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Outline

• Overview of the tracking system

• Tracking and application

• algorithm description

• basic quantities

• application for b-tagging and physics

• Primary vertex finding and application

• algorithm description

• primary vertex quantities and interpretation

• Secondary vertices and b-tagging

• Further results with vertexing
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ATLAS Inner Detector
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• Three-component tracking system
immersed in a 2 T solenoidal magnetic field

• Silicon based Pixel Detector and 
Semiconductor Tracker (SCT)

• Drift tube based Transition Radiation 
Tracker (TRT)

• Excellent resolution of track kinematics

• Focus on silicon parts in this talk



Florian Hirsch,  TU Dortmund, E IV

!
-2 -1 0 1 2

Nu
m

be
r o

f S
ee

ds

0

20

40

60

80

100

120

140

160

310×

!
-2 -1 0 1 2

Nu
m

be
r o

f S
ee

ds

0

20

40

60

80

100

120

140

160

310×

Data

Simulation

ATLAS Preliminary
 = 7 TeVs

Finding Tracks

• Most commonly a pattern recognition algorithm seeded by hits 
in silicon detectors is used

• seeds are found in the silicon layers and a preliminary track direction is 
constructed; three space points in the silicon detectors are required to
form a seed

• hits on these preliminary track
paths are collected and a track
candidate is fitted with an algorithm
implementing a Kalman filter

• ambiguities between track candidates
are solved with a pattern recognition
algorithm assigning track scores based
on hits-on-track and fit quality
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Event Display with Tracks
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Hits on Track
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Tracks are built from Inner Detector hits.
A different number of hits on a track is expected 
depending on the tracks’ kinematics due to 
detector geometry and conditions. 
To establish tracks and use them, it is therefore 
crucial to have a good understanding of the hit 
patterns.
Distributions of the number os hits-on-tracks 
show very good agreement for data and simulation.

Simulation normalized to data

Only tracks in jets are 
shown in these plots 
since they are of special 
importance for flavor 
tagging.

shingling
SCT

Pixel Detector

Pixel Detector
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Hits on Track
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b-tagging cuts
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b-tagging cuts
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b-tagging cuts
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endcaps

A good description of data by 
simulation in different kinematic 
regions is important due to the 
detector layout.
Displayed are the average hit 
multiplicities in bins of eta and 
phi.

The agreement is good, the 
detector structure is well 
described by the simulation.

Only tracks in jets are 
shown in these plots 
since they are of special 
importance for flavor 
tagging.

SCT

SCT

Pixel Detector

Pixel Detector
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Impact Parameters
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An important track quantity is the 
distance of the point of closest 
approach to the interaction.
d0 is the transverse impact 
parameter and z0 is the 
longitudinal one.

Only tracks in jets are 
shown in these plots 
since they are of special 
importance for flavor 
tagging.

d0

Sd0

z0

Sz0

Simulation normalized to data

Sd0 = d0/σ(d0).
d0 and z0 are unbiased 
w.r.t. primary vertex.
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Tracking for b-tagging
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The probability of the jet being a light quark jet is 
derived from a calibration function which exploits the 
symmetry of the light jet distribution around 0.
It is clearly visible that a cut on this probability yields 
samples with increased b-content.

The impact parameter can be used to identify the flavor 
of a jet using its corresponding tracks. Here the JetProb 
tagger is shown as an example.
Simulation shows that b-jets are more prominent in 
regions where the impact parameter significance is high.

Simulation normalized to data

signing of the significance is 
now done w.r.t. the jet axis 
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Kinematic Properties of Tracks
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Another important 
track quantity is the 
transverse 
momentum. The 
description of data 
by simulation is good 
and the track 
momenta can be 
used to form vertex 
masses.

The description of 
the track eta 
distribution by 
simulation is also 
shown and in good 
agreement with data.

ND = non diffractive
SD = single diffractive
DD = double diffractive
Tracks from minimum bias events are shown. 
They are no longer required to be in jets.

Normalized to unit area
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Physics with Tracking
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Here the J/Ψ → μμ decay is reconstructed 
by combining two tracks to a decay vertex 
if both tracks have been identified as muons 
(with the muon system).

Simulation normalized to data

The J/Ψ mass peak is clearly visible and the 
measured mass agrees with previous 
measurements. 

Also the cross-section and the ratio of 
non-prompt to prompt J/Ψ was measured.
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Finding Primary Vertices

• Primary vertices have to be reconstructed to

• measure the interaction point (vital for physics)

• measure luminous region

• measure pile-up

• A primary vertex is reconstructed in two steps

• a vertex seed is found by selecting tracks compatible with coming from the 
interaction region (beamspot constraint)

• an adaptive vertex fitter is applied to fit the vertex parameters from those tracks

• multiple vertices can be found by creating new seeds from tracks incompatible 
with the first primary vertex and iterating the algorithm

12
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Beamspot Position
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Reconstructed primary vertex position in 
2D projections with beamspot constraint.

The distribution of primary vertices is used 
to measure the luminous region in ATLAS.
In return this is used to constrain the 
primary vertex to the beam spot.

beam tilt visible
asymmetry in transverse plane
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Secondary Vertices for b-tagging
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Secondary vertices can be used to identify 
particles with significant lifetimes.
This example shows how the SV0 tagger 
enriches the sample with b-jets.

Simulation normalized 
to number of jets in data

primary
vertex

decay 
length
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vertex
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More on Vertices
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Vertex reconstruction can 
also be used to map the 
material of the Pixel 
Detector.
Here tracks compatible with 
the primary vertex or with
γ-conversions or decays of 
light hadrons are rejected to 
find vertices from material 
interactions.

The beampipe and the 
different layers of the 
Pixel Detector are 
clearly visible as are 
services especially for 
the b-layer.

Data Simulation

Comparison of 
data and simulation 
for pixel modules.
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More on Vertices
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Projections of the mapped material in the z-r plane 
and the r-phi plane. The z-r projection shows the 
services along the staves of the innermost and the 
second pixel layer.
There is a prominent accumulation of vertices at 
radii smaller than the beam pipe which are identified 
as fake vertices by comparison with simulation.

The r-phi projection is especially interesting since it 
shows that the beampipe is offset relative to (0,0) in 
ATLAS coordinates.
The real center is calculated to be at (-0.2mm,-1.9mm).
This is important input to the detector simulation as is 
the exact shape of pixel modules and services.
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Summary

• ATLAS features a three-component Inner Detector which is 
designed for tracking and vertexing

• we observe good agreement between data and Monte Carlo for basic quantities 
showing that we have a good understanding of the detector performance

• we also observe discrepancies in more sophisticated measurements which yield a 
lot of information about Monte Carlo tunings and the underlying physics

• Tracking and vertexing are vital for many applications

• they allow measurements of LHC conditions and a mapping of detector material

• also physics measurements like measuring the J/Ψ mass and the J/Ψ cross-section 
are possible and have been conducted

• flavor tagging algorithms depend strongly on precise track quantity measurements 
and an enhancement of heavy quark jets using these taggers has been shown

17
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Backup
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JetProb Tagger
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The JetProb tagger is a robust 
tagger which is being 
commissioned on early data.

It uses the shape of the negative 
side of the signed decay length 
distribution of tracks to derive a 
calibration function. The 
calibration function yields a per 
track likelihood that the track is 
a prompt track, the sum over 
those likelihoods gives a similar 
probability for the associated jet.

Jets with low JetProb 
probabilities are therefore likely 
to be b-jets.
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The SV0 tagger is a robust 
tagger which is being 
commissioned on early data.

It uses a secondary vertex finder 
which rejects tracks compatible 
with the primary vertex and 
rejects vertices compatible with 
V0-decays, conversions and 
material interactions. The tagging 
weight is the signed decay length 
significance of the reconstructed 
secondary vertex (in the jet).

Vertices with a high signed decay 
length significance are likely
b-decays.

 (L)!L / 
-20 -10 0 10 20 30

Nu
m

be
r o

f j
et

s
0

20
40
60
80

100
120
140
160
180 SV0 selection

Data 2010
 = 7 TeVs(

)-1L = 0.4 nb

Simulation
b jets
c jets
light jets

ATLAS
Preliminary

 (L)!L / 
-20 -10 0 10 20 30

Nu
m

be
r o

f j
et

s
0

20
40
60
80

100
120
140
160
180

Primary Vertex

Jet Axis

Decay Length

Track
Impact
Parameter

Secondary Vertex


