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Track based alignment of a simple toy tracker

You want to track a charged particle in a magnetic field
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Track based alignment of a simple toy tracker

So you take six modules of your high-precision tracking detec-
tors
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Track based alignment of a simple toy tracker

and you think you have recorded the right signal.
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Track based alignment of a simple toy tracker

But unfortunately the modules were not mounted precisely where
needed
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Track based alignment of a simple toy tracker

and your hits are not where you thought
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Track based alignment of a simple toy tracker

You still assume an ideal tracker and you know that the particle follows
a smooth trajectory
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Track based alignment of a simple toy tracker

so you correct the modules’ positions.
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Track based alignment of a simple toy tracker

But compared to the reality, you are still off.
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Track based alignment of a simple toy tracker

So you record more tracks
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Track based alignment of a simple toy tracker

and more
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Track based alignment of a simple toy tracker

and even more
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Track based alignment of a simple toy tracker

you take them all into account and deduce the true position
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Track based alignment of a simple toy tracker

until you get it. This is what alignment has to do.
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Algorithms

I In the context of this talk, alignment is a variant of a linear
least squares problem

I The expression to be minimized is

χ2(p,q) =
tracks∑

j

hits∑
i

rT
ij (p,qj) V−1

ij rij(p,qj) (1)

I Follows a χ2 distribution for a given number of degrees of
freedom (ndof), i.e. 〈

χ2(p,q)

ndof

〉
= 1

〈
prob(χ2, ndof)

〉
= 1/2

4 / 41



Algorithms

I In the context of this talk, alignment is a variant of a linear
least squares problem

I The expression to be minimized is

χ2(p,q) =
tracks∑

j

hits∑
i

rT
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ij rij(p,qj) (1)

where
I rij : residuals (track-model prediction−measured hit)
I p: alignment parameters describing the actual geometry
I qj : track parameters of the j th track
I V−1

ij : the inverse covariance matrix

diagonal if measurements are uncorrelated: V−1
ii = 1/σ2

i with
σi the Gaussian error of the measurement
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A brief detour: The CMS tracker

CMS is one of the
two multi purpose
detector at
CERN’s Large
Hadron Collider
(LHC)
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A brief detour: The CMS tracker

The silicon tracker
is in the heart of
CMS. It consists
of

I 1440 silicon
pixel modules

I 15 148 silicon
strip modules

Part of the strip
modules are made
of two sensors and
chained to one
readout.
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Algorithms
In CMS we have two competing algorithms:

I one that works localy and iteratively (HIP):

I and one that works globally and does it in one step
(Millepede-II)
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Algorithms
In CMS we have two competing algorithms:

I one that works localy and iteratively (HIP):

i.e. the sum in the χ2-equation (1) runs over all tracks passing
through one module, optimizes the parameters p of this
module.

I Benefit: small problems to solve in each step
I Advantage: uses same track model as in tracking
I Disadvantage: a lot of iterations needed

(16 588 modules with 5 to 6 degrees of freedom, reiterate if
needed)

I and one that works globally and does it in one step
(Millepede-II)
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Algorithms
In CMS we have two competing algorithms:

I one that works localy and iteratively (HIP):

I and one that works globally and does it in one step
(Millepede-II)

i.e. the sum in the χ2-equation (1) runs over all tracks and
modules

I Benefit: everything in one go, all correlations considered
I Disadvantage: huge problem to solve

(16 588 modules, 5 to 6 degrees of freedom
⇒ 80 000× 80 000-matrix to handle)
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Alignment results

Where is the alignment of the CMS
tracker today?
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Results – χ2 of tracks
We have working alignment in CMS:

This one has been done using both algorithms run in sequence, a
standard procedure since long.
Here χ2 of tracks from track reconstruction (not used for
alignment) are shown, compared to expectations from full
detector simulations (MC: “Monte-Carlo”).
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Results – Distribution of median of residuals

Or as an example the alignment of the pixel barrel detector:

Shown here are the median values from residual distributions for
each detector module. This suppresses random effects in the
track-to-hit residuals.
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Results – vertex validation

01Jun10 Tk Alignment 10

Primary vertex validation on 2010 collisions

d
xy

 and d
z
 of track N wrt the 

PV computed with the remaining 
N-1 tracks as a function of φ-sector
of the probe track
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Results – A physics example: Z → µµ

Reconstructed known resonances are also a measure of alignment
quality

Shaded: simulation. Doing such things relies (among other factors)
on a good alignment.
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Results – Alignment status of CMS inner tracker

From all these plots we know: The alignment is close to
expectations.

What can we do now?

12 / 41



Going further: introducing more complex surface
description

To what distortions of the tracker are
we sensitive?

How can we improve?
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Going further: the problem

The following plot lead the way to further developments:

Distribution of the probability of the χ2 vs. d0:
Individual tracks from cosmic rays (CRAFT09) were fitted and binned. Shown

are averages (markers) and RMS/
√

N (error bars).

What does this mean?

14 / 41



Going further: the problem
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Whenever you plot 〈prob(χ2, ndof)〉 vs. some reasonable track
parameter the expected result would be a flat distribution with〈

prob(χ2, ndof)
〉

= 1/2
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Going further: the problem

d0 is one of the track
parameters.
It describes the distance of
closest approach to the origin
of the coordinate system (our
case: geometric center of the
tracker)
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Going further: the problem

Real modules differ from the
circular shape, i.e. are flat
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Going further: the problem

and so it is clear that d0 maps
to the incident angle w.r.t the
module normal.
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Going further: the solution to the problem
Analyzing the residuals versus the local module coordinates
revealed the problem:

u
relative hit position on module 2u/L
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Shown here are the results for all modules of the two innermost
layers in the strip tracker barrel (TIB).

I α: track angle to the normal

I du: residual of measured and predicted position (track fit)

So we most likely have bowed sensor surfaces. No surprise for
hardware people.
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More complicated surface distortions
The movements in alignment are superpositions of

Shifts along the axes Slopes (i.e. rotations)
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More complicated surface distortions
The movements in alignment are superpositions of

Shifts along the axes Slopes (i.e. rotations) bowed surfaces
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This adds 3 more parameters per module. Does this help?
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More complicated surface distortions

Implementing this in alignment lead to the following result:

u
relative hit position on module 2u/L
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This shows the residuals when aligning for flat and curved sensor.
Observe: The bowed curve belongs to the flat sensor assumption.

I α: track angle to the normal

I du: residual of measured and predicted position (track fit)
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More complicated surface distortions
But we have another difficulty: The topologies of the strip modules
differ in the regions of the tracker:

In the inner regions, the modules consist of one sensor
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More complicated surface distortions
But we have another difficulty: The topologies of the strip modules
differ in the regions of the tracker:

In the outer regions, the modules are made of two sensors, daisy-
chained to the read-out electronics
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More complicated surface distortions
But we have another difficulty: The topologies of the strip modules
differ in the regions of the tracker:

These composite modules may have a kink in between
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More complicated surface distortions

And for composite modules:

v
relative hit position on module 2v/L
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Again this confirms our findings. The bow in the right halve of the
sensor is visible.
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More complicated surface distortions

Distribution of the probability of the χ2 vs. d0:
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Aligning for bowed and split sensors corrects for the d0 dependence
up to about 50 cm.

This came with an increase of the number of parameters to align
from 80 000 to 200 000. Alignment done in less than half a day
(20 GB RAM, 7 cores in parallel).
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More complicated surface distortions
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The jumps are an artifact of our detector topology.
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More complicated surface distortions
To understand these jumps, we need to see what happens as d0

grows:

small d0 larger d0 d0 > rlayer and larger

Such a track shows moderate track angles at every hit
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More complicated surface distortions
To understand these jumps, we need to see what happens as d0

grows:

small d0 larger d0 d0 > rlayer and larger

In this case, the track angles at the innermost hits are larger, the χ2

gets deteriorated by a wrong surface description
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More complicated surface distortions
To understand these jumps, we need to see what happens as d0

grows:

small d0 larger d0 d0 > rlayer and larger

The innermost hits are lost, the χ2 jumps to a better, though still
lower than ideal, value
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More complicated surface distortions
To understand these jumps, we need to see what happens as d0

grows:

small d0 larger d0 d0 > rlayer and larger

And the game starts over again
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Lessons learned

What aspects of detector design
helps aligners?
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Lessons learned

Here is my personal list of things to consider in future detectors

I Build detector modules with high resolution power

I Choose the module size as large as possible

I Mount your detector on a rigid structure (but don’t waste
money on precision mounting)

I Choose a detector design that is not too optimal

I Think of possibilities to measure tracks from non-standard
origin

I Add visible survey marks

I Have overlap

I Omit unnecessary features

And now let me motivate some points of this list. . .
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How to align the “third” dimension?

Aligning the distances between layers works on a subtle detail:
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How to align the “third” dimension?

In case of tracks with similar direction
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How to align the “third” dimension?

the distance cannot be determined precisely.
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How to align the “third” dimension?

Only for large displacements we get a change in χ2
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How to align the “third” dimension?

Adding tracks from other sources
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How to align the “third” dimension?

places much more restrictions
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How to align the “third” dimension?

and alignment would need to distort the tracks beyond physical limits.
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How to align the “third” dimension?

and alignment would need to distort the tracks beyond physical limits.

The pitch keeps the distance of the hits on the sensor. And the pitch
is probably the best constant over time.
⇒ large modules and good resolution are important.
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How to align the “third” dimension?

and alignment would need to distort the tracks beyond physical limits.

Observe: Tracks from other sources give you very strong constraints.
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Lessons learned – rigid mounting

Precision mounting is only necessary if

I you are sure that you constrain a mode

I you know that this stays stable throughout the whole lifetime
of your detector

Our experience: With an alignment algorithm (properly chosen and
setup) and a good selection of tracks we may align displacements
of up to a few mm (sic!).
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Lessons learned – omit unnecessary feature

Don’t implement a hardware based alignment system unless you
know that you

I really improve the alignment

I have no side effect (i.e. added material)
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Conclusions

I Alignment of the CMS silicon tracker is well in shape. The
performance is already close to design.

I We are sensitive to sensor bow and the substructures within
modules

I We were able to align for sensor bow and kink

And my persoanl wish:
Construct future detectors with track-based alignment in mind.
This will help physics (and our budgets).

28 / 41



Credits
We would like to give credits to the following people:

I Volker Blobel, Universität Hamburg (inventor of the MillePede-II
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I Claus Kleinwort, DESY: Investigated the problem by implementing the
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sensors) and MillePede-II (error estimation). Performed several studies
with Cosmics.

I Frank Meier, PSI: Spotted the initial problem while doing routine
alignment. Performed studies with Cosmics and error estimation.

I Ernesto Migliore, Torino (and collaborators): Performed independent
studies for confirmation based on tracking.

I Hans-Christian Kästli, PSI: Performed measurments of assembled pixel
barrel modules on the microscope.
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Backup slides

Backup slides
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How the bowed surfaces are implemented

The bows were implemented using two-dimensional Legendre
polynomials:

w(u, v) =
N∑

i=0

i∑
j=0

cijLj(u)Li−j(v)

where

I w(u, v) is the deviation from a plane at the origin in w
direction as function of u, v

I N the maximal order of the Legendre polynomials.
For N →∞ every possible surface may be described.

I cij coefficients

I Li (x) Legendre polynomial of i-th order
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How the bowed surfaces are implemented

The bows were implemented using two-dimensional Legendre
polynomials:

w(u, v) =
N∑

i=0

i∑
j=0

cijLj(u)Li−j(v)

Pro memoria:

I Legendre polynomials are orthogonal on x ∈ [−1, 1]
I The first three Legendre polynomials are

I L0(x) = 1 L1(x) = x L2(x) = 1
2 (3x2 − 1)

I N = 1 is the same situation as in the past, just slopes instead
of angles

I N = 2 allows for bends, the sagittae will be
I Su = 3

2c22 Suv = c21 Sv = 3
2c20
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Backup: Error estimate on parameters

How precise can we determine these bows? In principle,
Millepede-II solves for x like in1

Mx = y

Inversion of M would give access to the covariance matrix, but
inversion is of O(n3) and n ≈ 200 000.

Observe that when solving for x in

Mx = δi

where δi is the Kronecker delta, x will be the i-th column of M−1.
Solving for x is O(n2).

1see backup slides for more
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Backup: Error estimate on parameters

Calculation cost for one error:

I Basis: Alignment using 200 000 parameters (bows and
composite modules)

I Memory footprint: 19 GB of RAM (grace to sparsity of the
matrix)

I 12 minutes of wall-clock time (parallelized on 7 cores)

I 1.1 hrs of CPU time

So determining the errors for all parameters would require more
than 4 years. . .

Carried out on the Tier3 at PSI using one CPU with 8 cores (Intel Xeon

Nehalem) and 24 GB of RAM.
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Results: Error estimate on parameters

Example: pixel modules in the innermost layers (sagitta in v):
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Result obtained using several millions of collision and cosmic
events.
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Backup: How Millepede works

Millepede-II is a general solver for linear least squares problems
with a special structure typical for alignment problems.
The expression for the χ2 to be minimized is

χ2(p,q) =
tracks∑

j

hits∑
i

rT
ij (p,qj) V−1

ij rij(p,qj) (2)

where p denotes the alignment parameters describing the actual
geometry and qj denotes the track parameters of the j th track.
Allow for the following identification:

I Alignment parameters (p) 7→ global parameters

I Track parameters (qj) 7→ local parameters
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Backup: How Millepede works

Nonlinear dependencies (angles) require local linearization:

χ2(p,q) =

tracks∑
j

hits∑
i

1

σ2
ij

(
mij − fij(p0,qj0)−

∂fij
∂p

∆p−
∂fij
∂qj

∆qi

)2

(3)

Here, fij is the hit position predicted by the track model from track
reconstruction and mij is the measured hit position. Assuming
uncorrelated measurements allows to replace th inverse covariance
matrix by 1

σ2
ij

.

To minimize this expression one does the obvious: rewrite is as a
matrix expression and then differentiate and you will get
corrections to your parameters as a vector ∆a.
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Backup: How Millepede works

Doing this ends up with2

∆a = (AT WA)−1AT Wr (4)

where ∆a are the estimated correction of parameters, A the
Jacobian, W the inverse covariance matrix of the measurements
and r the residuals.
The estimate of the covariance matrix of the parameters V[∆a] is
then

V[∆a] = (AT WA)−1 (5)

If inversion is feasible, the errors are available.

2following the notation in Blobel/Lohrmann
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Backup: How Millepede works

Arrange the matrix (and the
vectors as well, but not shown
here) in the following way: Put
all global parameters at the
begin, followed by the local
parameters.
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Backup: How Millepede works

For each track a new block will
be added. Entries in the global
block are updated.
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Backup: How Millepede works

The entries for the local block
are connected to the global
parameters via the band parts
of the matrix
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Backup: How Millepede works

The pattern starts to appear:
Each track contributes to the
global and local parameters.
The entries of the local
parameters connect to the
global parameters in the band
outside
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Backup: How Millepede works

More formally the matrix
consists of the following parts:

I
∑

Ci : the block
containining the sum of
the contributions to the
global parameters

I Γi : small blocks for each
track, local parameters,
disjoint between
measurments

I Gi : band matrix
connecting the local
parameters of track i with
the global parameters hit
by the track
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Backup: How Millepede works

So you end up with this equation
∑

Ci · · · Gi · · ·
...

. . . 0 0
GT

i 0 Γi 0
... 0 0

. . .

 ·


a
...
αααi
...

 =


∑

bi
...
βββi
...


where the matrix has size

N = Nparameters + Ntracks · Ntrack parameters

In alignment, you want to solve for the global parameters only, so
there might be a possibility to reduce the problem to

Nparameters
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Backup: How Millepede works

Using some block matrix theorems (partitoning formulas for
calculation of inverse matrices) you can reduce this problem to C′

 ·
a

 =

b′


where a new matrix and a new vector of size Nparameters are used:

C′ =
∑

Ci −
∑

GiΓ
−1
i GT

i b′ =
∑

bi −
∑

Gi (Γ−1
i βββi )

where Γ−1
i is small and therefore can be calculated in reasonable

time. Even though i might be large, the cost for solving the
reduced equation is

N2
pars + Ntracks · N2

track pars � (Npars + Ntracks · Ntrack pars)
2
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Backup: How Millepede works

If you don’t believe the impact, let us calculate:

N2
pars + Ntracks · N2

track pars � (Npars + Ntracks · Ntrack pars)
2

using the following typical values for an alignment in CMS:

I Npars = 200 000

I Ntracks = 107

I Ntrack pars = 30

this gives

5 · 1010 ≈ 4 · 1010 + 107 · 9 · 102 � (2 · 105 + 107 · 30)2 ≈ 1017
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