

ATLAS Inner Detector

- The ATLAS Inner Detector (ID) is designed to provide hermetic and robust pattern recognition, excellent momentum resolution and both primary and secondary vertex reconstruction for charged tracks.
- The ID is made of three independent but complementary sub-detectors:

	Pixel Detector <i>Pixel detectors</i>		SCT Detector (SemiConductor Tracker) Micro-strips silicon detectors		TRT Detector (Transition Radiation Tracker) Gaseous straw tube elements	
Pixel Size	50x400 μm²			Straw tube	Diameter: 4mm	
Intrinsic	10μm (Rφ) , 115 μm (z) ^(*)	Inter-strip distance	pitch: 80 μm	Size	Length:144cm (barrel)	
resolution		Intrinsic	17um (Ro) . 580 um (z) ^(*)	Intrinsic	130 μm (Rφ) ^(*)	
Number of	1744	resolution	F. (],, 200 p (-)	resolution		
detectors		Number	1088	Number of	176	
Geometrical	3 layers (barrel)	of	4000	detectors		
Layout	2x3 discs (end-cap)	detectors		Geometrical	96 modules in 3 rings (barrel)	
		Geometric	4 layers (barrel)	Layout	2x160 planes in 40 structures	
^(*) The ATLAS experime	ent at the CERN Large hadron Collider,	al Layout	2x9 discs (end-cap)		(end-cap)	

6/9/10

JINST 3 S08003

Assembly and Integration

• PIXEL DETECTOR

112 barrel staves (13 pixel modules/stave)48 end-cap sectors (6 end-cap modules/sector)

Structure	Assembly Precision	Survey Precision	
Modules in Staves	>50µm	5-10µm	
Modules in Sectors	>50µm	2µm	

PIXEL2010: International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

ATLAS Inner Detector Alignment

The real module position do not correspond to the nominal locations due to: assembly precisions, thermal expansion,....

Alignment Requirements to achieve the ATLAS Inner Detector goals:

• The knowledge of the alignment constants should not lead to a significant degradation of the track parameters beyond the intrinsic tracker resolution. Degradation of tracking resolution less than 20% requires a detector alignment with the following resolutions:

	PIXELs	SCT	TRT	
Rφ (μm)	7	12	30	

Strategy for the alignment of the Inner Detector:

- Initial knowledge of the module position based on :
 - Optical and mechanical surveys during the assembly and the integration survey.
- Monitoring of relative movement during operations:
 - Frequency Scanning Interferometry (FSI) system in the SCT:
 - The FSI system is up and running
 - Not fully integrate it in the alignment
- <u>Track based offline alignment Algorithm within the ATLAS software framework:</u>
 - Cosmic data with/without B field
 - 900 GeV & 7 TeV collision data

Track-based alignment algorithms

- Alignment algorithms are used to achieve the required alignment precision
- All of them used the residual(r) information
- ID detector has more than 35000 degrees of freedom to align

RESIDUAL:

$$r = hit_{measured} - hit(\pi, a)_{extrapolated}$$

X² DEFINITION:

$$\chi^2 = \sum_{Tracks} r^T(\pi, a) V^{-1} r(\pi, a)$$

a: alignmnet constants; π: track parameters V: covariance matrix of the hit measurement

The alignment corrections are obtained at different levels corresponding to mechanical detector structures

Alignment Geometry Levels (silicon only)

Alignment Geometry description based on alignable objects

Schedule with real data

Alignment steps using real data.

Cosmic Data: Detector Commissioning

First real reconstructed tracks with the real detector.

Two periods of data taking: 2008/2009

- Tracks crossing all ID
- Cosmic rays with uneven illumination (more hits on the top and bottom parts of the barrel)

Different alignment constants sets were produced during these periods.

Procedure:

- Initial geometry: Pixel Survey information + Nominal for the other detectors
- Different alignment levels
- The ATLAS Inner Detector commissioning and calibration arXiv:1004.5293v2[physics.ins-det]7Jun 2010)

Cosmic Data: Detector Commissioning

Silicon Alignment:

- PIX vs SCT Level:
 - 1mm between PIX and SCT barrel
- Layer-Disc level:
 - Barrel: O(100 μm)
 - End-cap: O(1mm)
- Stave Level:
 - Barrel: O(10µm)
- Module alignment:

(only used 2DoFs: Tx-Rz)

- Pixel: Internal structure (bowing)
- SCT: No shape distorsions (O(30μm))

Residual between the track incidence angle and the pixel cluster position in the precision direction (local x) versus the z position of the hit for two example staves.

TRT Alignment:

- Internal TRT alignment Level:
 - Barrel: O(200-300 μm)
 - Wheels: O(100µm)
- TRT vs Silicon:

– 2mm

Cosmic Data: Detector Commissioning

Collisions Data: End-Cap alignment 900 GeV

First LHC Collisions Data at 900 GeV (Dec 09)

- Barrel pretty well aligned using cosmic data
- End-caps showed wider residual distributions (SCT hit efficiency showed an alignment problem in end-cap C)

Events (Alignment Tracks)	60k (6k)
Alignment Cuts	p _t >1 GeV & Silicon_hits>7 hits
Alignment Level	Disc Level

The position and orientation of SCT end-cap discs was updated and the alignment was dramatically improved!

Improvement in the end-cap alignment

Collision Data: Refined alignment with 900 GeV

Alignment was done using different data:

2009 cosmic ray data (solenoid on and solenoid off) : 460k tracks

2009 collision data: 62k tracks

Alignment procedure:

- ID calibration stream used:
 - Provided a high ratio of isolated tracks with an uniform illuminated detector
- Beam spot constraint:
 - This constraint is essential for achieving good transverse IP resolution and consequently quality vertexing
- New alignment levels included:
 - Ring alignment for the SCT discs
- Different track topologies (cosmic and collision) used to eliminate the weak modes

(see later)

• Results:

FWHM/2.35	Pixel		SC	т	TRT	
At 900 GeV	Barrel	End-cap	Barrel	End-cap	Barrel	End-cap
Data (µm)	28	23	43	45	147	167
MC (μm)	23	20	38	40	145	143

Pixel detector alignment resolution: 15μm

Collision Data: Performance with 7 TeV

FWHM/2.35	Pixel		SCT		TRT	
At 7 TeV	Barrel	EC	Barrel	EC	Barrel	EC
Data (µm)	25	20	42	45	141	162
MC (μm)	18	19	34	38	143	135

Collision Data: Performance with 7 TeV

Collision Data: Detector Stability at 7 TeV

Pixel and SCT alignment stability as a function of time (over a 7 weeks period):

Alignment Validation: Resonances

- The weak modes are deformations that leave the X² unchanged
- Some weak modes deformations have been simulated (MC samples) to study the effect
- Resonance mass peak and width are sensitive to alignment effects (K_s , J/ ψ , Z ...)
- MonteCarlo study

• The study using real data is in progress

Summary

- ATLAS Inner Detector alignment procedure has been presented in this talk
- Several exercises with real data have been done:
 - Commissioning phase with cosmic data:
 - -Alignment constants to record first collision data
 - End-cap alignment with the first collisions
 - Accurate alignment combining 900 GeV data and cosmic data – Pixel resolution: 15μm
 - New alignment with 7 TeV data is in progress
- Ready for new challenges !!

BACKUP SLIDES

Alignment Requirements

Alignment Requirements to achieve the ATLAS Inner Detector aims:

• The knowledge of the alignment constants should not lead to a significant degradation of the track parameters beyond the intrinsic tracker resolution (degradation of tracking resolution less than 20%).

6/9/10

Track-based alignment algorithms

GLOBAL X² ALGORITHM:

End-cap alignment using 900 GeV data

PIXEL2010: International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

Refined alignment with 900 GeV collision data

Alignment performance at 7 TeV

	FWHM/2.35	Pixel		SC	т	TRT	
		Barrel	End-cap	Barrel	End-cap	Barrel	End-cap
	Data (µm)	25	20	42	45	141	162
	MC (µm)	18	19	34	38	143	135

Alignment Validation: Weak Modes

- The weak modes are deformations that leave the X² unchanged
- Some weak modes deformations have been included into MC samples to study the effect

