Ultra-light Ladders for LC Vertex Detector

Andrei Nomerotski (Oxford University)
for the PLUME Collaboration,
PIXEL 2010
Grindelwald, 6-10 September 2010

Outline

• International Linear Collider and motivation for ultralight vertex detector

• PLUME collaboration: status and results

• Ultra-light ladders in FP7 AIDA

International Linear Collider

ILC: 1 train = 2680 bunches 337 ns apart 5 Hz rate

- Energy up to 1 TeV
- Huge number of e⁺e⁻ pairs produced in strong fields of beams (beamstrahlung)
- Need time-slicing within bunch trains to reduce detector occupancy
 - Trade-off of power and material

Vertexing at ILC

C Rimbaud et al. EUROTeV-Report-2005-016-1

Simulation of e⁺e⁻ pair production at ILC

ILC Vertex Detector

- 1 Giga channels of 20×20 µm pixels in 5 layers with fast readout
 - excellent IP resolution $(5 \mu m)^2 + (10 \mu m / p)^2$
 - Low material budget $0.1\% X_0$ per layer
 - ▲ Air cooling
 - Radiation tolerance 300krad, 10¹¹n_{eq}/cm²
 - Power $< 0.1 2 \text{ W/cm}^2$

- Sophisticated algorithms using vertexing
 - Vertex mass
 - Vertex charge
 - Vertex dipole
- Flavour tagging
 - Excellent performance for b- and c-tagging

Vertex Charge

• Total charge of tracks associated with a vertex

 ◆ Binary behaviour : a lost or wrongly assigned track changes the charge → every track is important

Sensitive to low pT tracks
Sensitive to material

Where is it useful?

Example: Top Asymmetry

- Process: $tt \rightarrow WbWb \rightarrow bbqqqq$: two b-quarks in final state
- Deviations from SM predictions in asymmetry is excellent probe of new physics
 - One of benchmarking channels for ILC LOI

Note:

- Large asymmetry in forward region
- Large mistag rate in forward region

ILC vertex detector

- Two options: single-sided vs double sided
 - Double-sided version: single support for two sensitive layers; track mini-vectors
- ILD vertex detector layout:

PLUME Collaboration

• PLUME = Pixelated Ladder with Ultra-low Material

Embedding

• Started in 2009

PLUME collaboration:

- Bristol University
- Oxford University
- DESY (Hamburg)
- IPHC (Strasbourg)
- Synergy with
 - * IK Frankfurt (CBM @FAIR vertex det.)
 - * LBNL Berkeley (STAR @ RHIC vertex det.)

- Main aims
 - ultra-light double-sided VD ladder, 0.3% X0
 - Power pulsing in strong magnetic field with air cooling
 - ▲ 1/50 duty cycle
 - Study of alignment and spatial resolution
 - Study of mini-vectors

PLUME Ladder Concept

- Double-sided ladder, active area 1x12 sq.cm
- Six MIMOSA-26 sensors per side, thinned to 50 μm
- Kapton-metal flex cable
- SiC foam as support between two modules
- First servicing board ~1 m away

PLUME Ladder #1

• Built and tested in beam in 2009

Aims:

- Build first double-sided ladder using off-the-shell components
 - ◆ Flex + two 50 um thick analogue MIMOSA20 (CMB@FAIR VD ladder)
 - ♦ 8% SiC foam (LCFI supplies)
 - Material budget 0.6% X_0 (SiC foam 0.18%, sensors 0.11%, glue 0.2%, flex 0.29 %)
- Nov 2009, CERN SPS, 120 GeV
- Study of track mini-vectors

11 cm

Preliminary Testbeam Results

Development of ultra-light pixelated ladders for an ILC vertex detector. N. Chon-Sen et al. Jun 2010, arXiv:1006.5424

- Work in progress
- Single hit resolution ~7 micron
 - Pixel pitch 30 micron
 - mini-vectors have better resolution than single plane

PLUME Ladder #2 (1)

- Total material budget of double-sided ladder: 0.65% X₀
 - All components important

• Prototype prepared in 2010 using PCB version of flex

PLUME Ladder #2 (2)

- MIMOSA26 (Strasbourg)
 - ◆ 18.4 sq.micron pixels in CMOS 0.35 micron process
 - Active area 10.6 x 21.2 sq.mm
 - Column-parallel readout, 115 microsec for 80 MHz clock
 - Zero suppression with binary output
- Testing of 3 MIMOSA26 sensors in progress

Clock Propagation

- PCB version of flex
- Good up to 150 MHz

Generator

Kapton Flex

- Two vendors: Graphic (UK) and Optiprint (Switzerland)
- Received first flexes from both vendors, testing in progress
- Next steps
 - Build first ladder with 6 MIMOSA26, 50 micron thick, and kapton flex
 - Fabricate flexes with thinner kapton, thinner Cu traces, Al traces

Foam Support Structure

- Used as support in PLUME ladders
 - Follow-up work on LCFI (Bristol U.)
- Properties:
 - Open-cell foam
 - Macroscopically uniform
 - No tensioning needed
- Lightweight elements in silicon carbide (SiC) foam
 - 4 to 8 % fill factor
 - Can be machined

PLUME Plans

- Realistic ILC VD ladder prototype by 2012
 - ◆ ILC Detailed Baseline Design (DBD) due in 2012
- Steps:
 - ◆ 2010: 2x6 MIMOSA-26, 0.65% X₀
 - ◆ 2011: 2x6 MIMOSA-26, 0.4% X₀
 - ◆ 2012: 2x6 optimized MIMOSA's, 0.3% X₀
- Use PLUME ladders within FP7 AIDA project

ILC Vertex Detector in EU-FP7 AIDA

Collaboration:

PLUME collaboration + Geneva University + Warsaw University + ...

On-beam test infrastructure:

- Very thin removable target
- Large Area beam Telescope (LAT): EUDET-like Beam Telescope
- Alignment Investigation Device (AID): ladder box

Off-beam test infrastructure:

- thermo-mechanical studies, including effect of air-flow colling
- power cycling effect in strong magnetic field: Lorentz forces on ultralight PLUME ladders

AID Layout

- Aim: alignment studies for PLUME or any other VD ladders
- Four stations with precise adjustable stages
 - Two overlapping ladders in each station
 - Middle station with three additional degrees of freedom
- Conceptual drawing (S. Yang, Oxford U):

Summary

- Ultra-light detectors are critical for LC physics aims
 - Long lifetime of bottom and charm quarks
- Demonstration of a prototype ladder by 2012 required by ILC DCD schedule
- PLUME collaboration will address
 - Ladder material budget
 - Power cycling in magnetic field
 - Advantages of double-sided ladders
 - Alignment studies within FP7 AIDA project