

Development of <u>Multi-Via (MVIA)</u> pixel with signalcharge division to realize high effective 10⁵ dynamic range for <u>X-ray Free-Electron Laser applications</u>

T. Hatsui XFEL Project Head Office RIKEN

Outline

- X-ray Free Electron Laser Project at SPring-8
 - Detector Requirements
- Multi-via Pixel Concept
- Experimental Results
 - Gain
 - Depletion depth
 - Radiation hardness
- System Development

SPring-8 in Japan

SPring-8 XFEL (2011-)

SPring-8 X-ray Free-Electron Laser

High Peak brilliance x10⁹

Spatial coherence 100% x10³

Ultrafast pulse < 10 fs x10³

M. Takateletat, NATURE | VOL 408 | 23 NOVEMBER 2002 20406

Look at atomic structure in microscopy way Coherent X-ray Imaging by XFEL

X-ray Source Characteristics

- 60 Hz
- Variation in each shot
 - Pulse intensity, Sample variation, etc.

Requirements

- Frame rate > 60 Hz
- Single Photon Detection Capability
 - What would be the definition?
- Device life > I year

Optimization Parameters

- Quantum Efficiency (Q.E.)
- Full Well (FW) Capacity
- Pixel Size

Charge generated by single x-ray photon

- For 6-12 keV,
 - 1600-3200 electrons
- In optical region
 - \sim I electron

Charge/photon ratio: too large \rightarrow smaller full well

Multi-Via Concept for XFEL 3.2 um pitch via

Multi-Via Concept for XFEL

Layout in 2009-1 chip

A TEG with 32×32 pixels (5 x 5 mm²)

Pixel Core

Signal gain of FY09-1 chip

Experiment with electrical input

MVIA with FZ SOI wafer

2010-8-10 : taken by Omodani

2010-9-7

Depletion Depth Measurement preliminary bias 23 V for FZ SOI

2010-9-7

Annual Fluence 30 Mrad

Active Layer radiation hardness: 150 krad

Q.E. and Radiation Hardness vs. Depletion Depth ($W_{depletion}$), and Photon Energy

2010-9-7

SYSTEM Development

- Phase I: Single module detector 2010.4-2011.3
- Phase II: Tiled Detector
 - 2011.4-2012.3

50 x 50 um Dual Gain MVIA pixel

Pixel	Shape	50 µm square
	Туре	2 gain Multi-via pixel
	Noise	100 e- (0.061 eq. photon@6 keV)
	Full Well	50 Me- (30 000 eq. photons@6 keV)
	Depletion Depth	> 500 µm

MVIA Detector (Dual Gain)

2010-9-7

Packaging

Die (32 mm x 64 mm)	Package	Analog Front-end
 3 reticule units I/O pad on top and bottom Flip chip 	 low height profile to meet industry standard 	 ADC and Control Logic onto flexi cables

MVIA Phase I (-2012.3)

MVIA Detector (-2013.3) 32 Array

		Target Performance
System	Image Area	256 mm x 256 mm
	Tiling	4 x 8
	Pixel Number	5.1 k x 5.1 k
	Dead area	< 0.8 mm
	Vacuum	<10^-7 Pa
	Cooling	Water

Conclusion

- X-ray Free Electron Laser Project at SPring-8
 - Detector Requirements
- Multi-via Pixel Concept
 - Charge division for higher dynamic range
- Experimental Results
 - Gain
 - Depletion depth
 - 260 um achieved
 - 500 um anticipated
 - Radiation hardness
 - 30 Mrad (Si) with some limitation
- System Development

Collaborators

KEK

Yasuo Arai, and SOIPIX collaboration

Private Sector

- OKI Semiconductor
- Rohm
- A-R-Tec Corp
- Kyocera

Detector Development Members

SPARE SLIDES

Remaining Issues

IR drop in large area format

IR drop

Power consumption

- Each amp. 100 uA 1.8V
- 2 amp/pixel

Heat

- 300 W (peak)
- Operation < 0.1 % yield 0.3 W

IR drop

• 0.5 V with current process

Add 5th Metal Layer

Lower current operation

Quasi differential output

IR drop < I30 mV

2010-9-7

2010-1 Submission

- Experiment the large area format to solve
 IR drop
 - dummy output

