Monolithic Active Pixel Sensors with high-density readout electronics in a 65 nm CMOS technology

L. Gaioni¹, M. Manghisoni^{1,2}, L. Ratti^{1,3}, V. Re^{1,2}, G. Traversi^{1,2}

¹INFN Sezione di Pavia, Italy

²Università di Bergamo Dip. Ingegneria Industriale, Italy

³Università di Pavia Dip. di Elettronica, Italy

International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

PIXEL 2010

September 6 - 10, 2010 Grindelwald, Switzerland

Outline

- Motivation
- Noise and radiation tolerance of 65 nm CMOS devices
- Monolithic Active Pixel Sensors and fast front-end electronics in 65 nm CMOS
- The **APSEL65** chip
- Conclusion

Motivation

- **Vertex detectors** for HEP experiments at the next generation colliders will need to fulfill very stringent requirements on position and timing resolution, material budget, readout speed and radiation tolerance
- The demand for higher in-pixel functionalities along with the reduction of pixel cell size has driven the interest of the designers community towards **sub-100 nm CMOS** processes in the design of mixed signal front-end electronics
- The move to more scaled processes is dictated by improving **digital performance**. In a 65 nm process the impact of new dielectric materials and processing techniques (silicon strain, gate oxide nitridation, ...) on the analog behavior of MOSFETs, specifically in terms of **noise performance** and **radiation hardness**, has to be carefully evaluated
- Here we focus on **Low-Power 65 nm CMOS** where the supply voltage (1.2 V) does not scale with respect to 130 nm CMOS and the gate leakage current is very low

Noise in CMOS transistors

Noise in the drain current of a MOSFET can be represented through an equivalent noise voltage source in series with the device gate

White and 1/f noise have been measured on test devices with different geometries and biased at different drain currents

Noise vs gate length

- **White noise** virtually independent of the gate length L and device polarity, in agreement with g_m behavior in weak/moderate inversion
- 1/f noise contribution decreases with increasing channel length, as predicted by the noise equation

Noise vs drain current

- White noise decreases with increasing drain current in both NMOS and PMOS devices, in agreement with g_m behavior in weak/moderate inversion
- 1/f noise contribution is to a large extent independent of the drain current

White noise - S_{W}

Evaluated in terms of the **equivalent channel thermal noise resistance**:

$$R_{eq} = \frac{S_W^2}{4k_BT} = \alpha_W \frac{n\gamma}{g_m} \qquad \begin{array}{c} \bullet \ \alpha_w \ \text{excess noise coefficient} \\ \bullet \ n \ \text{proportional to} \ I_{D}(\textit{V}_{GS}) \ \text{subthreshold characteristic} \\ \bullet \ \gamma \ \text{channel thermal noise coeff.} \end{array}$$

- $\alpha_{\mathbf{w}}$ close to unity for NMOS and PMOS with L > 65 nm \rightarrow no sizeable short channel **effects** in the considered operating regions (except for 65 nm devices with $\alpha_w \approx 1.3$)
- Negligible contributions from **parasitic resistances**

Noise in different CMOS nodes

The 1/f noise of the 65 nm devices we tested is of the same order as in previous CMOS nodes

- The 1/f noise parameter **Kf** does not show dramatic variations across different CMOS generations and foundries
- White noise is also very similar (weak/moderate inversion)

Ionizing radiation effects in sub-100 nm CMOS

In deep submicron bulk CMOS devices exposed to ionizing radiation, the main degradation effects are associated to the thick (~ 100 nm) **lateral isolation** oxides (STI = Shallow Trench Isolation).

Radiation-induced positive charge trapped in isolation oxides may invert a P -type region in the well/substrate of NMOSFETs creating a leakage path between source and drain

Radiation test - Static Characteristics

- A larger amount of lateral leakage takes place in 130 nm devices
- The smaller $I_{D,lat}$ 65 nm devices suggests that the sensitivity to positive charge buildup in STI oxides is mitigated by the higher doping of the P-type body with respect to less scaled processes

Radiation test - NMOS

Moderate 1/f noise increase at low current density, due to the contribution of lateral parasitic devices

10⁷

10⁸

- At **higher currents** the degradation is almost negligible because the impact of the parasitic lateral devices on the overall drain current is much smaller
- **No increase** in the **white noise** region is detected

Radiation test-PMOS

- NMOS and PMOS devices have **similar 1/f noise** (especially for longer transistors)
- Very small increase in the low-frequency part of the noise voltage spectrum, even at low current density
- No increase in the white noise region is detected

some remarks ...

- Behavior of the white noise term is consistent with equations valid in weak inversion, as observed in other fabrication processes
- **Low-noise analog design** will pose challenges but, according to the study of key analog parameters, appears to be **still viable**. PMOSFETs appear to gradually lose their 1/f noise advantage over NMOSFETs
- Data analysis does not point out any novel damage mechanism which could be related to the technological advances associated to an aggressively scaled process
- The comparison with data from previous CMOS generations confirms the **high degree of tolerance to ionizing radiation** that appears to be typical of sub-100 nm technologies
- We designed a prototype chip with mixed-signal readout circuits in a 65 nm CMOS process manufactured by IBM (10LPE/10RFE) → APSEL65

APSEL65: deep n-well monolithic active pixel sensor

Features & Post layout simulation results

W/L PA input device: 27/0.25

Power consumption: 20 μW

Equivalent noise charge: 38 e⁻

Threshold dispersion: 38 e⁻ (main contributions from shaper input device and NMOS and PMOS

pair in the discriminator)

Charge sensitivity: 725 mV/fC

Peaking time: 300 ns

PIXEL 2010 September 6 – 10, 2010 Grindelwald, Switzerland

Cell layout

In this prototype the digital section is kept to a minimum (latch, OR gate, tri-state buffer). It is planned to include sparsification and time-stamping logic at the pixel level in more advanced versions (room for this already available)

n-well PMOSFETs (area $\approx 50 \mu m2$)

Sensor (area $\approx 360 \mu m2$)

Fast FE for high resistivity pixels

W/L PA input device: 27/0.25

Power consumption: 6 μW

 $ENC = 204 e^{-} @ C_{D} = 100 fF$

Charge sensitivity: 42 mV/fC

Peaking time: ~ 25 ns

Integral non linearity: ~ 3.5 % (32000 e⁻ input dynamic range)

Preamplifier

Shaper

Test chip layout

8x8 DNW MAPS matrix

- digital outputs
- outputs of the shapers can be accessed through row and column decoders and read out one at time

3 standalone channel with Cinj and detector simulating capacitor (250 fF, 350 fF, 450 fF)

3x3 DNW MAPS matrix

- 9 analog outputs
- Digital output of the central pixel
- Cinj on central pixel

Conclusions

- Noise measurements and radiation tests have been performed on devices belonging a 65 nm CMOS process
- Behavior of the white noise term is consistent with equations valid in weak/moderate inversion
- Comparison with previous CMOS nodes shows that scaling to the 65 nm process does not affect 1/f noise performances significantly
- Radiation tests confirm the high degree of tolerance to ionizing radiation that appears to be typical of sub-100 nm technologies
- A test chip including **DNW MAPS** and a **fast front-end** for the readout of high-resistivity pixel sensors has been submitted in a 65 nm CMOS process provided by IBM. This prototype will provide useful information for future submissions and larger chips

Backup slides

Transconductance and Channel thermal noise coefficient

Transconductance in all inversion regions (*)

$$g_{m} = \frac{I_{D}}{nV_{T}} \frac{2}{\sqrt{1+4u+1}}, \quad u = \frac{I_{D}L}{I_{z}^{*}W}$$

Channel thermal noise coefficient (*)

$$\gamma = \frac{1}{1+u} \left[\frac{1}{2} + \frac{2}{3} u \right], \qquad u = \frac{I_D L}{I_z^* W}$$

(*) G. De Geronimo, P. O'Connor, "MOSFET optimization in deep submicron technology for charge amplifiers ", *IEEE Trans. Nucl. Sci.*, vol. 52, n. 6, Dec. 2006.

Device operating region

- At the considered drain currents, DUTs work in weak or moderate inversion region
- Characteristic normalized drain current I^*_Z provides a reference point to define device operating region

$$I_Z^* = 2\mu C_{OX} n V_T^2$$

- μ carrier mobility
- \bullet $C_{\rm OX}$ specific gate oxide capacitance
- V_T thermal voltage
- n proportional to $I_D(V_{GS})$ subthreshold characteristic

At a given drain current, operation is shifted towards weak inversion region with technology scaling

Noise vs gate width

- 1/f noise increases with decreasing W, as predicted by the noise equation
- White noise is not sizeably affected by W variation for PMOS devices while it slightly decreases with increasing channel width for NMOS

Flicker noise - $S_{1/f}(f)$

- Slope $\alpha_{\mathbf{f}}$ of the 1/f noise term is smaller than 1 in NMOSETs and close to 1 in PMOSETs
- In the examined operating region, $\alpha_{\mathbf{f}}$ does not exhibit any clear dependence on the drain current or on the channel geometry
- In both polarities **Kf** is strongly dependent on the channel length while it is almost independent of the device bias conditions

Noise in different CMOS nodes

Slope of the 1/f noise in previous CMOS nodes is dependent of the device polarity

- $lpha_{
 m f}$ > 1 for PMOSETs and < 1 in NMOSFETs for previous technology nodes
- $\alpha_{\rm f}$ values are close to unity for both NMOS and PMOS devices in the 65 nm process

Preliminary Monte Carlo simulations

Very preliminary Monte
Carlo simulations on a
3x3 cluster featuring
the APSEL65 sensor
layout (100
experiments, 60 μm
thick substrate)

Characterization of 65 nm CMOS devices

Single transistors, **Low Power 65 nm** CMOS process

NMOS

Technology features:

- $V_{DD} = 1.2 V$
- $t_{OX} = 2.6 \text{ nm}$
- $C_{OX}=13 \text{ fF/}\mu\text{m}^2$

Available geometries

- $-W = 0.2 0.8 20 100 200 600 \ 1000 \ \mu m$
- L = $0.065 0.10 0.13 0.20 \ 0.35 0.50 0.70 \ \mu m$

PMOS

Technology features:

- $V_{DD} = 1.2 V$
- $t_{OX} = 2.8 \text{ nm}$
- $C_{OX} = 12 \text{ fF/}\mu\text{m}^2$

Available geometries

- $-W = 0.2 0.8 2 20 100 200 600 1000 \mu m$
- $L = 0.065 0.10 0.13 0.20 \ 0.35 0.50 0.70 \ \mu m$
- Devices under test are NMOS and PMOS transistors with standard open layout, interdigitated configuration
- Drain current in DUTs: from tens of μA to 1 mA \rightarrow low power operation