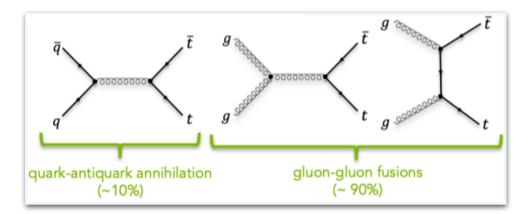
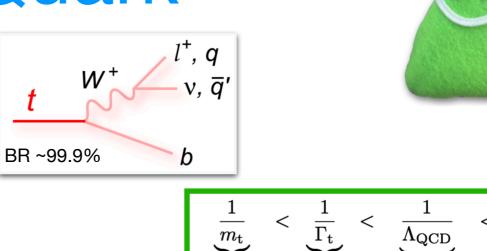


Top measurements from CMS

Giulia Negro on behalf of the CMS Collaboration


LISHEP2021 - SESSION C 7 July 2021



giulia.negro@cern.ch

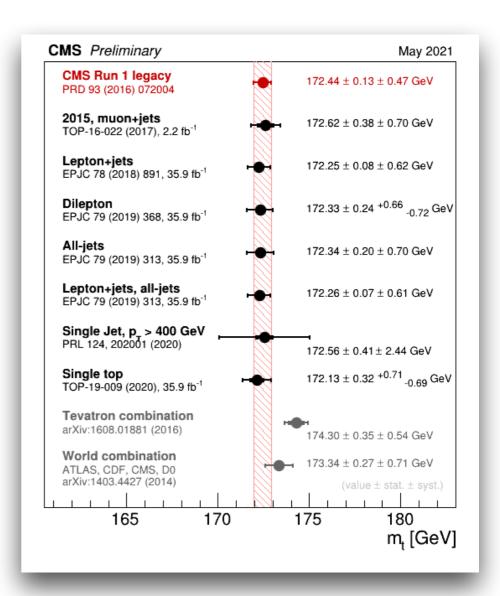
The Top Quark

- Heaviest elementary particle discovered so far
- Extremely short lifetime → bare quark properties
- Large Yukawa coupling to Higgs boson → important for EW symmetry breaking
- Spin information preserved in the angular distribution of its decay products → ideal candidate for spin measurements
- Studies of its properties provide crucial info to:
 - test internal consistency of SM
 - search for new phenomena (BSM physics)
- Top quark pairs production:
 - dominated by gluon fusion (~90%) @LHC
 - constraint of fundamental SM parameters (e.g. PDF, α_S , mtpole)
- Single top production:
 - constraint of EWK sector of SM (direct sensitivity to V_{tb})

production

 10^{-27} s

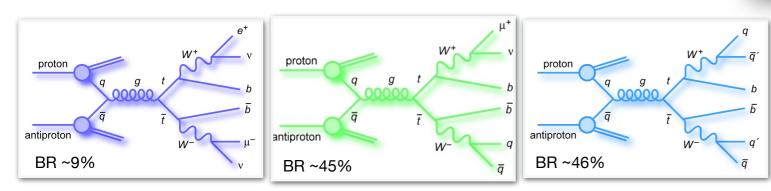
lifetime


 10^{-25} s

 $\begin{array}{c} {\rm hadronization} \\ {\bf 10^{-24}\ s} \end{array}$

 $rac{m_{
m t}}{\Lambda^2}$

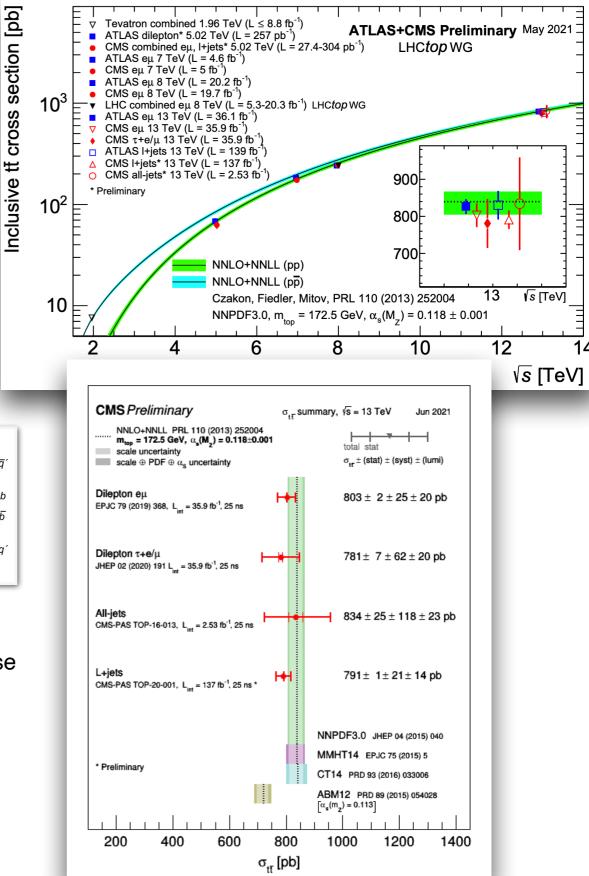
spin-flip


 10^{-21}

2

Top quark pair production

- Many measurements performed at 7, 8 and 13 TeV
 - impressive agreement with predictions
- Inclusive production cross sections can be calculated up to NNLO+NNLL in QCD:
 - test of perturbative QCD
- Differential cross sections can be used to test fixed-order predictions and MC generators:
 - indirect search for new physics (e.g. EFT framework)
- 3 main investigation channels:

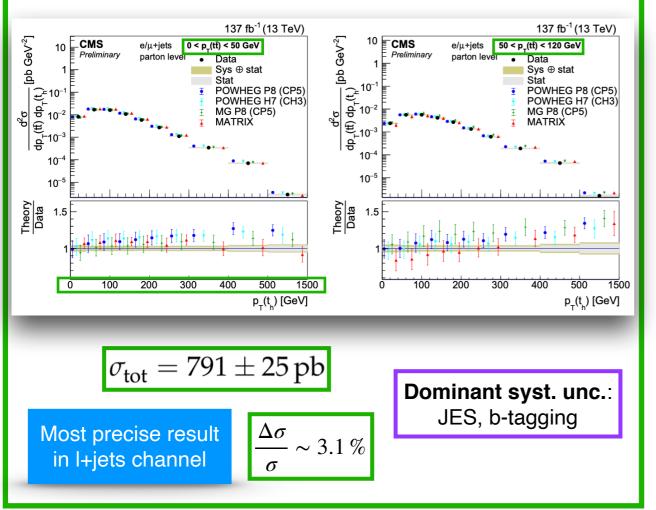

dilepton cleanest signature but small BR

lepton+jets compromise between signal statistic & bkg contamination

full hadronic significantly less precise (large multijet bkg)

З

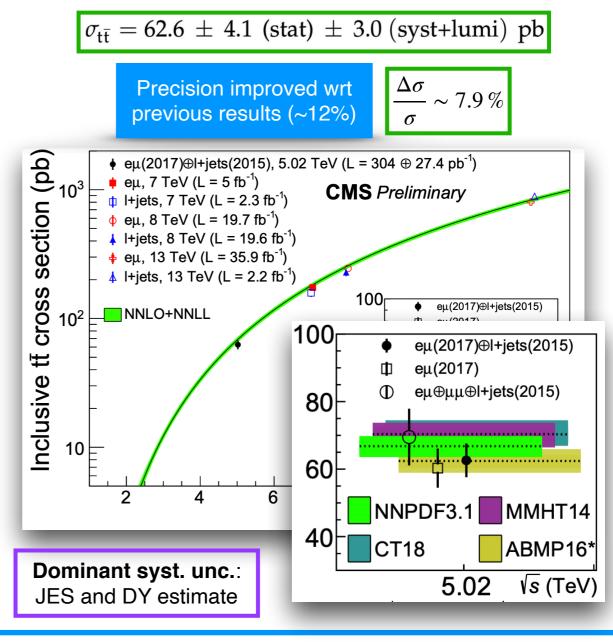
Dominant syst. unc.: $t\bar{t}$ modeling, objects efficiencies and calibrations, bkg estimates, luminosity ($\sim 2\%$)


14

$t\bar{t}$: inclusive & differential

<u>CMS-PAS-TOP-20-001</u>

Full Run2 data


- First combined fit of resolved and boosted topology in I+jets channel
- Boosted top identified with NN approach
- Profiled nuisance parameters
 - significant reduction of uncertainties
- Observed softer top pT spectrum wrt predictions
 - improved description with NNLO

CMS-PAS-TOP-20-004

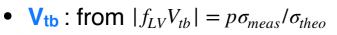
Small dataset @5.02 TeV

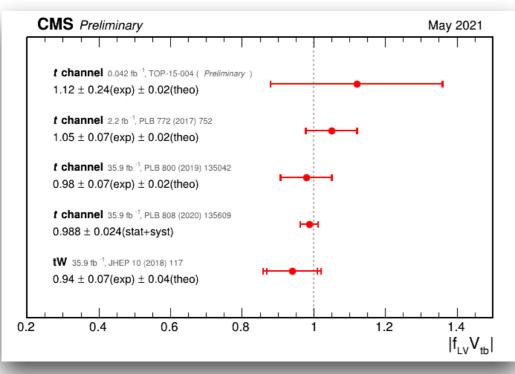
- Event count in eµ channel (2017) combined with measurement in I+jets channel (2015)
 - both limited by statistical uncertainty
 - good agreement with NNLO + NNLL prediction

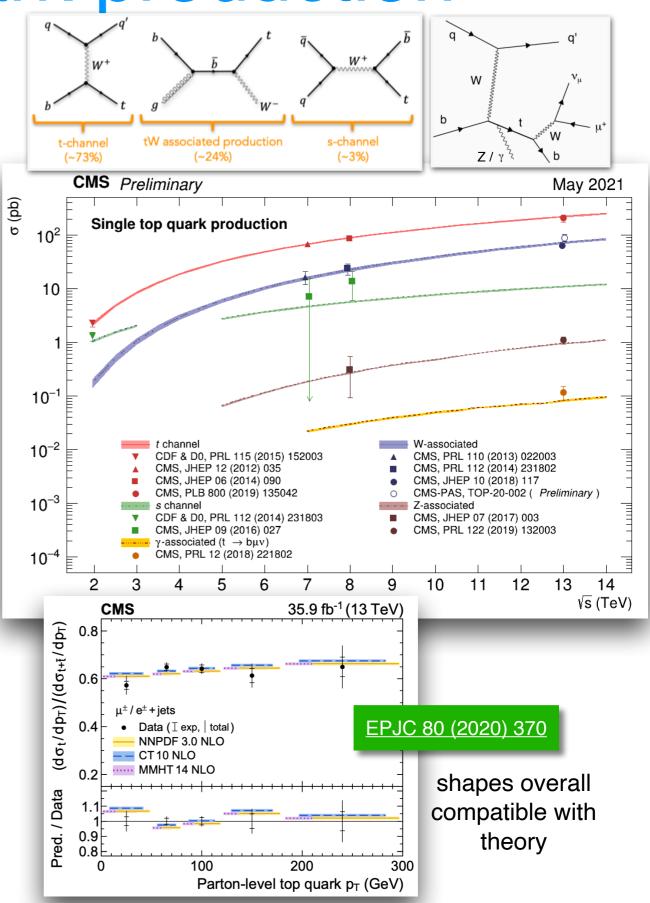
Single top quark production

5

PLB 800 (2020) 135042

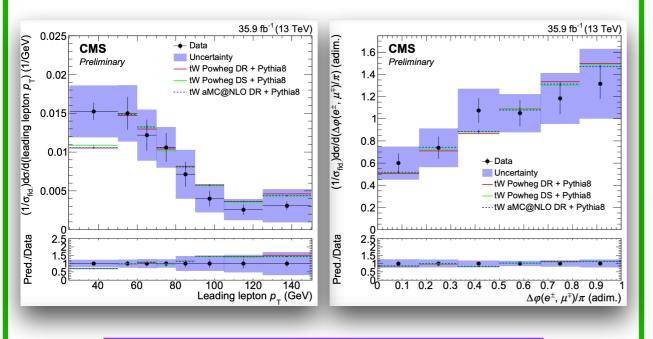

- Many measurements performed at 7,8 and 13 TeV
 - impressively in agreement with predictions
 - 3 main investigation channels
- Used to measure different parameters, e.g.:
 - charge ratio: improvement of precision (3.0%) wrt 2015 analysis (12.9%)


 $R_{t-ch} = 1.68 \pm 0.02$ (stat.) ± 0.05 (syst.)


 spin asymmetry: estimated from differential distribution of polarisation angle

 A_{μ} A_{e} $A_{\mu+e}$ EPJC 80 (2020) 370Central values0.4030.4460.440

in agreement with SM predictions: 0.436



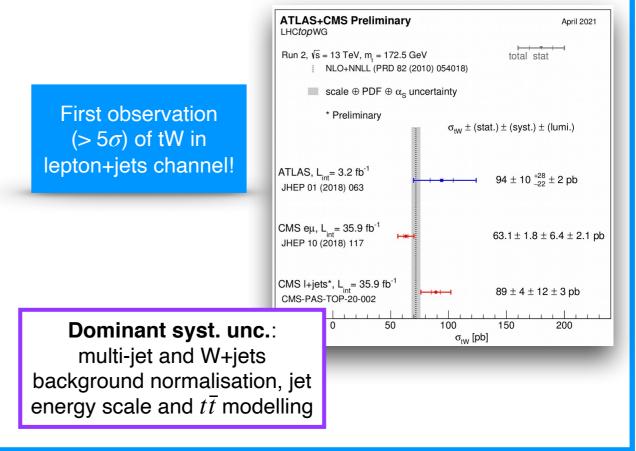
Single top: tW channel

<u>CMS-PAS-TOP-19-003</u>

2016 data

- Differential cross section in dilepton (e μ) events
- Cut & count analysis:
 - signal extraction performed by subtracting bkg (estimated through MC simulations)
- Absolute and normalised results at particle level in fair agreement with POWHEG and MADGRAPH5_aMC@NLO predictions

Dominant syst. unc.: jet reconstruction and theoretical modeling, driven by overwhelming $t\bar{t}$ background


CMS-PAS-TOP-20-002

2016 data

- Inclusive cross section in lepton+jets channel
- Binned likelihood fit on BDT discriminants
- Measured cross-section in agreement with SM predictions within 2σ :

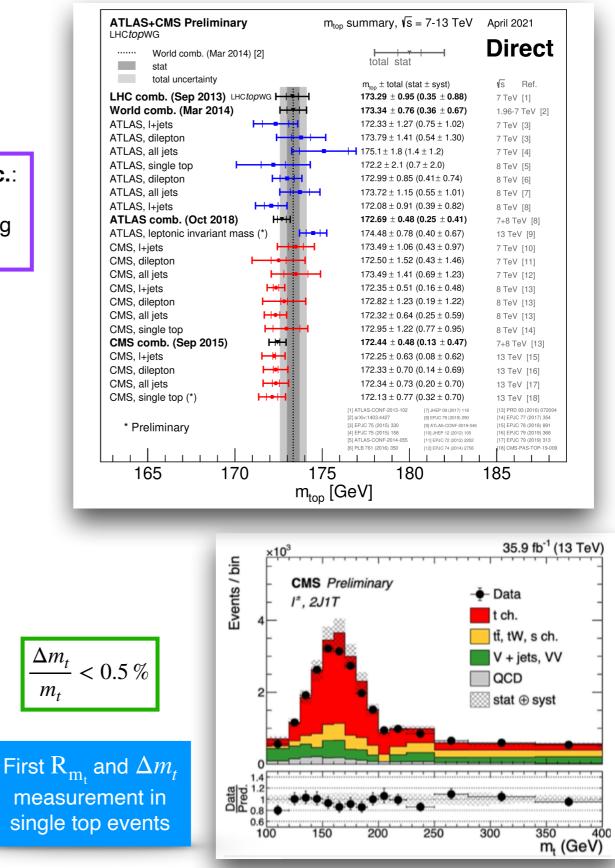
 $\sigma_{tW} = 89 \pm 4 \text{ (stat.)} \pm 12 \text{ (syst.) pb}$

Top mass: direct measurements

- From kinematic reconstruction of invariant mass of top quark decay products
 - data compared to MC simulations with different input values of mt
- Precision (~ 500 MeV) improved with combined measurements → 0.28% with ATLAS & CMS combination

Dominant syst. unc.: jet energy scale calibration, b-tagging and modeling

CMS-PAS-TOP-19-009 2


2016 data

- Mass from single top t-channel in lepton + jets events
 - multivariate technique to increase signal purity
 - simultaneous ML fit to $ln(m_t)$ distributions
 - combined and separate measurement of top and antitop quark mass → stringent test of CPT invariance: no violation observed

 $m_{\rm t} = 172.13 \pm 0.32 \,({
m stat} + {
m prof}) \,{}^{+0.69}_{-0.70} \,({
m syst}) \,\, {
m GeV} = 172.13 {}^{+0.76}_{-0.77} \,\, {
m GeV}$

$$R_{m_{t}} = \frac{m_{\tilde{t}}}{m_{t}} = 0.995 \pm 0.004 \,(\text{stat} + \text{prof}) \,{}^{+0.002}_{-0.004} \,(\text{syst}) = 0.995 \,{}^{+0.005}_{-0.006}$$

 $\Delta m_{\rm t} = m_{\rm t} - m_{\rm \bar{t}} = 0.83 \pm 0.69 \,({\rm stat} + {\rm prof}) \,{}^{+0.35}_{-0.74} \,({\rm syst}) \,\, {\rm GeV} = 0.83 \,{}^{+0.77}_{-1.01} \,\, {\rm GeV}$

Top mass: indirect measurements

m_{top} from cross-section measurements

200

400

600

800

1000

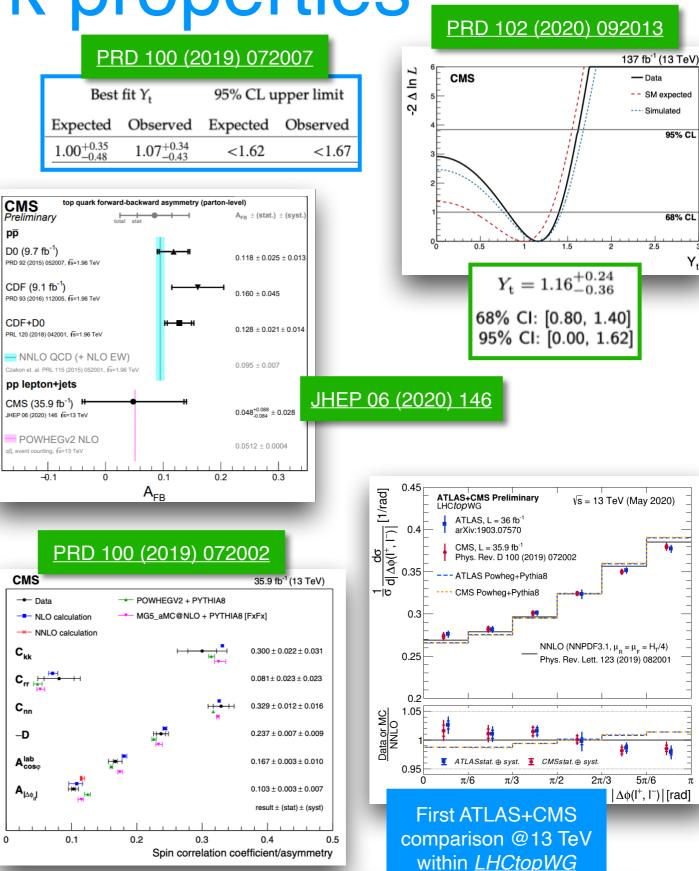
μ [GeV]

ATLAS+CMS Preliminary LHC*top*WG Sep 2019 From inclusive/differential cross-sections in a well $m_{top} \pm tot (stat \pm syst \pm theo)$ Ref total stat defined renormalization scheme (pole, MS) σ(tt̄) inclusive, NNLO+NNLL 172.9 +2.5 ATLAS. 7+8 TeV [1] 173.8 +1.7 CMS. 7+8 TeV [2] Dominant syst. unc.: 169.9 $^{+1.9}_{-2.1}$ (0.1 ± 1.5 $^{+1.2}_{-1.5}$) CMS, 13 TeV [3] PDFs and higher order corrections 173.1 +2.0 ATLAS, 13 TeV [4] σ(tī+1j) differential, NLO 173.7 $^{+2.3}_{-2.1}$ (1.5 ± 1.4 $^{+1.0}_{-0.5}$) ATLAS, 7 TeV [5] 169.9 $^{+4.5}_{-3.7}$ (1.1 $^{+2.5}_{-3.1}$ $^{+3.6}_{-1.6}$) CMS, 8 TeV [6] • Simultaneous measurement of $\alpha_{\rm S}$, mtpole, PDFs at NLO $171.1 \begin{array}{c} +1.2 \\ -1.0 \end{array} (0.4 \pm 0.9 \begin{array}{c} +0.7 \\ -0.3 \end{array})$ ATLAS, 8 TeV [7] $\sigma(t\bar{t})$ n-differential, NLO from triple-differential cross sections in dilepton channel ATLAS, n=1, 8 TeV 173.2 ± 1.6 (0.9 ± 0.8 ± 1.2) [8] CMS, n=3, 13 TeV 170.9 ± 0.8 [9] $m_t^{pole} = 170.5 \pm 0.8 \,\text{GeV}$ EPJC 80 (2020) 658 mtop from top quark decay 1 EPJC 74 (2014) 3109 2] JHEP 08 (2016) 029 [6] CMS-PAS-TOP-13-006 [10] PRD 93 (2016) 072004 CMS, 7+8 TeV comb. [10] 31 EPJC 79 (2019) 368 [7] arXiv:1905.02302 (2019) [11] EP.IC 79 (2019) 290 ATLAS, 7+8 TeV comb. [11] ATLAS-CONF-2019-041 [8] FP.IC 77 (2017) 80 Δm_t Most precise 155 160 170 175 180 190 165 185 < 0.5 % m_{top} [GeV] determination of mtpole! 35.9 fb⁻¹ (13 TeV) m_{t} CMS - Data m_t = 169.5 GeV m_t = 172.5 GeV 0.03 $\overline{\alpha} \frac{1}{dm} \frac{d\alpha}{dm}$ ---- m, = 175.5 GeV Measurement of hadronic decays of boosted top quarks in lepton+jets channel: PRL 124 (2020) 202001 • m_t extracted from normalized $t\bar{t}$ cross section 0.01 as function of m_{jet}: $m_t = 172.6 \pm 2.5 \,\mathrm{GeV}$ PLB 803 (2020) 135263 Theory Data CMS 35.9 fb⁻¹ (13 TeV) 220 120 140 160 180 200 $m_t(\mu) \ / \ m_t(\mu_{ref})$ m_{iet} [GeV] • Running of top quark mass: 1.1 ABMP16 5 nlo PDF set = 476 GeV extracted by comparing NLO predictions to = m^{incl}(mt) = 163 GeV 1.05 differential cross section measured vs $m_{t\bar{t}}$ in eµ channel in agreement with prediction of QCD renormalization 0.95 First experimental group equations (1 loop RGE) NLO extraction from differential σ_{r} investigation! 0.9 Reference scale = μ no-running scenario excluded at > 95% C.L. NLO extraction from inclusive $\sigma_{,i}$ One-loop RGE, n = 5, $\alpha_{s}(m)$ = 0.1191 0.85

Top quark properties

0

9


- First analysis to measure Yukawa coupling with top pair production in lepton+jets channel (2016 data):
 - results in agreement with Full Run2 data measurement in dilepton channel
- First direct model-independent measurement ulletof CKM elements in single top t-channel

events

 $|V_{\rm tb}| > 0.970$ $|V_{\rm td}|^2 + |V_{\rm ts}|^2 < 0.057$

PLB 808 (2020) 135609

- First measurement @LHC of Forward-**Backward asymmetry:**
 - values consistent with SM expectations and in good agreement with previous measurements
- Spin correlations:
 - all distributions and extracted parameters in close agreement with SM predictions
 - tension between data and predictions in $\Delta \phi$
 - very good agreement between ATLAS and CMS data and main MC predictions

- Data

5π/6

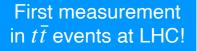
- - SM expected --- Simulated

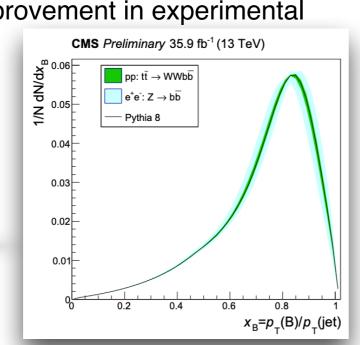
95% CL

68% CL

Y,

Other top quark properties

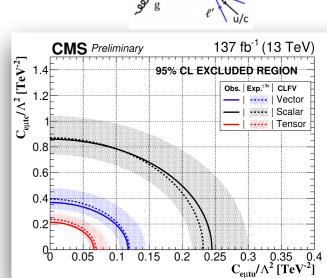

CMS-PAS-TOP-18-012


2016 data

- Measurement of b-fragmentation shape parameter in lepton + jets and dilepton decay channels
- Simultaneous fit to J/Ψ, muon tagged and untagged D⁰ samples
- Extraction of r_b from template fit to fragmentation proxy distributions x_b of parent b quark:

 $r_{
m b} = 0.858 \pm 0.037\,{
m (stat)} \pm 0.031\,{
m (syst)}$

- Results compared with the ones obtained at the Z pole in e^+e^- data:
 - agreement between results
 - significant improvement in experimental precision CMS Preliminary 35.9 fb⁻¹ (13 TeV)



CMS-PAS-TOP-19-006 Full Run2 data

u/c

لفقفقفقف

- Search for charged lepton flavor violation in oppositely charged $e\mu$ final states with up and charm guarks
- **CLFV** interactions • parametrized with **EFT** approach
- Used BDT to • maximize signal sensitivity

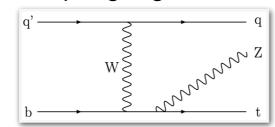
Vertex	Int.	Cross section	n [fb]	$C_{e\mu tq}/\Lambda^2$ [TeV ⁻²]		$\mathcal{B} imes 10^{-6}$	
	type	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.
	Vector	7.02	6.78	0.12	0.12	0.14	0.13
		[5.33,10.21]		[0.10,0.14]		[0.11,0.20]	
		(3.39,12.33)		(0.08,0.16)		(0.07,0.24)	
eµtu	Scalar	5.63	6.25	0.23	0.24	0.06	0.07
		[4.79,9.38]		[0.21,0.33]		[0.05,0.11]	
		(3.75,12.12)		(0.19,0.34)		(0.04,0.14)	
	Tensor	10.01	9.18	0.07	0.06	0.27	0.25
		[7.51,15.90]		[0.06,0.09]		[0.20,0.43]	
		(4.59,19.24)		(0.04,0.09)		(0.12,0.52)	
	Vector	11.21	9.73	0.39	0.37	1.49	1.31
		[7.21,16.63]		[0.32,0.48]		[0.96,2.21]	
		(4.33,21.61)		(0.24,0.55)		(0.58,2.89)	
eµtc	Scalar	9.11	8.88	0.87	0.86	0.91	0.89
		[6.58,13.10]		[0.74,1.04]		[0.65,1.31]	
		(3.54,17.41)		(0.54,1.21)		(0.35,1.74)	
	Tensor	21.02	17.22	0.24	0.21	3.16	2.59
		[16.52,29.21]		[0.21,0.28]		[2.48,4.41]	
		(10.51,42.02)		(0.17,0.33)		(1.58,6.32)	

Most stringent limits to date on all couplings

Top quark rare production

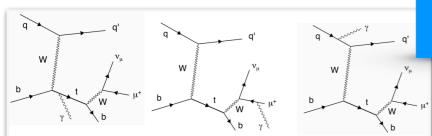
• Rare top production modes become fully accessible with Run2 data

ttW/ttZ/ttγ production:

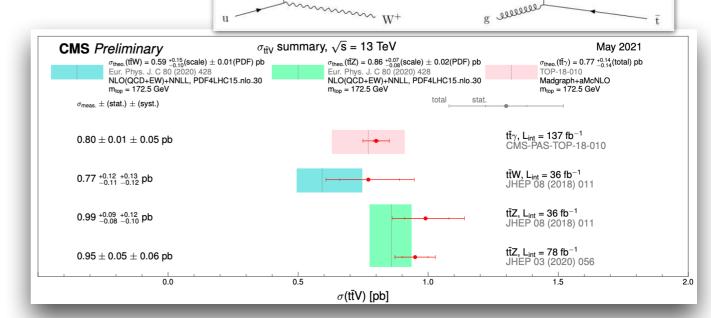

- among the most massive signatures that can be studied with high precision
- important backgrounds for searches and measurements such as ttH in multilepton final states
- ttZ production:

<u>JHEP 03 (2020) 056</u>

- most sensitive process for directly measuring the coupling of the top quark to the Z boson
- tZq production:

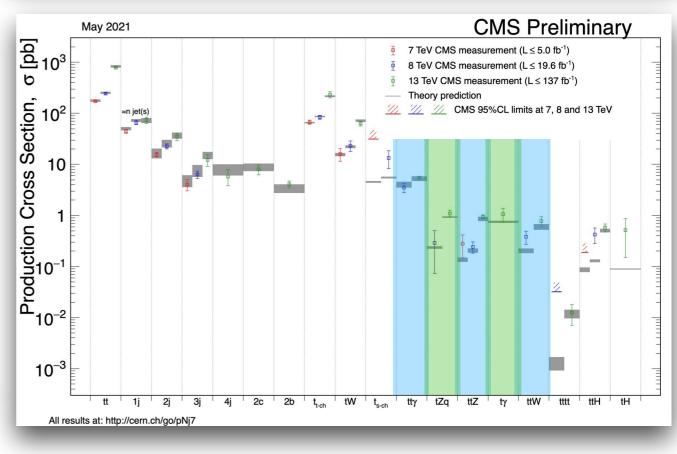

PRL 122 (2019) 132003

sensitive to top-Z and triple gauge boson WWZ couplings
 q' ------ q



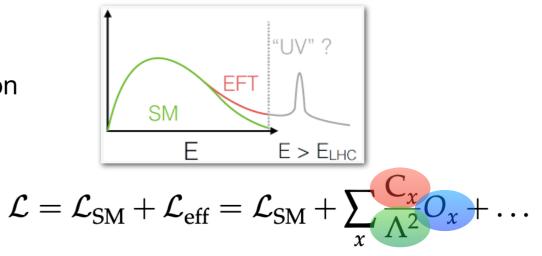
PRL 121 (2018) 221802

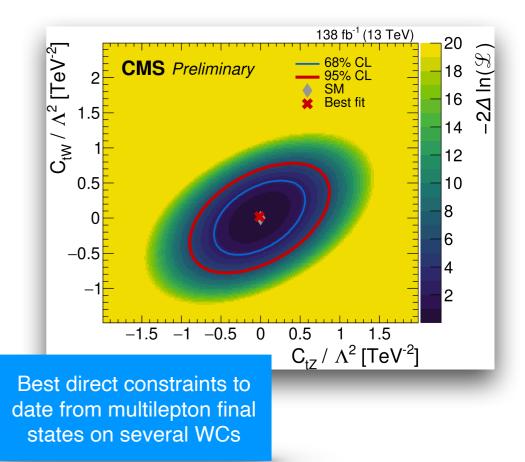
- tyq production:
 - sensitive to top quark charge and top quark electric and magnetic dipole moments



First evidence of this process !

0000000


g ellelle


EFT in rare processes

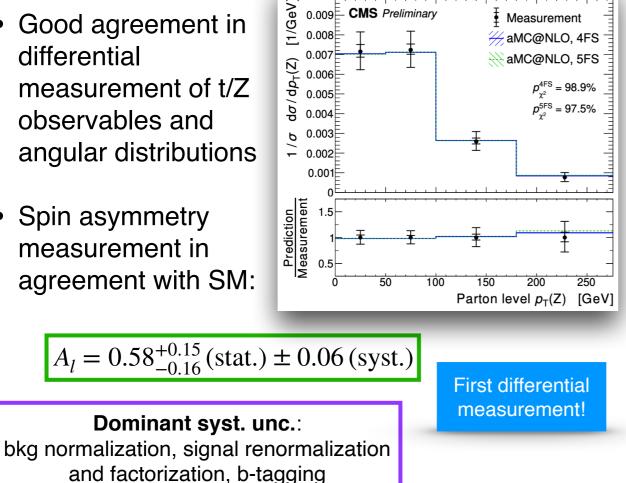
- **EFT framework**: model-independent and coherent interpretation of potential deviations in interactions between SM fields
 - new physics characterized by BSM energy scale (>> ELHC)
 - SM Lagrangian expanded with higher-order operators
 - Wilson coefficients describe interaction strengths of operators
- **Constrain top-electroweak EFT operators** with ttZ and tZq production in multileptons (3I and 4I) final states
 - distributions used for signal extraction parametrized in terms of Wilson coefficients
 - use novel ML techniques to improve sensitivity to WCs
 - single and global WCs fit in signal and control regions
 - confidence intervals computed at 95% C.L.

	Ot	ther WCs fixed to SM	5D fit			
	Expected	Observed	Expected	Observed		
WC / Λ^2 [TeV ⁻²]	95% CL confidence intervals					
C _{tZ}	[-0.97, 0.96]	[-0.76, 0.71]	[-1.24, 1.17]	[-0.85, 0.76]		
c _{tW}	[-0.76, 0.74]	[-0.52, 0.52]	[-0.96, 0.93]	[-0.69, 0.70]		
$c_{\varphi Q}^3$	[-1.39, 1.25]	[-1.10, 1.41]	[-1.91, 1.36]	[-1.26, 1.43]		
$c_{\varphi Q}^{\prime \sim}$	[-2.86, 2.33]	[-3.00, 2.29]	[-6.06, 14.09]	[-7.09, 14.76]		
C _{\varphi} t	[-3.70, 3.71]	[-21.65, -14.61] U[-2.06, 2.69]	[-16.18, 10.46]	[-19.15, 10.34]		

Rare processes: tZq, $tt\gamma$

CMS-PAS-TOP-20-010

Full Run2 data


- Inclusive and differential tZq cross section in leptons+jets channel
- Simultaneous fit to BDT outputs in multiple regions:

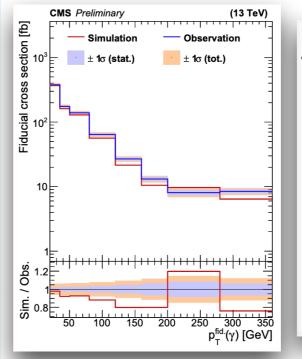
 $\sigma_{tZq} = 87.9^{+7.5}_{-7.3} (\text{stat.})^{+7.3}_{-6.0} (\text{syst.}) \text{ fb}$

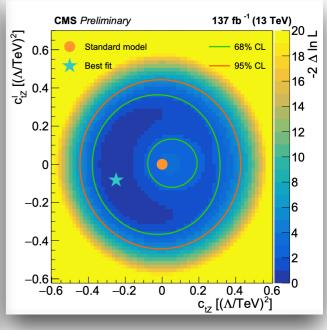
Most precise measurement to date!

138 fb⁻¹ (13 TeV)

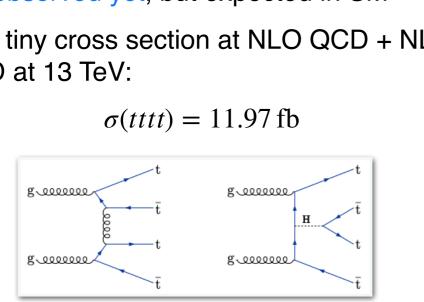
- result consistent with SM prediction
- Good agreement in differential measurement of t/Z observables and angular distributions
- Spin asymmetry measurement in agreement with SM:

CMS-PAS-TOP-18-010


Full Run2 data


- Inclusive and differential $tt\gamma$ cross section in leptons+jets channel
- Simultaneous likelihood fits in 12 SRs and 34 CRs

 $\sigma(t\bar{t}\gamma) = 800 \pm 46$ (syst.) ± 7 (stat.) fb


Dominant syst. unc.: ttγ modeling, background estimation, JES

- Results in good agreement with NLO predictions
- Constrain 2 EFT operators impacting t- γ/Z vertices

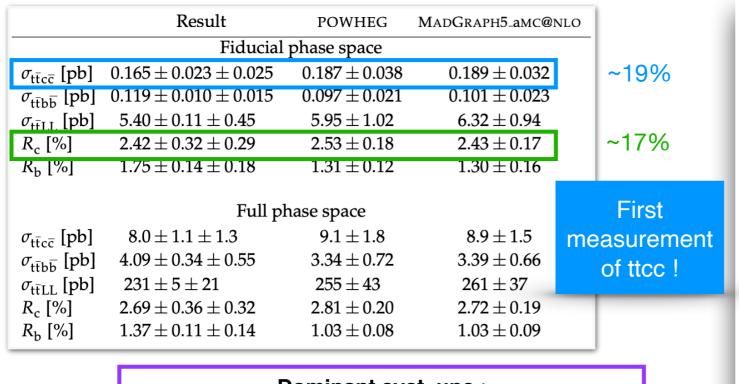
Top quark rare production

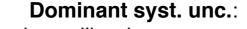
CMS Preliminary June 2021 Rare top production modes become fully accessible with Run2 data POWHEG+PYTHIA8 Measurement aMC@NLO+PYTHIA8(FXFX) δ_{stat} POWHEG+HERWIG++ $\delta_{\mathsf{stat.}} \oplus \delta_{\mathsf{syst.}}$ aMC@NLO+PYTHIA8 Fully hadronic $35.9 \, \text{fb}^{-1}$ PLB(803)2020 135285 Dilepton 41.5 fb⁻¹ arxiv:2012.09225 Dilepton 35.9 fb⁻¹ 000000 JHEP07(2020)125 000000 L+jets 35.9 fb⁻¹ JHEP07(2020)125 2 8 ġ 5 6 $\sigma_{t\bar{t}b\bar{b}}[pb]$ **CMS** Preliminary May 2021 [qd] ປີ 10³ 7 TeV CMS measurement (L ≤ 5.0 fb⁻¹) 8 TeV CMS measurement (L ≤ 19.6 fb⁻¹) 13 TeV CMS measurement (L ≤ 137 fb⁻¹) heory prediction ² Production Cross Section, ¹ D⁻² CMS 95%CL limits at 7, 8 and 13 TeV 10^{-3} 1j 2j 3j 4j 2c 2b t_{t-ch} tW t_{s-ch} ttγ tZq ttZ tγ ttW tttt ttH All results at: http://cern.ch/go/pNj7

• ttjj, ttbb, ttcc:

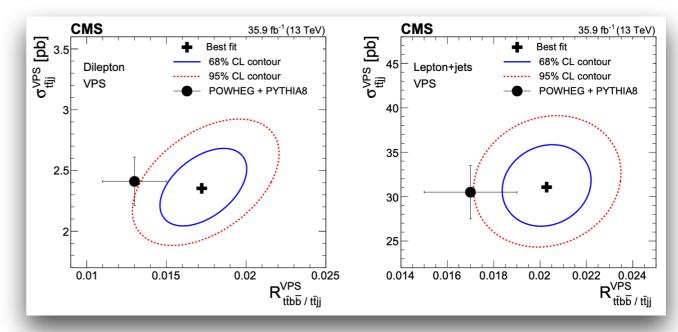
- important background for ttH and BSM events
- precise measurements needed to improve tt+jets MC simulation
- NLO calculations are affected by large uncertainties associated to $\mu_{\rm R}/\mu_{\rm F}$ scales

EPJC 80 (2020) 75

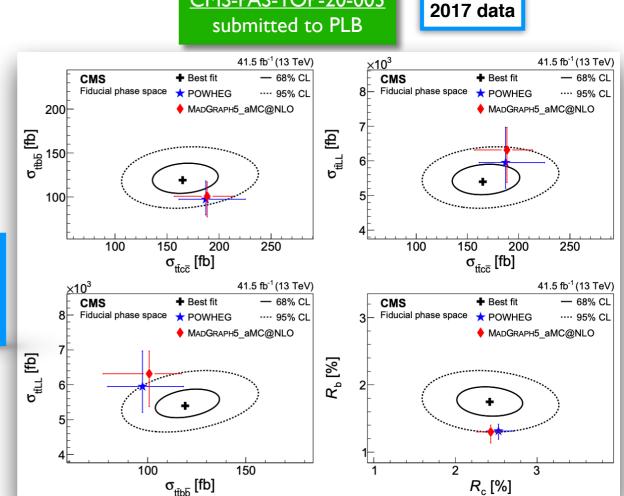

JHEP 11 (2019) 082


• tttt:

- constrain t-H Yukawa coupling (but less precisely than ttH)
- not observed yet, but expected in SM
- very tiny cross section at NLO QCD + NLO QED at 13 TeV:

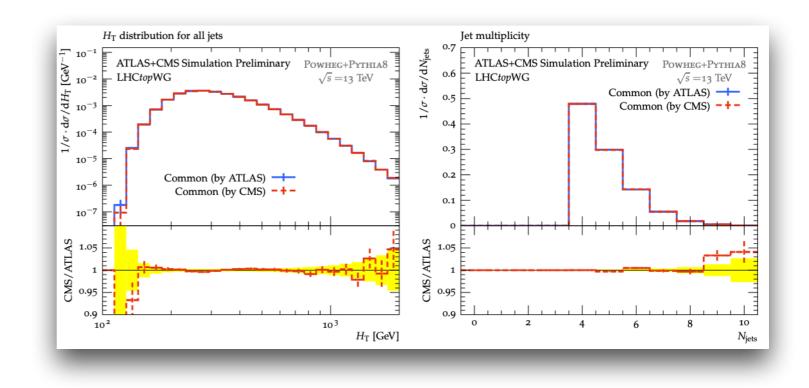

ttjj+ttbb+ttcc production

- 2 separate analyses to measure **ttbb cross sections**:
 - dilepton/leptons+jets
- JHEP 07 (2020) 125 2016 data
- all-hadronic PLB 803 (2020) 135285 2016 data
- Simultaneous measurement of $\sigma(t\bar{t} + c\bar{c})$, $\sigma(t\bar{t} + b\bar{b})$, $\sigma(t\bar{t} + LL)$ and $R_{c/b} = \sigma(t\bar{t} + c\bar{c}/b\bar{b}) / \sigma(t\bar{t} + jj)$ in fiducial and full phase space in dilepton events:
 - c-tagging exploiting new c-jet tagger
 - ML techniques with template fit to 2D distribution



JES, c-tagging calibration, renormalization and factorization scales in ME, matching ME-PS (hdamp) 15

CMS-PAS-TOP-20-003



ATLAS-CMS common MC

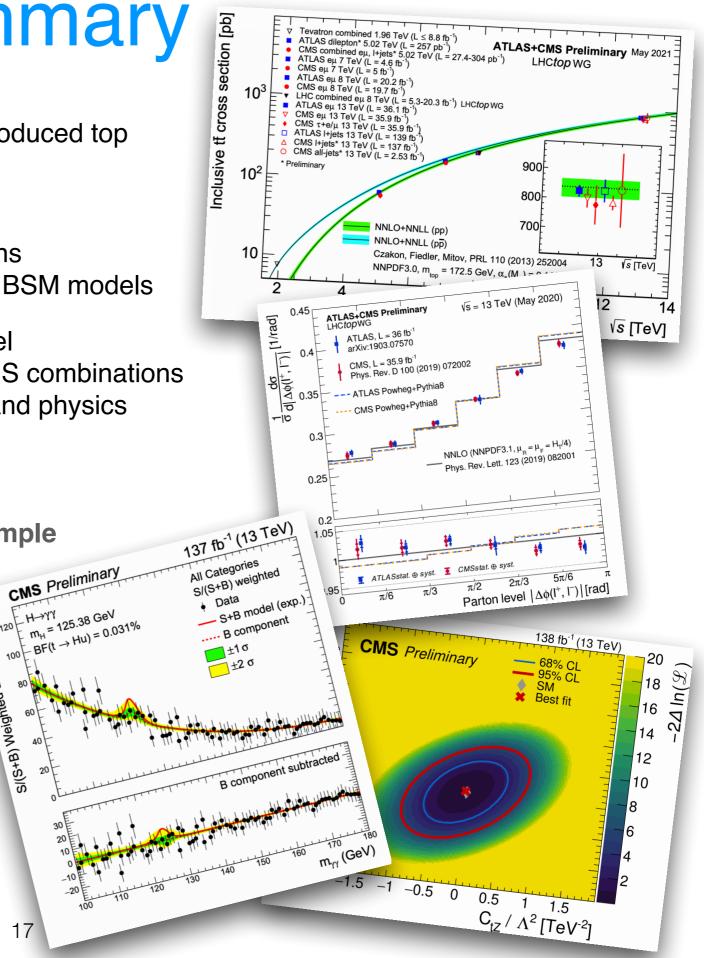
CMS-NOTE-2021-005

- ATLAS and CMS use different nominal MC samples: POWHEG-BOX (hvq) + Pythia8 with different parameters
 - understand similarities and differences can be crucial to reduce modeling systematics in analysis combination
 - a common $t\overline{t}$ MC sample would make combinations and comparisons easier
- Identified a first set of common settings:
 - average of ATLAS and CMS settings
 - Monash tune
- First common sample with 10M inclusive events successfully produced by both experiments
 - great agreement between samples produced in separate frameworks
- Discussion ongoing for *real* common sample:
 - decide new settings to have sample tuned on data

Setting name	Setting description	CMS default	ATLAS default	Common Proposal
Powheg				
qmass	top-quark mass [GeV]	172.5	172.5	172.5
twidth	top-quark width [GeV]	1.31	1.32	1.315
hdamp	first emission damping parameter [GeV]	237.8775	258.75	250
wmass	W^{\pm} mass [GeV]	80.4	80.3999	80.4
wwidth	W^{\pm} width [GeV]	2.141	2.085	2.11
bmass	<i>b</i> -quark mass [GeV]	4.8	4.95	4.875
Рутніа 8				
	Pythia 8 version	v240	v230	v240 (CMS)
				v244 (ATLAS)
	Tune	CP5	A14	Monash
PDF:pSet	LHAPDF6 parton densities to be used for proton beams	NNPDF31_nnlo	NNPDF23_lo	NNPDF23_lo
		_as_0118	_as_0130_qed	_as_0130_qed
TimeShower:alphaSvalue	Value of α_s at Z mass scale for Final State Radiation	0.118	0.127	0.1365
SpaceShower:alphaSvalue	Value of α_s at Z mass scale for Initial State Radiation	0.118	0.127	0.1365
MPI:alphaSvalue	Value of α_s at Z mass scale for Multi-Parton Interaction	0.118	0.126	0.130
MPI:pT0ref	Reference p_T scale for regularizing soft QCD emissions	1.41	2.09	2.28
ColourReconnection:range	Parameter controlling colour reconnection probability	5.176	1.71	1.80

Summary

Sev


Events

SI(S+B) Weighted E

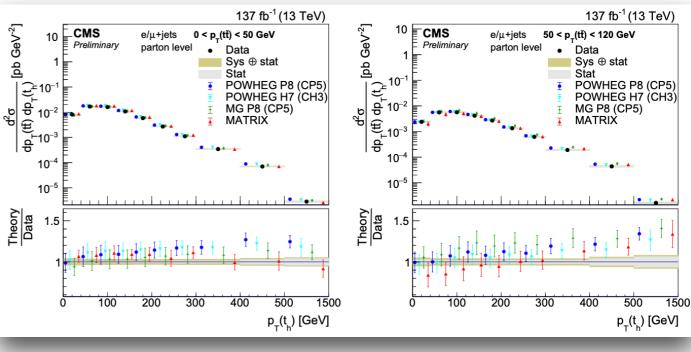
17

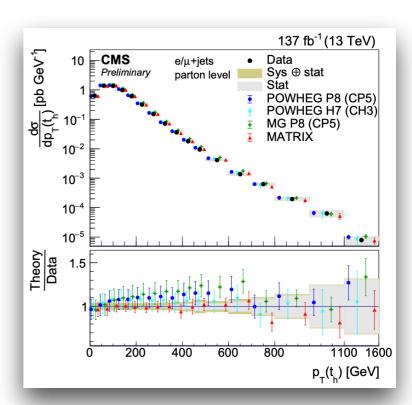
- LHC Run1 and Run2 provided huge number of produced top quark events
- Several measurements with Run2 data
 - confirm good agreements with SM expectations
 - allow to explore parameters of EFT and other BSM models
- Increased precision up to NNLO+NLO EWK level
 - allowed by large statistics and via ATLAS+CMS combinations
 - better understanding of top quark properties and physics modeling
 - constraints on new physics
- Production of first common ATLAS-CMS MC sample
 - new version tuned on data coming soon!

Focus only on a selection of recent measurements.. for more results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ **PhysicsResultsTOP**

tt differential in I+jets

- High precision measurements of differential and double differential cross sections of t⁻t production in e/mu + jets (2 b-tagged jets) channel
 - results at both parton and particle level
 - both resolved and boosted regimes
- Boosted top identified with NN approach:
 - NN to discriminate leptonically decaying top from bkg candidates
 - NN with 21 input variables to identify hadronically decaying top
- Most of the predictions are in good agreement with the measurement
- Ratio ly(⁻t)l/ly(t)l calculated from double differential cross section ly(t)l vs ly(⁻t)l taking into account bin-by-bin correlations:
 - no significant observation of a charge asymmetry is observed
- Precise inclusive t⁻t production cross section obtained from integration of differential distributions:


 $\sigma_{\mathrm{e}/\mu+jets} = 227.6 \pm 6.8 \,\mathrm{pb}$


• With a branching fraction of $28.77 \pm 0.32\%$ to e/μ +jets the total tt production cross section becomes:

 $\sigma_{\rm tot} = 791 \pm 25 \, {\rm pb}$

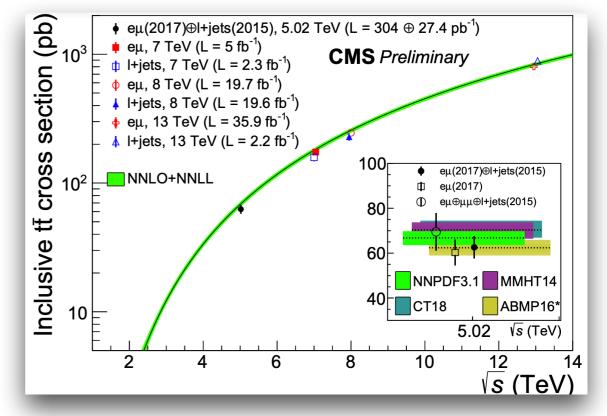
• in good agreement with the SM expectation

$$\sigma_{SM} = 832^{+40}_{-46} \, \mathrm{pt}$$

Full Run2 data

CMS-PAS-TOP-20-00

tt inclusive @5.02 TeV CMS-PAS-TOP-20-004 Small dataset


- 304 pb⁻¹ (5.02 TeV) **CMS** Preliminary + Data ťW Events / 20 GeV 🛇 Stat 🕀 s 50 60 70 80 90 100 110 120 Leading lepton p_{-} (GeV)
- Measurement of $t\bar{t}$ production cross section at 5.02 TeV using ~300 pb-1 recorded in 2017
 - sensitive to gluon PDFs and top guark mass
- Cross section extracted by counting experiment in dilepton (emu) channel, in a region with high tt purity
- Already measured in 2015 with 27.4 pb-1:
 - at first only eµ channel (TOP-16-015): ~25% uncertainty
 - then $e\mu$, $\mu\mu$, e/μ +jets combination (TOP-16-023): total uncertainty of ~12%
- Current measurement improves precision of previous CMS measurements at 5.02 TeV:
 - total uncertainty of ~ 9.1%

$$\sigma_{
m t\bar{t}}$$
 = 60.3 \pm 5.0 (stat) \pm 2.8 (syst) \pm 0.9 (lumi) pb = 60.3 \pm 5.5 (tot) pb.

```
(prediction : \sigma_{t\bar{t}}^{NNLO} = 66.8^{+1.9}_{-2.3}(\text{scale}) \pm 1.7(\text{PDF})^{+1.4}_{-1.3}(\alpha_S) \text{ pb})
     using NNPDF3.1
```

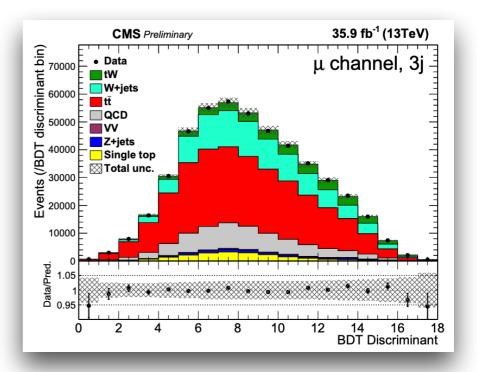
- A combination with the previous measurement in the I+jets channel is performed:
 - total uncertainty decreased to 7.9%

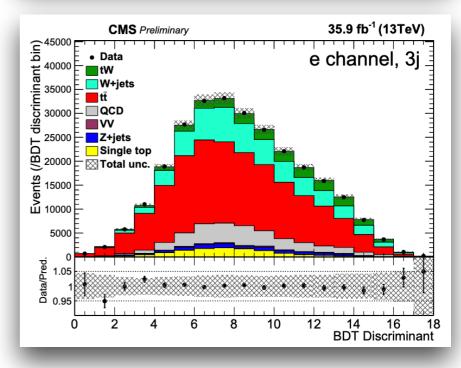
 $\sigma_{
m t\bar{t}} = 62.6 \pm 4.1$ (stat) ± 3.0 (syst+lumi) pb

@5.02 TeV

Single top: tW channel

CMS-PAS-TOP-20-002


- Inclusive cross section in lepton+jets channel
- Data-driven background estimation
- BDT used to discriminate tW from leading $t\bar{t}$ background
- Binned likelihood fit performed on BDT discriminants:
 - final result calculated using all regions (with different Njets) for both e/mu channels
 - fit checked in each region individually and in combination with signal region
 - expected signal strength and associated uncertainty extracted from each fit
- Measured (expected) signal strength:


 $\mu = 1.24 \pm 0.18 \,(1 \pm 0.17)$

• Cross section:

 $\sigma_{tW} = 89 \pm 4 \,(\text{stat.}) \pm 12 \,(\text{syst.}) \,\text{pb}$

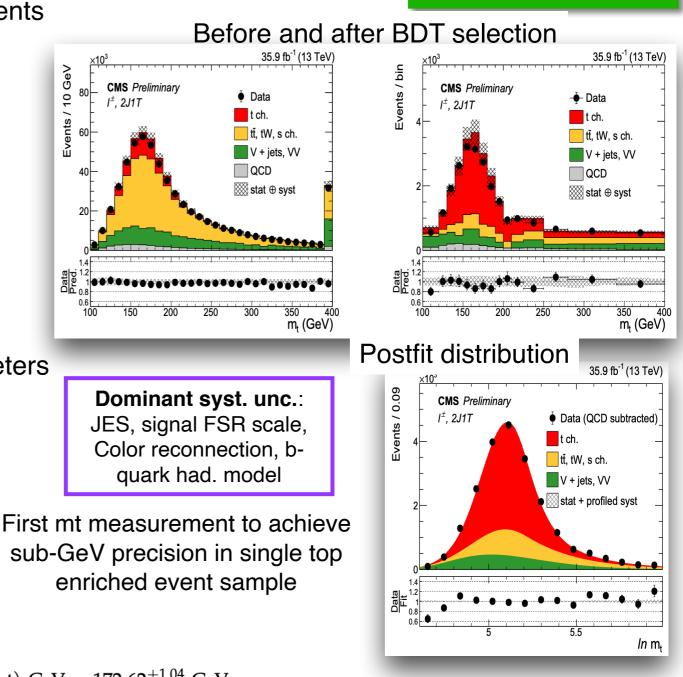
- $\sigma_{tW}^{SM} = 71.7 \pm 1.8 \text{ (scale)} \pm 3.4 \text{ (PDF) pb}$
- \rightarrow corresponds to an observed (expected) significance of 7.4 (6.8) σ

Top mass from ST t-channel 2016 data CMS-PAS-TOP-19-009

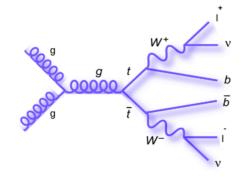
Events / 10 GeV

Data Pred.

- Traditionally mt measurements performed with $t\bar{t}$ events
- Single top provides statistically independent sample:
 - enhances the range of available measurements
 - partially uncorrelated systematics from $t\bar{t}$ measurements
- Data-driven estimation of QCD multijet bkg
- BDT discriminators to increase signal purity
- Extraction of mt:
 - QCD contribution is subtracted from data
 - simultaneous ML fit using y = ln(mt) distributions in μ and e final states
 - signal and bkg. rates added as nuisance parameters to the fit \rightarrow constrained using log-normal priors based on unc. on respective cross sections
 - 3 separate fits performed in I+, I-, I± final states
 - peak region well-modeled by fit


 $m_{\rm t} = 172.13 \pm 0.32 \,({
m stat} + {
m prof}) \,{}^{+0.69}_{-0.70} \,({
m syst}) \,\,{
m GeV} = 172.13 {}^{+0.76}_{-0.77} \,\,{
m GeV}$

 Masses of top guark and antiguark determined separately by requiring positively and negatively charged leptons in the final state:


$$m_{\rm t} = 172.62 \pm 0.37 \,({\rm stat} + {\rm prof})^{+0.97}_{-0.65} \,({\rm syst}) \,\,{\rm GeV} = 172.62^{+1.04}_{-0.75} \,\,{\rm GeV},$$

 $m_{\rm t} = 171.79 \pm 0.58 \,({\rm stat} + {\rm prof})^{+1.32}_{-0.65} \,({\rm syst}) \,\,{\rm GeV} = 171.79^{+1.44}_{-0.75} \,\,{\rm GeV},$

$$m_{\tilde{t}} = 171.79 \pm 0.58 (\text{stat} + \text{prof})^{+1.32}_{-1.39} (\text{syst}) \text{ GeV} = 171.79^{+1.44}_{-1.51} \text{ GeV}.$$

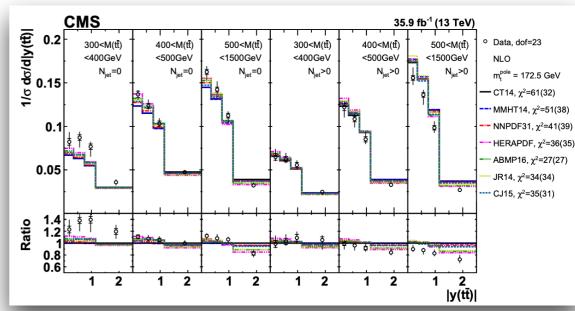
 Estimated values of Rmt and Δmt agree with unity and zero within uncertainties \rightarrow consistent with no violation of CPT invariance

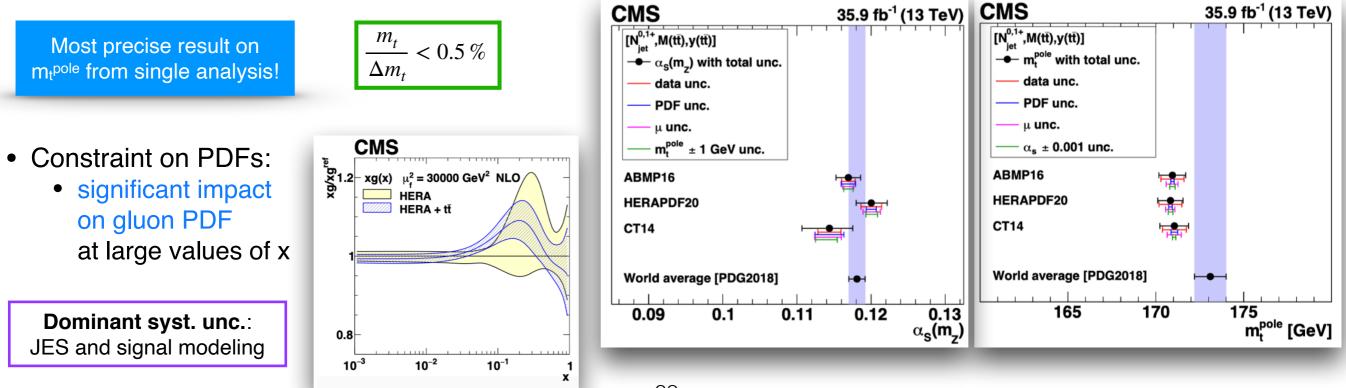
 $R_{m_{t}} = \frac{m_{\tilde{t}}}{m_{t}} = 0.995 \pm 0.004 \,(\text{stat} + \text{prof})^{+0.002}_{-0.004} \,(\text{syst}) = 0.995^{+0.005}_{-0.006}$ $\Delta m_{\rm t} = m_{\rm t} - m_{\rm \bar{t}} = 0.83 \pm 0.69 \,({\rm stat} + {\rm prof})^{+0.35}_{-0.74} \,({\rm syst}) \,\,{\rm GeV} = 0.83^{+0.77}_{-1.01} \,\,{\rm GeV}$

Mass from

multidifferential

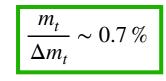
EPJC 80 (2020) 658

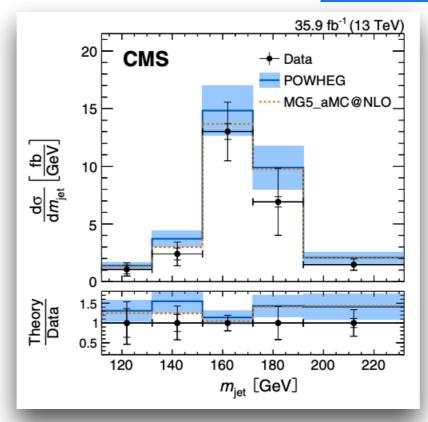

2016 data @13 TeV: 35.9 fb⁻¹

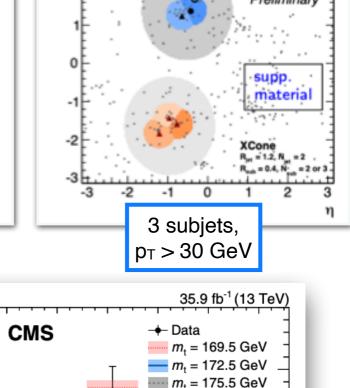

- Normalized 3D cross sections vs $m_{t\bar{t}}$, $y_{t\bar{t}}$, N(extra jets) in dilepton channel
- Extraction of α_S and m_t^{pole} :
 - cross sections compared to NLO predictions with different PDFs
 - simultaneous fit of PDF+ α_S +mt^{pole} at NLO + HERA DIS data

 $\begin{aligned} \alpha_S(m_Z) &= 0.1135^{+0.0021}_{-0.0017} \\ &= 0.1135 \pm 0.0016 \,(\text{fit})^{+0.0002}_{-0.0004} \,(\text{model})^{+0.0008}_{-0.0001} \,(\text{param})^{+0.0011}_{-0.0005} \,(\text{scale}) \end{aligned}$

 $m_t^{pole} = 170.5 \pm 0.8 \,\mathrm{GeV}$




- excellent m_{jet} resolution
- m_t extracted from normalized <u>t</u> cross section as function of m_{jet} unfolded at particle level:


 $m_t = 172.6 \pm 2.5 \,\text{GeV}$

= 172.6 ± 0.4 (stat) ± 1.6 (exp) ± 1.5 (model) ± 1.0 (theo) GeV

Dominant syst. unc.: JES, JER, XCone jet energy correction, signal modeling FSR, color reconnection, UE tune, top mass value)

supp.

XCone B = 12 N

2 large radius jets,

p_T > 400 GeV

material

η

0.04

0.03

0.01

1.5

0.5

120

140

160

180

m_{jet} [GeV]

200

220

 $\frac{\overline{\sigma}}{\overline{\sigma}} \frac{d\sigma}{dm} \boxed{\frac{1}{\text{GeV}}}$

Theory Data

Running of top mass

CMS

350⊢

300

250

200

 $d\sigma_{t\bar{t}}$ / $dm_{t\bar{t}}$ $\Delta m_{t\bar{t}}$ [pb]

Data unfolded to parton level

NLO predictions in MS scheme

 $m_{t}(m_{i}) = 162 \text{ GeV}$

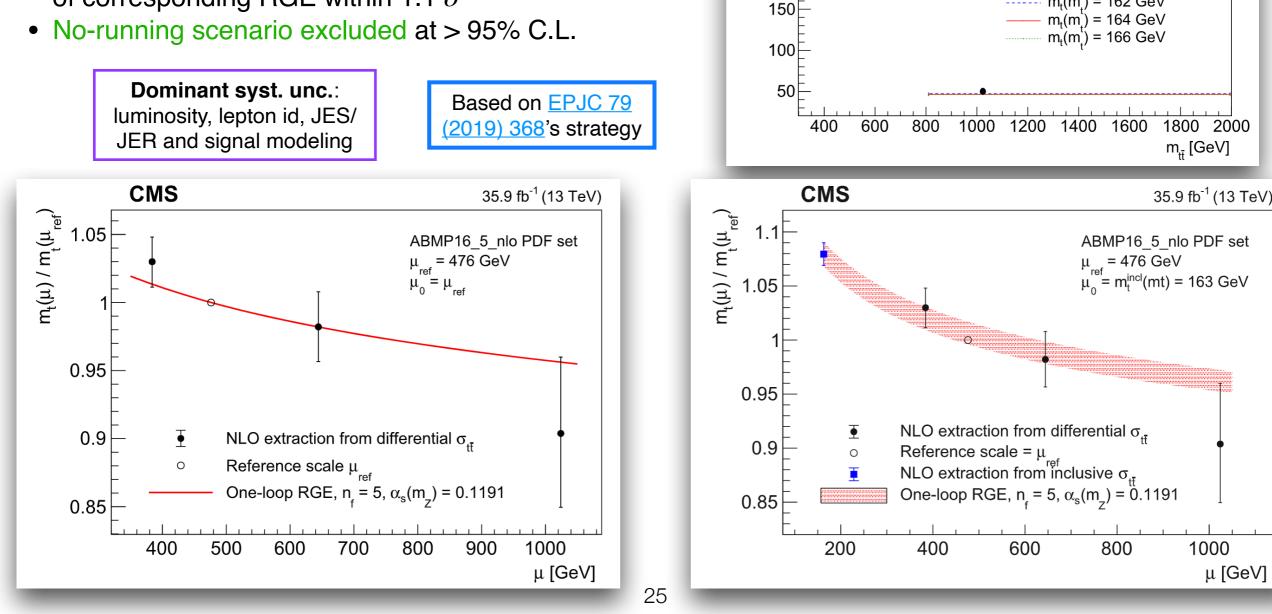
ABMP16 5 nlo PDF set

 $\mu_r = \mu_f = m_t$

2016 data

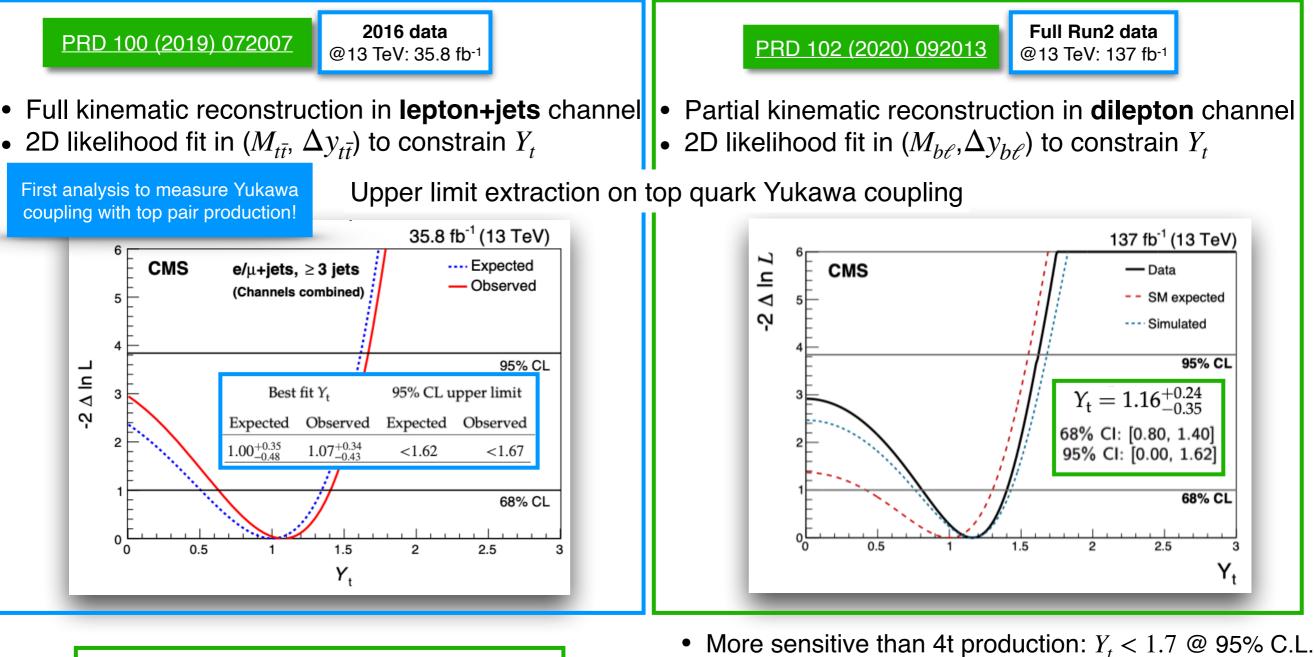
@13 TeV: 35.9 fb⁻¹

35.9 fb⁻¹ (13 TeV)


 Extracted by comparing NLO predictions to differential cross section measured vs $m_{t\bar{t}}$ in

eµ channel

First experimental


investigation!

- Simultaneous measurement of $d\sigma_{t\bar{t}}/dm_{t\bar{t}}$ and mt^{MC} by means of maximum- likelihood fit to multi-differential distributions
- Running of mt in agreement with prediction of corresponding RGE within 1.1 σ

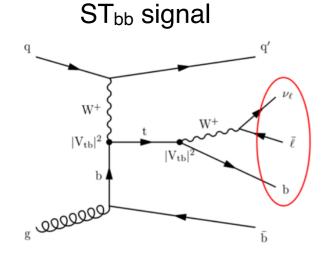
Top Yukawa coupling

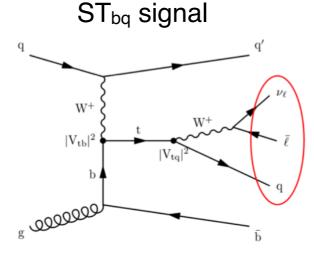
- Weak corrections affect cross sections at $\alpha_S^2 \alpha_w$ order \rightarrow may lead to large distortions of $t\bar{t}$ differential distributions near the production threshold region
- Virtual Higgs exchange depends on the top-Higgs Yukawa coupling g_t

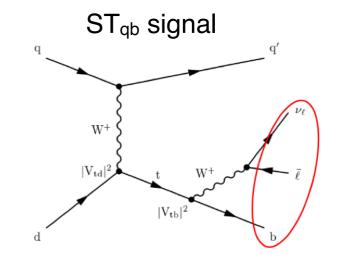
- Results in agreement between 2 channels
- 26 combination: $Y_t = 0.98 \pm 0.14$

Less sensitive than model-dependent Higgs

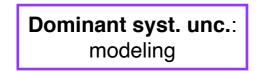
~ 000000000


g ~000000000

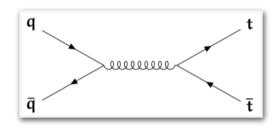

000000


 $Y_t = \frac{g_t}{g_t^{SM}}$

Top CKM elements


 Processes directly sensitive to IV_{tb}I, IV_{td}I, and IV_{ts}I are considered at both the production and decay vertices of the top quark:

- BDT discriminant trained for each category to separate signal and background processes
- Multivariate discriminators used in a simultaneous fit to the 3 event categories to discriminate between ST_{bb}, ST_{bq}, and ST_{qb}
- CKM matrix elements extracted by signal strengths
 - in SM assuming CKM unitarity (@ 95% C.L.):
 - also BSM scenarios are probed
- All results are consistent with each other
- Best determination of these parameters w.r.t. latest measurements of single top quark in Run2



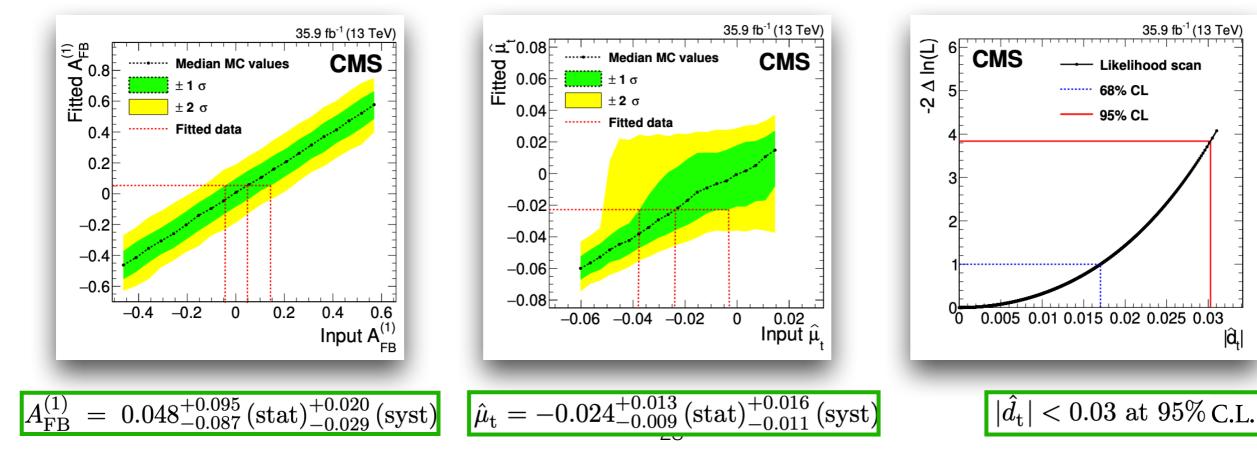
CategoryEnriched in
$$2j1t$$
 $ST_{b,b}$ $3j1t$ $ST_{b,q}, ST_{q,b}$ $3j2t$ $ST_{b,b}$

$$\begin{split} |V_{\rm tb}| &> 0.970 \\ |V_{\rm td}|^2 + |V_{\rm ts}|^2 < 0.057 \end{split}$$

First direct model-independent measurement in single top t-channel events

2016 data @13 TeV: 35.9 fb⁻¹

Top Forward-Backward


Asymmetry

- Lepton+jets events with "boosted" and "resolved" topologies
- Asymmetry in $t\bar{t}$ production due to NLO interference terms between $q\bar{q}$ initial states
- Search for anomalies in the angular distribution of produced $t\overline{t}$ pairs:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}c^*}(\mathbf{q}\overline{\mathbf{q}}) \approx f_{\mathrm{sym}}(c^*) + \left[\int_{-1}^1 f_{\mathrm{sym}}(x)\mathrm{d}x\right] c^* A_{\mathrm{FB}}^{(1)}(m_{\mathrm{t}\overline{\mathrm{t}}})$$

anomalous chromoelectric (d_t) + chromomagnetic (μ_t) dipole moments

- Multi-dimensional template fit for each category
- Parameters independently extracted from a linear combination of the 3D templates fitted to data
- Values consistent with SM expectations and in good agreement with previous measurements like CMS spin correlation measurements in dilepton channel

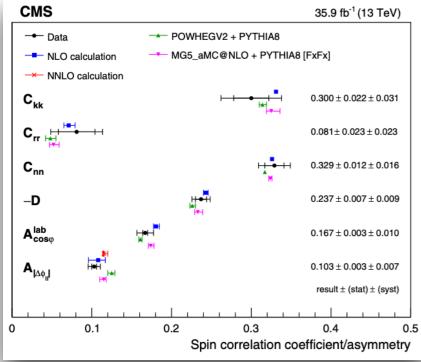
2016 data @13 TeV: 35.9 fb⁻¹ $\theta^* \overline{q}$ $c^* = cos\theta^*$

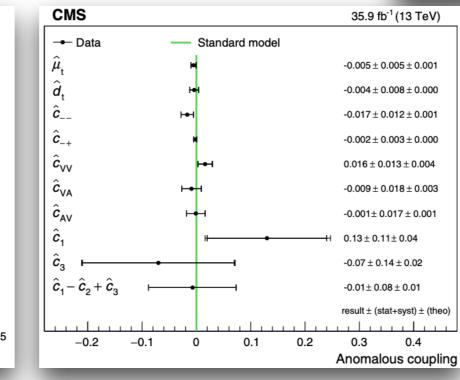
JHEP 06 (2020) 146

$$A_{\rm FB} = \frac{\sigma(c^* > 0) - \sigma(c^* < 0)}{\sigma(c^* > 0) + \sigma(c^* < 0)}$$

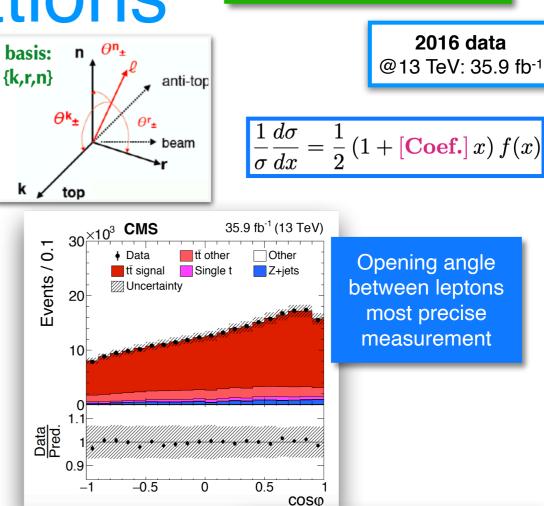
First measurement @LHC !

Measurement of full spin density production matrix in dilepton channel

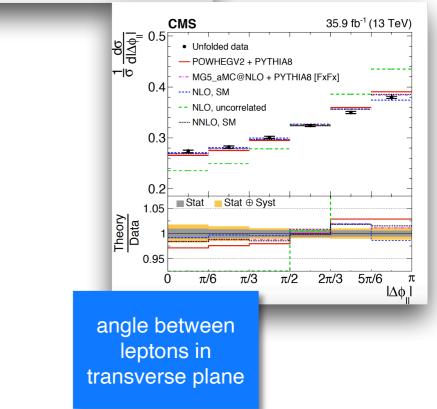

- Angular distributions in *tt* rest frame (direct measurement):
 - full reconstruction of $t\bar{t}$ system required


00000

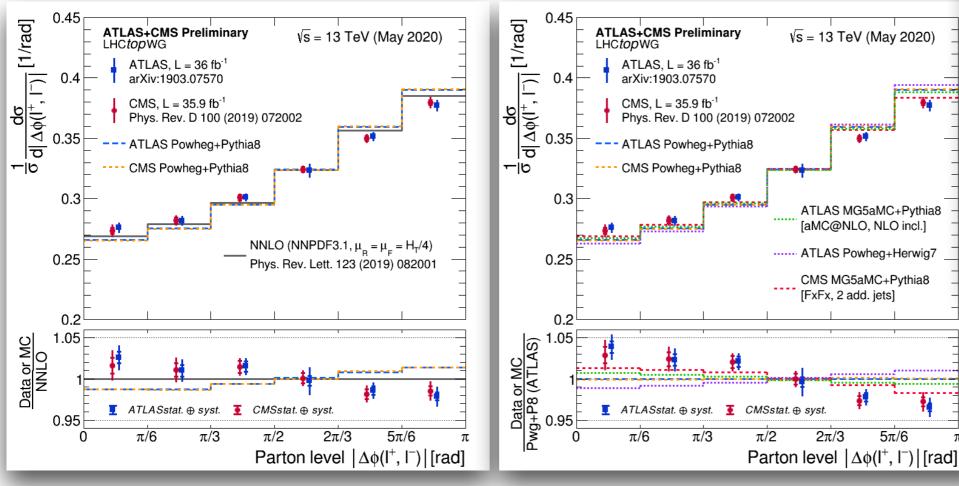
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1^i d\cos\theta_2^i} = \frac{1}{4} (1 + B_1^i \cos\theta_1^i + B_2^i \cos\theta_2^i - C_{ii} \cos\theta_1^i \cos\theta_2^i)$$

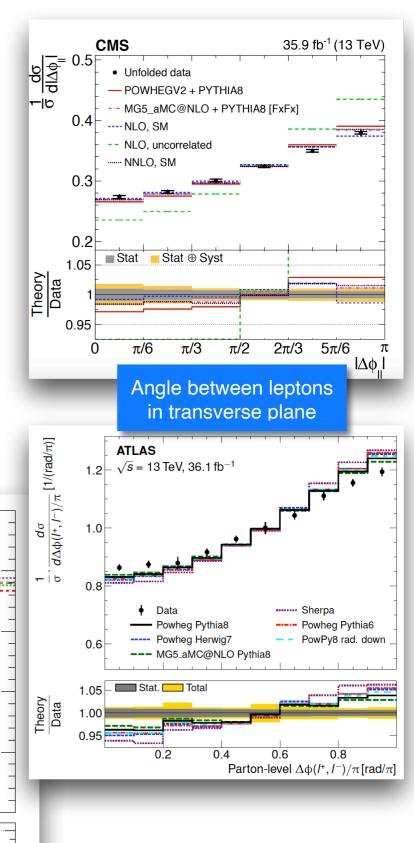

Polarizations Spin correlations

- Coefficients individually probed by 1D angular distribution
- Lab-frame observables (indirect measurement)
- All distributions and extracted parameters in close agreement with SM predictions
- Unfolded results used to constrain anomalous couplings



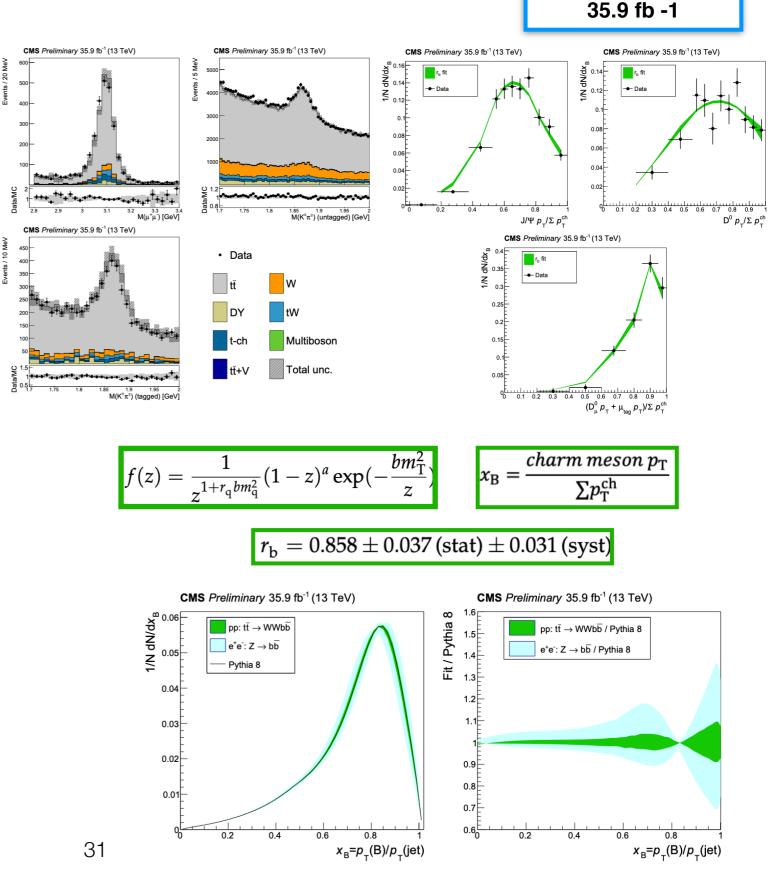
29


PRD 100 (2019) 072002



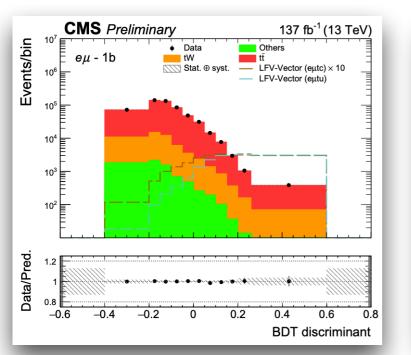
Δφ distribution

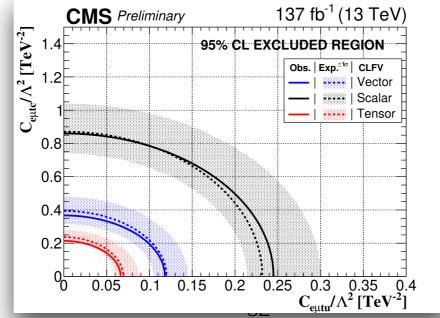
- Tension between data and predictions in both ATLAS (3.2 σ) and CMS (1 σ)
- First ATLAS+CMS comparison @13 TeV within <u>LHCtopWG</u>:
 - normalized cross sections at parton level
 - very good agreement between ATLAS and CMS data and between ATLAS and CMS main MC predictions
 - good agreement between data and MG5_aMC@NLO with FXFX merging (2 additional jets from the matrix element)
 - fair agreement with NNLO calculation


First measurement in tt and at LHC!

B-fragmentation

CMS-PAS-TOP-18-012


2016 data @13 TeV:


- In lepton + jets and dilepton decay channels
- Lund–Bowler fragmentation function with fixed mb
- 3 samples of charm mesons (J/ψ, Untagged D0, Muon tagged D0 (D0mu)) produced inside b jets and reconstructed from the D0 → K± π ∓ and J/ ψ → μ+μ- decays
- Signal and background contributions for each meson sample:
 - extracted by negative log likelihood fit on invariant mass distribution
 - used to produce fragmentation proxy distributions xb of parent b quark
- Extraction of rb from template fit to xb distribution:
 - best fit value of rb determined from the minimum of a $\chi 2$ scan over 0.655 < rb < 1.055
- Final result determined from simultaneous fit to the 3 meson samples:
 - systematic uncertainties assumed to be uncorrelated between the channels
 - uncertainties are statistically limited in all channels
- Results compared with the ones obtained at the Z pole in e^+e^- data:
 - agreement between results → no evidence for an environmental dependence of the fragmentation function
 - significant improvement in experimental precision
 - PYTHIA 8 function (rb = 0.855) is also in good agreement with the result presented here

Lepton flavour violation

- Single top quark production signal is added to the top decay signal
- A model independent effective field theory approach is followed for modeling the CLFV signal: dim6 EFT operators
- Vector, tensor and scalar Lorentz structures are probed separately
- eµtc and eµtu LFV interactions are probed separately
- A BDT is used to maximize signal sensitivity
- Data are consistent with the SM predictions within the uncertainties
- We set upper limits on the signal production cross section using the modified frequentist CLs method
- Limits are translated into upper limits on the related Wilson coefficient and top quark LFV branching fractions
- These results are the most stringent limits on the top CLFV branching fraction to date

Vertex	Int.	Cross section	n [fb]	$C_{e\mu tq}/\Lambda^2$ [ГеV ⁻²]	$\mathcal{B} imes 10^{-6}$	
	type	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.
	Vector	7.02	6.78	0.12	0.12	0.14	0.13
		[5.33,10.21]		[0.10,0.14]		[0.11,0.20]	
		(3.39,12.33)		(0.08,0.16)		(0.07,0.24)	
eµtu	Scalar	5.63	6.25	0.23	0.24	0.06	0.07
		[4.79,9.38]		[0.21,0.33]		[0.05,0.11]	
		(3.75,12.12)		(0.19,0.34)		(0.04,0.14)	
	Tensor	10.01	9.18	0.07	0.06	0.27	0.25
		[7.51,15.90]		[0.06,0.09]		[0.20,0.43]	
		(4.59,19.24)		(0.04,0.09)		(0.12,0.52)	
	Vector	11.21	9.73	0.39	0.37	1.49	1.31
		[7.21,16.63]		[0.32,0.48]		[0.96,2.21]	
		(4.33,21.61)		(0.24,0.55)		(0.58,2.89)	
eµtc	Scalar	9.11	8.88	0.87	0.86	0.91	0.89
		[6.58,13.10]		[0.74,1.04]		[0.65,1.31]	
		(3.54,17.41)		(0.54,1.21)		(0.35,1.74)	
	Tensor	21.02	17.22	0.24	0.21	3.16	2.59
		[16.52,29.21]		[0.21,0.28]		[2.48,4.41]	
		(10.51,42.02)		(0.17,0.33)		(1.58,6.32)	

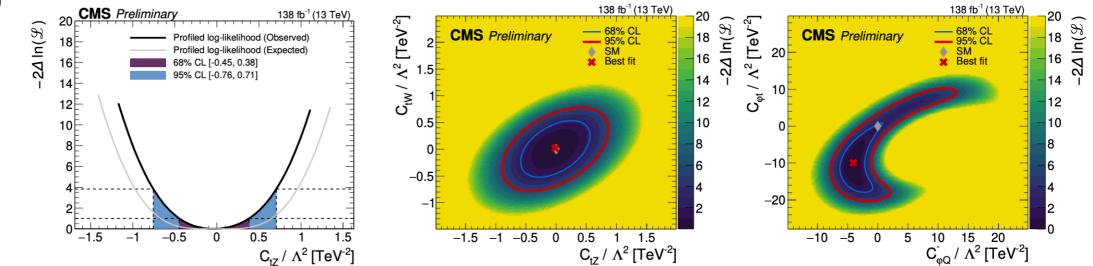
137 fb⁻¹ (13 TeV) **CMS** Preliminary $imes 10^{-6}$ 95% CL EXCLUDED REGION Obs. | Exp.^{±1}^o | CLFV eµc) ····· | Vector ····· | Scalar B(t↓ ---- | Tensor 0.1 0.2 0.3 0.4 0.5 0.6 $B(t \rightarrow e \mu u) \times 10^{-6}$

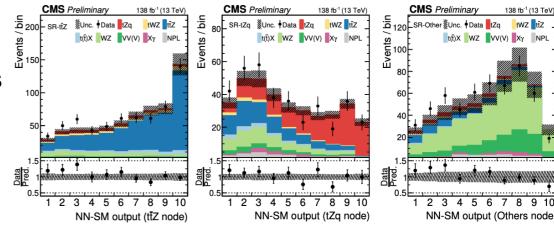
Full Run2 data

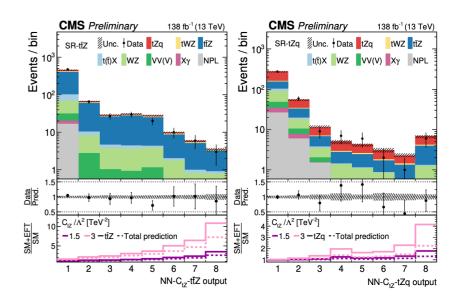
CMS-PAS-TOP-19-006

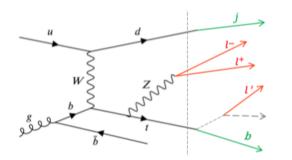
CMS-PAS-TOP-21-001

EFT using ML

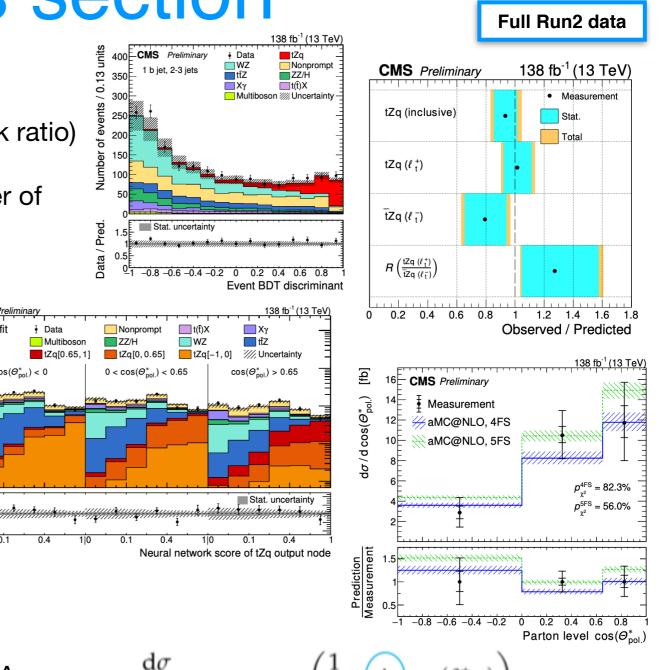

 $\sum_{i=1}^{2} \sum_{k=1}^{2} \sum_{i=1}^{k} q^{i} \xrightarrow{i} q^{i}$




Target 3 t-Z associated production modes:


Full Run2 data

- complementary, probe similar dim-6 EFT operators
- Analysis strategy entirely optimized to search for EFT effects
- Cross sections & kinematics of signals are parameterized with WCs with reweighting procedure
 - reweight any distribution according to any EFT scenario
- Use novel ML techniques to improve sensitivity to WCs:
 - NN multi class classifier trained to separate physics processes
 - NN binary classifiers trained to separate SM/EFT scenarios
- Signal extraction with simultaneous fits in 6 regions
 - signal yields parameterized with EFT in each bin
 - constrain WCs directly in the fits
- Extract 1D and 5D confidence intervals at 95 % CL for each WC
 - best direct constraints to date from multilepton final states on several WCs
- 1D likelihood scan as a function of each WC (other WCs fixed to 0)
- 2D likelihood scans illustrate correlations of pairs of WCs (other WCs fixed to 0)



tZq cross section

of events / bir

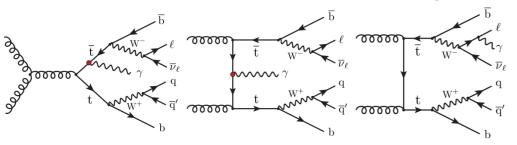
Jumber

- tZq is a probe for new physics (sensitive to top quark polarization and to proton PDFs via top quark-antiquark ratio)
- Inclusive measurement:
 - BDT trained in 3 signal categories based on number of jets and b-jets
 - total unc. improved from 15% to ~11%
- Differential measurement:
 - signal region inclusive in jets and b-jets
 - multiclass NN discrimination between different backgrounds
 - absolute and normalized diff xsec at particle and parton level
- Simultaneous maximum-likelihood fit to output distribution of MVA classifier trained to separate tZq signal: observed good agreement between measurement and prediction
- First measurement of top charge ratio measuring separately top and anti-top associated with Z
- In tZq, top quark is highly polarized: consequence of V-A nature of electroweak coupling → deviation could point to anomalous coupling structure
- Measured polarization using 'spin asymmetry' variable
 - related to diff. xsec as function of polarization angle
 - fit is reparametrized to extract *A* directly, with full likelihood and uncertainties

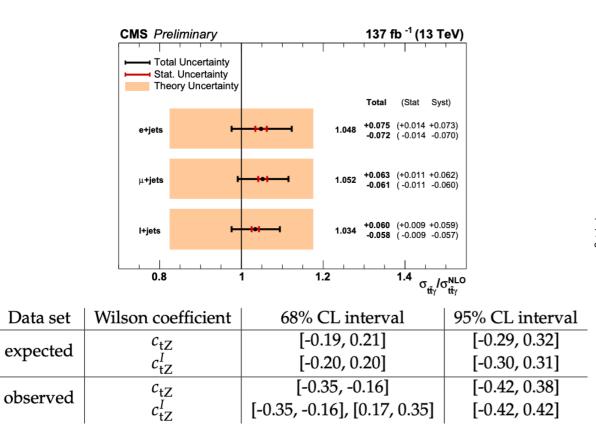
CMS-PAS-TOP-20-010

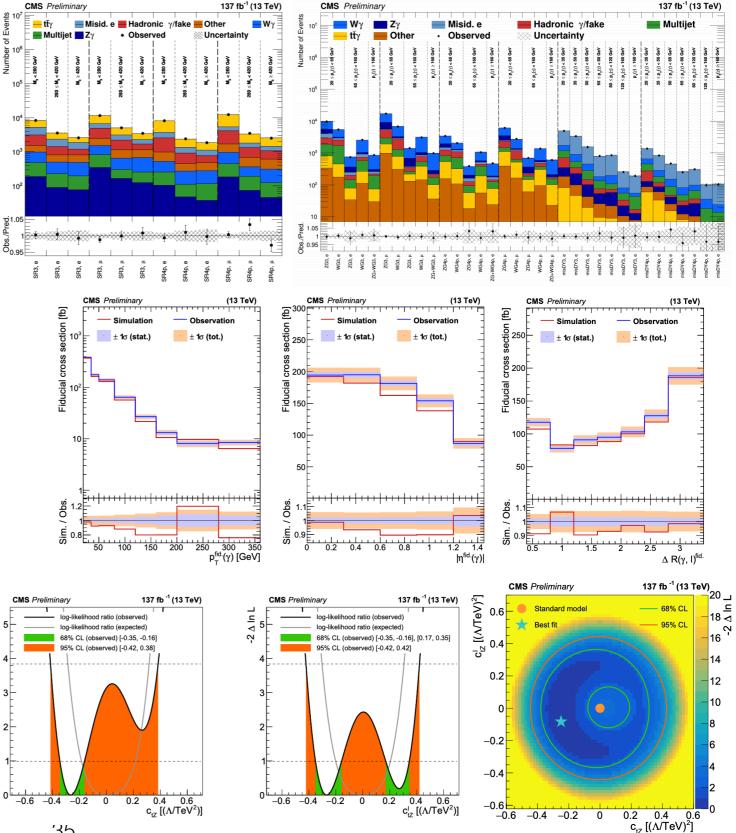
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos(\theta_{\mathrm{pol}}^{\star})} = \sigma_{\mathrm{tZq}} \cdot \left(\frac{1}{2} + A_{\ell}\cos(\theta_{\mathrm{pol}}^{\star})\right)$$

Prediction (for 4FS and 5FS):


$$A_{\ell}^{\rm 4FS} = 0.437^{+0.004}_{-0.003} \qquad A_{\ell}^{\rm 5FS} = 0.454^{+0.004}_{-0.005}$$

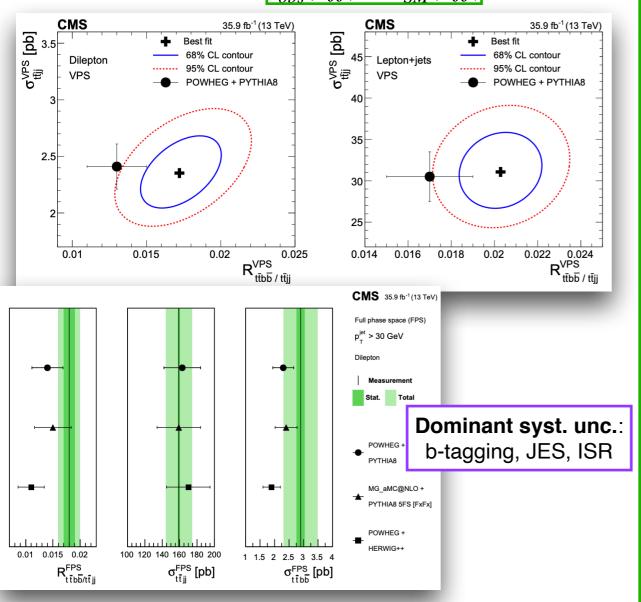
Measurement result:


$$A_\ell = 0.58^{+0.15}_{-0.16}$$
 (stat) ± 0.06 (syst)


$tt\gamma$ cross section

CMS-PAS-TOP-18-010

- Constrain main bkgs in-situ with dedicated sidebands (data-driven estimation)
- Inclusive xsec extracted from simultaneous likelihood fits in 12 SRs and 34 CRs
- Differential cross section measured as a function of $pT(\gamma)$, $|\eta(\gamma)|$, and $\Delta R(I, \gamma)$, unfolded to particle level
- Profiled maximum likelihood scan on Wilson coefficients

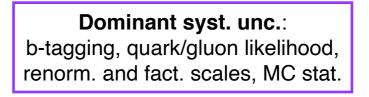

ttjj+ttbb production

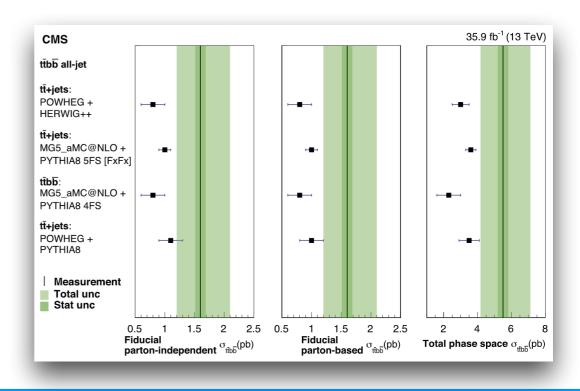
36

<u>JHEP 07 (2020) 125</u>

2016 data @13 TeV: 35.8 fb⁻¹

- Dilepton: 2 e/µ + ≥4 jets (≥2 b-jets)
- Single lepton: 1 $e/\mu + \ge 6$ jets (≥ 2 b-jets)
- Extraction of cross sections / ratio from max likelihood binned fit in VPS independently for the 2 channels
 - extrapolated to FPS using acceptances from MC
 - $\sigma_{obs}(ttjj)$ and R_{obs} higher but consistent with different MCs $\sigma_{obs}(ttjj) \simeq \sigma_{SM}(ttjj)$




PLB 803 (2020) 135285

2016 data @13 TeV: 35.9 fb⁻¹

- Full hadronic: ≥8 jets (≥4 b-jets)
- Data fitted with profiled ML technique
- Predictions underestimate measurements by a 1.5 2.4 factor (1-2 $\sigma)$
- Consistent with previous results

	Fiducial, parton-independent (pb)	Fiducial, parton-based (pb)	Total (pb)
Measurement	$1.6\pm0.1^{+0.5}_{-0.4}$	$1.6\pm0.1^{+0.5}_{-0.4}$	$5.5\pm0.3^{+1.6}_{-1.3}$
powheg (tĪ) powheg (tĪ) + herwig++ MadGraph5_amc@nlo (4FS tĪbb̄) MadGraph5_amc@nlo (5FS tĪ+jets, FxFx)	$\begin{array}{c} 1.1 \pm 0.2 \\ 0.8 \pm 0.2 \\ 0.8 \pm 0.2 \\ 1.0 \pm 0.1 \end{array}$	$\begin{array}{c} 1.0 \pm 0.2 \\ 0.8 \pm 0.2 \\ 0.8 \pm 0.2 \\ 1.0 \pm 0.1 \end{array}$	3.5 ± 0.6 3.0 ± 0.5 2.3 ± 0.7 3.6 ± 0.3

ttcc production

Events /

CMS-PAS-TOP-20-003 submitted to PLB

41.5 fb⁻¹ (13 TeV)

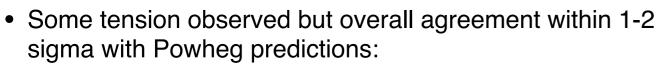
Bin number

Backgrounds

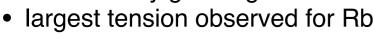
tīcL

tībL

tt+other


Data

tīcc


tŦhh

c, b, and t quarks require jets and heavy flavor tagging (new c-tagger)

- improved ML techniques for HF tagging (DeepCSV)
- c-tagger shape calibration using NN discriminants
- Selection and reconstruction of tt+HF topology with jet-parton match:
 - pick best permutations from NN -> clear improvement in matching efficiency
- ML classifier trained to differentiate tt+HF categories (ttbb, ttbL, ttcc, ttcL, ttLF, tt+other)
 - clear separation between the ttbb, ttcc and ttLF contributions
- Simultaneous fit of event-based NN discriminators in ee, mumu and emu channels
 - 2D distributions will be unrolled to 1D histogram -> 4x4 binning results in 16 bins with varying flavor composition
 - systematic uncertainties as nuisance parameters in the fit
 - scaling factors represent the signal strength and are $\sigma = \frac{\mu \times N^{MC}}{\mathcal{L}^{int} \times \epsilon}$ related to the cross section

- ttbb comes out higher, ttcc and ttLF come out a bit lower in the data
- Rc is in very good agreement with theory prediction

Dominant syst. unc.:

Jet energy scale, c-tagging calibration, renormalization and factorization scales in ME, matching ME-PS (hdamp)

CMS

= 0.88 + 0.17

1.22 + 0.17

0.91 + 0.07

Events / bir

<u>MC</u>

 $\Delta_{\rm b}^{\rm c} = \frac{P(t\bar{t}c\bar{c})}{P(t\bar{t}c\bar{c}) + P(t\bar{t}b\bar{b})}$

 $\Delta_{\rm L}^{\rm c} = \frac{1}{P(t\bar{t}c\bar{c}) + P(t\bar{t}LL)}$

 $P(t\bar{t}c\bar{c})$