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Pixel detector in HV CMOS technology

• Monolithic sensor

• 100% fill-factor

• In-pixel CMOS signal processing

• Radiation hard (tested to 50 MRad (x-rays) and 1015 neq (protons)) 

• Excellent SNR (seed 21 μm-pixel SNR for high energy betas > 80) 

• Allows thinning below 50 μm without signal decrease

• Good timing properties (theoretically 40 ps signal collection time)

• Not expensive (standard technology used, wafer run costs 98 k€)
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The detecor stucture

Deep n-well

Pixel electronics in the deep n-well

Based on twin-well structure

P-substrate

NMOS transistor
in its p-well

PMOS transistor
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“Smart” diode array

Deep n-well

Pixel electronics in the deep n-well

Based on twin-well structure

P-substrate

NMOS transistor
in its p-well

PMOS transistor

Smart diode
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“Smart” diode array in HV CMOS technology

P-substrate

NMOS transistor
in its p-well

PMOS transistor

Particle

E-field

14 μm at 100V bias 
(MIP: 1080e from depleted layer)

Deep n-well

Pixel electronics in the deep n-well

High voltage deep n-well used



6

Signal detection
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Project overview

First chip – CMOS pixels

Hit detection in pixels

Binary RO

Pixel size 55x55μm

Noise: 60e

MIP seed pixel signal 1800 e

Time resolution 200ns 

CCPD1 Chip

Bumpless hybrid detector

Based on capacitive chip to chip

signal transfer

Pixel size 78x60μm

RO type: capacitive

Noise: 80e

MIP signal 1800e

CCPD2 Chip

Edgeless CCPD

Pixel size 50x50μm

Noise: 30-40e

Time resolution 300ns

SNR 45-60

PM1 Chip

Pixel size 21x21μm

Frame mode readout

4 PMOS pixel electronics

128 on chip ADCs

Noise: 90e

Test-beam: MIP signal 2200e/1300e

Efficiency > 85% (timing problem)

Spatial resolution 7μm

Uniform detection

PM2 Chip

Noise: 25e, Seed MIP SNR ~ 100

Test beam plannedIrradiations of test pixels

60MRad – SNR 22 at 10C (CCPD1)

1015neq SNR 50 at 10C (CCPD2)

Frame readout - monolithicBumpless hybrid detector
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Experimental results

• Measurements with HVPixelM2
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HVPixelM2 chip
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ADC
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Digital output

10000001000

 Pixel size: 21 X 21 m
 Matrix size: 2.69 X 2.69 mm (128 X 
128)
 Possible readout time/matrix: ~ 
simulated 40 s (tested 160 s/matrix)

 ADC: 8 – Bit
 Measured power:
 3 μ W/pixel analog

 8 μ W/pixel digital at 160 s/matrix (can 

be reduced by factor ~3 by lowering the 

digital voltage)

8 LVDS

Counter

Amplifier

Comparator

Latch

Ramp gen.

HVPixelM2 chip

Pixel matrix
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Noise measurement and 55Fe spectrum (HVPixelM2)
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High-energy beta spectra (HVPixelM2)
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Radiation tolerance

• We expect a good tolerance to non-ionizing damage thanks to the small 

drift distance and high drift speed in the depleted area. Due to high 

dopant density the type inversion should occur at higher fluencies. 

• Concerning the ionizing damage, we can benefit from the properties of 

the used deep submicron CMOS technology. In contrast to the most of 

the MAPS, we can rely on PMOS transistors inside pixels that are more 

radiation tolerant than NMOST.
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Experimental results – irradiation studies

• Besides HVPixelM1 (first version) we have used for the irradiation tests the 

pixel matrices for the CCPD. They contain pixels with charge sensitive 

amplifiers, and leakage current compensation. 

• Due to the continuous-mode leakage current compensation, these pixels 

are less sensitive to the increase of the leakage currents
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Irradiation with neutrons (1014 neq/cm2) – signal
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Irradiation with neutrons (1014 neq/cm2) – noise
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Irradiation with protons (1015 neq/cm2, 300 MRad)
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Irradiation with protons (1015 neq/cm2, 300 MRad)
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Irradiation with protons (1015 neq/cm2, 300 MRad)

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

 

 

~
n
u

m
b

e
r 

o
f 
s
ig

n
a

ls

signal amplitude [V]

RMS Noise, 2.4mv (40e)

 
55

Fe, 100mV (1660e)

 
55

Na, 220mV  (3750e)

Temperature -10C

Irradiated with protons to 10
15

n
eq

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

 

 

~
n
u

m
b

e
r 

o
f 
s
ig

n
a

ls

signal amplitude [V]

 RMS Noise, 2.8mv (77e)

 
55

Fe, 60mV  (1660e)

 
55

Na, 180mV  (4980e)

Temperature 10C

Irradiated with protons to 10
15

n
eq

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

~
n
u

m
b

e
r 

o
f 
s
ig

n
a

ls

signal amplitude [V]

 RMS Noise, 13mv (270e)

 
55

Fe, 80mV  (1660e)

 
55

Na, 200mV  (4150e)

Temperature 20C

Irradiated with protons to 10
15

n
eq

55Fe and 22Na spectrum, RMS noise

Irradiated

Temperature 20C

RMS Noise 270 e

SNR = 15

55Fe and 22Na spectrum, RMS noise

Irradiated

Temperature 10C

RMS Noise 77 e

SNR = 64

55Fe and 22Na spectrum, RMS noise

Irradiated

Temperature -10C

RMS Noise 40 e

SNR = 93



29

Irradiation x-rays (50 MRad)
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Irradiation x-rays (50 MRad)
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Summary

• We have developed a new pixel sensor structure (smart diode array) for 

high energy physics that can be implemented in a high voltage CMOS 

technology 

• The sensor has 100% fill-factor and can have in-pixel electronics 

implemented with p- and n-channel transistors

• We have implemented the sensor structure in various variants

• 1) Sensor with in-pixel hit detection and sparse readout 

• 2) Sensor with fast frame readout and simple pixel electronics 

• 3) sensor with capacitive readout 

• We measure excellent SNR in all three cases

• We have done a test-beam measurement with the first version of the frame 

readout detector with good results

• The SNR of the second chip version is four times better 

• Excellent seed pixel SNR of almost 100 has been achieved

• We have irradiated the chips with neutrons, protons and x-rays to test 

radiation tolerance

• After irradiation with protons up to extremely high fluence 1015 neq and dose 

300MRad, we have still very large SNR (>40) for high energy beta particles 

at nearly room temperatures (10C)
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Outlook

• The engineering run in the used technology costs only 98k €

• By proper arrangement of the dices, we can obtain long monolithic multi-

reticle sensors with 13.2cm length and 1cm width

• We would have 8 such modules per wafer and one engineering run could 

give us up to 48 modules 
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Multi-reticle module

Reticle1

Chip1

Pads

Chip to chip connections

Chip to reticle edge distance = 80 um

Chip2

Chip1

Chip2

Reticle2

2.2 cm

Module

Very long low-cost pixel modules with (almost) no insensitive area can be produced

Reticle-reticle connections can be made easily by wire bonding

Instead of wire-bonding, an extra metal layer can be used as well
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Multi-reticle module

Carrier

Module (length. 13.2 cm, width 1cm, the figure is not scaled)

Pads for power and IO signals

chip to chip connections

Chip (reticle 3)

Interaction region

Large sensitive area without material

Chip (reticle 2)

Very low-mass only silicon modules are possible as well (similar to DEPFET module for Belle II)
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SDA long module

13.2 cm (one half of the module shown)

1 cm

Thickness: below 50 μm possible

Achieved performances by scaling up of the present design:

Pixel size: 40 x 80 μm (or less)

Number of pixels: 256 x 768

Readout time: 40 μs

Radiation tolerance: at least 1015 neq and 50 Mrad

Power consumption (~frame rate): 2 W/module (10 μW/pixel)
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• Thank you!
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• Backup slides
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Strong points

• 1) CMOS in-pixel electronics 

• 2) Good SNR 

• 3) Fast signal collection
– Theoretically 40ps  

• 4) High tolerance to non-ionizing radiation damage 
– High drift speed

– Short drift path

• 5) High tolerance to ionizing radiation
– Deep submicron technology

– Radiation tolerant design can be used

– Radiation tolerant PMOS transistors can be used (in contrast to MAPS with high-resistance 

substrate)

• 6) Thinning possible
– Since the charge collection is limited to the chip surface, the sensors can be thinned

• 7) Price and technology availability
– Standard technology without any adjustment is used

– Many industry relevant applications of HV CMOS technologies assure their long tern 

availability
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Drawbacks

• 1) Capacitive feedback
– must be taken into account when the pixels are designed and simulated. 

– In some cases the capacitive feedback can be used, for instance if provides a feedback 

capacitance for the charge sensitive amplifier.

– Despite some limitations, we can implement the majority of important pixel circuits in 

CMOS, like the charge sensitive amplifier, shaper, tune DAC, SRAM…

– Note that PM2 achieves 21 e noise despite oh huge charge injection (10 fC = 60000 e)

– Charge injection does not mean high noise

• 2) Relatively large size of the collecting electrode
– However the high voltage deep n-well has relatively small area capacitance.

– Typical values for the total n-well capacitance are from 10fF (small pixels and simple pixel 

electronics) to 100fF larger CMOS pixels.

– Despite of the capacitance, we achieve excellent SNR values.
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Track and system geometry
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Telescope planes DUT
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(Irregular events) double track event
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(Irregular events) empty event

In time track – not seen by Mimotel
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(Irregular events)  double track event seen as a single track event
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Results – signal
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Spatial resolution
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• Spatial resolution

• Sigma residual X: 7.3 μm

• Sigma residual Y: 8.6 μm

• The difference is probably caused by the bricked pixel geometry – still not understood completely, 

simulations will be done

• The spatial resolution is not as good as in the case of standard MAPS due to absence of charge

sharing in the case of primary signal
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Sparse readout for monolithic detector 

Trigger delay
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Sparse readout for CCPD
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CCPD2 sensor concept
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PM2 pixel layout
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21 μm
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HV1 pixel layout
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ResetB
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Charge collection
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ResetB
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Signal readout

N-Well

P-Substrate
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ResetB
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End of readout


