of precision measurements to the direct search potential at large mass
- The next 5-6 years, before the next review of the European Strategy for Particle Physics, will be critical to reach the scientific consensus and political support required to move forward

### Additional material: recent reports on Future Circular Colliders

#### • FCC CDR:

- Vol.1: Physics Opportunities (CERN-ACC-2018-0056) <u>http://cern.ch/go/Nqx7</u>
- Vol.2: The Lepton Machine (CERN-ACC-2018-0057) <a href="http://cern.ch/go/7DH9">http://cern.ch/go/7DH9</a>
- Vol.3: The Hadron Machine (CERN-ACC-2018-0058), <u>http://cern.ch/go/Xrg6</u>
- Vol.4: High-Energy LHC (CERN-ACC-2018-0059) <u>http://cern.ch/go/S9Gq</u>
- "Physics at 100 TeV", CERN Yellow Report: <a href="https://arxiv.org/abs/1710.06353">https://arxiv.org/abs/1710.06353</a>
- CEPC CDR: Physics and Detectors