# Offline calibration and performance of the CMS pixel detector

Urs Langenegger (PSI)

on behalf of the CMS collaboration 2010/09/06

- Introduction
- Calibrations
  - ADC to charge (single pixel)
  - ▶ Lorentz Angle (cluster)
  - Timing (detector)
- Performance

### Introduction

- CMS pixel detector characteristics:
  - $\triangleright$  66 million pixels in 3 barrel layers (BPIX) and  $2 \times 2$  disks (FPIX)
  - 25 ns bunch crossing separation
  - ightharpoonup radiation hard to  $\geq 6 imes 10^{14} \, n_{eq}$
- Local coordinate system on modules
  - $\triangleright x$  along shorter pixel side (BPIX:  $|\phi|$ )
  - $\triangleright y$  along longer pixel side (BPIX: |z|)
  - ightharpoonup z parallel to  $\vec{E}$  field (BPIX: |r|)



digis are pixels with deposited charge above threshold

adjacent digis are combined to clusters

cluster characteristics: charge and 2d position

- generic fast algorithm
- 'template' algorithm
   projected cluster shapes
   including radiation damage
   requires track incidence angle



Urs Langenegger

### Single Pixel Calibration: ADC to Charge

- Relate ADC readout to deposited charge
  - ▶ VCAL circuit provides charge injection capability
  - $\rightarrow$  needs to be calibrated ROC average known from x-ray tests: Q[ $e^-$ ] = 65.5  $\times$  VCAL [DAC] 414
  - Thresholds

absolute: in multiple bunch crossings in-time: one correct bunch crossing

- offline ADC-to-charge calibration
  - fitting single pixel response
  - ▶ linear function: gain/pedestal
  - tanh function for more studies
- granularity of constants
  - ▶ HLT: averaged over ROC column
  - RECO: gain averaged over ROC column pedestal per pixel
  - → Calibration payload size
     HLT: 800 kB; RECO: 33 MB



### Gain and Pedestals

- Very stable calibration
  - about once per year; control calibration runs done more often



## Cluster Calibration: Lorentz Angle

- ullet Charge carriers moving in  $ec{E} \perp ec{B}$  fields
  - deflection by Lorentz angle
  - Lorentz angle depends on bias voltage, magnetic field strength temperature radiation damage



- Lorentz deflection of charge carriers
  - ightharpoonup cluster widening along local x (global  $\phi$  in barrel)
  - charge sharing among pixels

#### ⇒ Implications

→ shift in hit position

BPIX:  $53 \mu \text{m}$  FPIX:  $10 \mu \text{m}$ 

- → improved position resolution
- Two methods to measure Lorentz angle
  - 1. 'minimum cluster size' method: cosmic ray muons
  - 2. 'grazing angle' method: collision data

# 1. Lorentz angle: Minimum Cluster Size

- Cluster width in (local) x depends on
  - ightharpoonup Lorentz angle  $heta_L$
  - ightharpoonup particle incidence angle lpha
  - $\rightarrow$  minimal for  $\alpha = \theta_L$
  - $\rightarrow \tan \theta_L = \cot \alpha|_{\min}$



#### ⇒ Measure cluster width vs incidence angle

- possible with cosmic ray muons
- ightharpoonup in collision data only with low- $p_{\perp}$  tracks
- Track selection
  - ho transverse momentum  $p_{\perp}>0.1\,{\rm GeV}$
  - $\triangleright$  cluster size  $N_y > 2$
  - $\triangleright \chi^2/\text{dof} < 2$
  - no cluster with edge digis
- Systematic errors of order  $\pm 3\%$ 
  - track selection
  - fitting range



# 2. Lorentz angle: Grazing Angle Method

- Measure electron drift length vs production depth
  - $\triangleright$  long clusters along (local) y from shallow incidence angle tracks
  - ightharpoonup slope corresponds to  $an heta_L$
- Systematic errors of order  $^{+4}_{-2}\%$ 
  - track selection
  - fitting range





 $z, \mathbf{E}$ 

 $(\mathbf{x}_0, \mathbf{y}_0)$ 

track

## Lorentz Angle Results

- Results are consistent
  - different methods
  - with detailed simulation (PIXELAV)

| data type          | method            | tanθ <sub>LA</sub><br>(data) | tanθ <sub>LA</sub><br>(PIXELAV)  |
|--------------------|-------------------|------------------------------|----------------------------------|
| cosmic rays, 3.8 T | min. cluster size | $0.405 \pm 0.003$ (stat)     | $0.397 \pm 0.003$ (stat)         |
| 900 GeV, 3.8 T     | grazing angle     | 0.391 ± 0.010 (stat)         | $0.401 \pm 0.001$ (stat)         |
| 900 GeV, 3.8 T     | min. cluster size | $0.409 \pm 0.002$ (stat)     | $0.411 \pm 0.005 \text{ (stat)}$ |
| 900 GeV, 2 T       | grazing angle     | $0.203 \pm 0.004$ (stat)     | $0.211 \pm 0.001$ (stat)         |

### Detector Calibration: Delay Scan

- Determine optimal setting of pixel detector clock vs LHC clock
  - cluster efficiency
  - cluster resolution
  - cluster charge
- Efficiency:

$$\frac{\text{\# found clusters}}{\text{\#expected clusters}}$$

- ▶ in fiducial region
- in live components



- Cluster size: clusters with  $Q_{\rm tot} > 12000\,e^$ 
  - charge not corrected for track incidence angle (smaller dependence on tracking)
- Scanned pixel detector clock in steps of 2 ns
  - initially one global delay setting
  - with more statistics scanned individual port cards (sectors)

### **Delay Scans in Sectors**

- With enough statistics, the delay settings of sectors was analyzed
  - ▶ BPIX: one sector (1/8 of a half shell) divided into L1+L2 and L3
  - FPIX: three blades (1/4 of a half disk)
- Largest corrections to a priori cable/fiber length calculations

▶ BPIX: 3 ns

▶ FPIX: 8 ns





# Performance: Hit Efficiency

**Efficienc**)

#### Efficiency:

 $\frac{\text{\# found clusters}}{\text{\# expected clusters}}$ 

- ▶ in fiducial region
- excluding dead components

#### 7 TeV collision data

- Event selection1 primary vertex
- ho Track selection seeded with pixel clusters valid clusters on 'other' layers  $p_{\perp}>0.9\,{
  m GeV}$   $N_{
  m strip\ hits}>10$  track consistent with vertex



#### $\Rightarrow$ Cluster efficiency in entire detector > 99%

 $\triangleright$  Layer 1: underestimate by  $\approx 1.5\%$  due to secondaries Consistent with expectation from MC simulation

### Pixel Thresholds

#### Threshold subtleties

- absolute vs in-time: single vs multiple bunch crossing r/o (not possible in data taking)
- ▶ units: VCAL or electrons
- Thresholds in electrons
  - $ightharpoonup Q_{
    m dep}$  and path length: MIP in data
  - cluster size: comparison with MC simulation





#### Results

- $\triangleright$  absolute thresholds:  $\langle T \rangle = 2457$
- $\triangleright$  in-time thresholds:  $\langle T \rangle \approx 3200$  assuming

single threshold for all pixels specific response model in simulation

Urs Langenegger

## Cluster Charge Distributions

- Detector MC simulation provides accurate description of data
  - much better than anticipated
  - mostly irrelevant for detector performance (MC simulation normalized to data histograms)





#### Cluster Size

- MC simulation describes data quite well
  - ightharpoonup cannot simultaneously described x and y
  - ightharpoonup possibly (somewhat) different thresholds ROC readout mechanism affecting threshold differently in x and y
  - geometry difference between FPIX and BPIX

(MC simulation normalized to data histograms)





### Hit Resolution

- Method: Compute double difference
  - difference of measured hit positions
  - difference of extrapolated hit positions
  - difference of the two differences
  - reduces sensitivity to misalignment extrapolation errors







- Caveat: overlaps only at the edges of the track  $\alpha$ -acceptance
  - $\triangleright$  cluster x sizes deviate from the optimal size (of two)
  - $\rightarrow$  the x resolutions are somewhat worse than the typical x resolution

### **Summary and Conclusions**

- Offline calibrations
  - readout ADC to digi charge
  - Lorentz angle
  - ▶ Timing
- Performance
  - $\triangleright$  threshold  $\approx 3200$  electrons
  - $\triangleright$  efficiency > 99%
  - > resolution  $\sigma_x = 13\,\mu\mathrm{m}$   $\sigma_y = 28\,\mu\mathrm{m}$



- CMS pixel detector at design specifications
  - operations
  - calibrations
  - performance
- ⇒ We have an excellent detector
  - → looking forward to much more data

