

Development of CdTe Pixel Detector with Window Comparator ASIC for High Energy X-Ray Application

Toko Hirono JASRI/Spring-8

H. Toyokawa¹, M. Kawase¹, Y. Furukawa¹,
T. Ohata¹, M. Sato¹, T. Honma¹, M. Takagaki¹,
H. Ikeda², G. Sato², S. Watanabe², T. Takahashi²
(¹JASRI/Spring-8, ²ISAS/JAXA)

PIXEL2010 Sep 6 – 10, 2010 Grindelwald, Switzerland

Outline

- Concepts of a new detector
- Design of readout (ASIC)
- Fabrication and Performances of detector
- Results of beam test
- Summary

SPring-8 is a synchrotron radiation (SR) facility with a 8GeV storage ring.

⇒ Experiments which requires high energy X-ray (-100keV) is one of the important experiments in SPring-8.

Detector that is suite for SPring-8....

- Photon-counting large-area-imaging hybrid pixel detector, like PILATUS, which are very powerful for SR experiments.
- □ High sensitivity in high energy X-ray region (15 100keV) ⇒CdTe sensor
- Function to cut high energy X-ray

⇒Readouts with a window-type comparator

Detection Efficiency of Sensors

CdTe has almost 100% detection efficiency up to 40keV, more than 50% at 60-100 keV where Si has only 1.5% Sep 7, 2010, PIXEL2010 T. Hirono

Detector that is suite for SPring-8....

- Photon-counting large-area hybrid pixel detector, like PILATUS, which are very powerful for SR experiments.
- High sensitivity in high energy X-ray region (15 100keV)

⇒CdTe sensor

Function to cut high energy X-ray

⇒Readouts with a window-type comparator

 Diffraction pattern of Si with lower-energy comparator only (without higher-energy comparator)

Lower energy comparator at 30.8keV Monochromator at 37.8keV

Without higher-energy comparator, higher order Xray from monochromator was mixed with the target energy X-ray in the detected image.

⇒Window-type comparator is required for low background images

3 steps to realize a large area imaging detector

Specification of SP8-01

- Sensor
 - CdTe
 - 200 x 200 um/pixel, 16 x16 pixels/chip
- Contacts of sensors
 - In/CdTe/Pt-pixel, Al-pixel/CdTe/Pt, Pt-pixel/CdTe/Pt
 - Gold-stud bonding
- Readout with..
 - Analog amp. with time constant less than 100nsec
 - Readable both positive and negative charge
 - Switchable and adjustable gain: 15keV-40keV, 30keV-100keV
 - Poll-zero circuit and offset adjustor
 - Window-type comparator
 - 20 bits counter

Gold-stud bonding

- Bump bonding
 - Wafer level process
 - High temperature and high pressure
 - 🔘 Si
 - Δ CdTe

- In/Au stud bonding (Developed by JAXA)
 - Chip level process
 - low temperature and soft process
 - 🔘 CdTe

Specification of SP8-01

- Sensor
 - CdTe
 - 200 x 200 um/pixel, 16 x16 pixels/chip
- Contacts of sensors
 - In/CdTe/Pt-pixel, Al-pixel/CdTe/Pt, Pt-pixel/CdTe/Pt
 - Gold-stud bonding
- Readout with..
 - Analog amp. with time constant less than 100nsec
 - Readable both positive and negative charge
 - Switchable and adjustable gain: 15keV-40keV, 30keV-100keV
 - Poll-zero circuit and offset trim
 - Window-type comparator
 - 20 bits counter

Design of ACIS

□ To realize all the requirements of the readout,
 ⇒ Custom-designed ASIC for SP8-01 was developed

Design of ASIC

Result of Simulation of Analog Amp.

ASIC was simulated with input charge correspond to 10 -100keV in 100nsec \Rightarrow All the parameter s of circuit was fixed to match requirements.

Design of ASIC

SPring 8

Design of ASIC

SPring. 8

Layout of a single pixel

200µm

200µm

Fabrication of Detector

ASIC was fabricated

- TMC 0.25um
- 5mm x 5mm
- and CdTe was bonded to the ASIC.
 - 500um thick
 - Gold-stud bonding
 - 3 types of electrode
 - Pt-pixel/CdTe/Pt
 - Al-pixel/CdTe/Pt
 - In/CdTe/Pt-pixel

Performance of ASIC

Sep 7, 2010, PIXEL2010 T. Hirono

Performance of ASIC

Time Constant of Readout

Test pulse was counted by changing test pulse frequency.

Counts of counter was as same as input pulse up to 5Mcounts/s

⇒Time constant was 200 nsec c.f. designed =100 nsec

⇒Background noise 0.6 counts/hr/pixel with window-comparator 20-30 keV Sep 7, 2010, PIXEL2010 T. Hirono

Results of Beam Test

Beam test was performed at BL46XU, BL14B2/SPring-8

X-ray was resized into 50um by 2 slits placed after monochromator.

- Lower-energy threshold scan
- \Rightarrow to examine whether X-ray of
- 30 120 keV can be detected by SP8-01
- Window scan
- ⇒ to demonstrate window comparator

Results of Beam Test

PNI

Lower-energy threshold scan at 30keV

- S-curve at -49.5mV ⇒30keV
- The slop at 30keV corresponds to Equivalent Noise Charge of 360 e-

Result of Beam Test

Lower threshold scan

ер 7, 2010, PIXEL2010 Т. Hirono

Results of Beam Test

Window scan

- Higher/lower energy th. was scan both in same time.

Results of Beam Test

Energy linearity of readout

Linearity of high gain in 15-40 keV : 98% low gain in 30-120keV: 90%

Sep 7, 2010, PIXEL2010 T. Hirono

PIN

Summary

New pixel detector, SP8-01, was developed for high energy X-ray SR experiment.

- 200 x 200 um/pix, 16 x 16 pix/chip of CdTe sensor
- Custom-designed ASIC with window-comparator
- □ SP8-01 was performed as X-ray detector.
 - Time constant: 200ns
 - ENC : 360 e-, Background noise: 0.6cnt/hr/pix
 - SP8-01 detected X-ray
 - High Gain : 30keV-120keV
 - Low Gain : 15keV-70keV (linearity of 98% in 15-40keV)

⇒Design of SP8-02 (small pixel, multi-chip module) was started.

Sep 7, 2010, PIXEL2010 T. Hirono