

Giuliana Rizzo

INFN and University, Pisa

on behalf of SuperB group

G.Rizzo – Pixel 2010 – Grindelwald - CH

Outline

- The SuperB Project
- The Silicon Vertex Tracker
- LayerO Options for Technical Design Report
 - Deep N-Well CMOS MAPS
 - Hybrid Pixels
- Exploiting Vertical Integration for LayerO
- Conclusions

The SuperB Project

- The physics case for a high luminosity B Factory is clearly established.
 - Flavour physics is rich, promises sensitivity to New Physics ... but large statistics (50-100 ab⁻¹) is needed
- First generation of B-Factories (PEP-II and KEKB) exceeded their design goals (\mathscr{L} ~1.2-1.7 x10³⁴ cm⁻² s⁻¹, integrated 1.2 ab⁻¹) but an upgrade of ~2 orders of magnitude in \mathscr{L} is needed to get 50ab⁻¹.
- Increasing Luminosity by brute-force (higher currents) is expensive and difficult
 - wall plug power and detector background explosion
 - effective limitation around 5×10^{35} cm⁻² s⁻¹
- The SuperB italian accelerator concept allows to reach $\mathscr{L}=10^{36}$ cm⁻² s⁻¹ with moderate beam current (2A) using very small beam size (~1/100 of present B-Factories beams exploiting the ILC R&D on damping rings & final focus) with the help of the Crab Waist scheme at the IP to keep the beams small & stable after collision (verified with tests on Dafne)
- This approach allows to (re-) use parts of existing detectors and machine components.

The SuperB Process

- SuperB Conceptual Design Report published in 2007
- All scientific reviews are positive. Presented to CERN Council and approved for preparatory phase.
- Growing international interest and participation with formal international collaboration being formed. Project structure defined.
- → MOUs signed with France, Russia and SLAC and a letter of support from Canada.
- Technical Design Report phase approved by INFN in 2009
- R&D is proceeding on various items (eg. SVT LayerO)
- Intermediate Progress Report published this summer
 - http://arxiv.org/abs/1007.4241
- → SuperB inserted as first project in the National Research Plan by the Italian Research Ministry

NEXT STEPS

- Government approval expected very soon
- Technical Design Report: summer 2011
- Operation by 2015.

SuperB Progress Reports

Physics Accelerator **Detector** Computing

June 30, 2010

The SuperB Silicon Vertex Tracker

BaBar SVT

- 5 Layers of double-sided Si strip sensor
- Low-mass design. (P_t < 2.7 GeV)
- Stand-alone tracking for slow particles.
- 97% reconstruction efficiency
- Resolution ~15µm at normal incidence

B→π π decay mode, $\beta\gamma$ =0.28, beam pipe X/X0=0.42%, hit resolution =10 μm

Sept 9, 2010

SuperB SVT based on Babar SVT design for R>3cm. BUT:

 reduced beam energy asymmetry (7x4 GeV vs. 9x3.1 GeV) requires an <u>improved vertex resolution</u> (~factor 2)

- LayerO very close to IP (@1.5 cm) with low material budget (<1% X_0) and fine granularity (50 μ m pitch)
- LayerO area 100 cm²

 2) <u>bkg levels</u> depend steeply on radius
 LayerO needs to be fast and rad hard (>20×5 MHz/cm², >3×5 MRad/yr)

SuperB SVT Layer 0 technology options

Striplets option: mature technology not so robust 2D MAPS and 3D pixels are the two most advanced options considered for LayerO upgrade:

- Reduction of front-end pitch to 50x50 µm² \rightarrow Produced and tested FE prototype chip with 50x50 μ m² pitch & fast data push readour (arready aeveloped for DNW MAPS) - (pixels 57 130 nm)

CMOS MAPS option: new & challenging technolog

- Sensor & readout in 50 µm thick chip!
- Extensive R&D (SLIM5-INFN Collaboration) on
 - Deep N-well devices 50x50µm² with in-pixel sparsification.
 - Fast readout architecture implemented
- CMOS MAPS (4k pixels) successfully tested with beams.

Thin pixels with Vertical Integration: reduction of material and improved performance.

- Two options are being pursued (VIPIX INFN Collab.)
 - DNW MAPS with 2 tiers
 - Hybrid Pixel: FE chip with 2 tiers + high resistivity sensor

G.Rizzo - Pixel 2010 Grindelwald - CH

Sept 9, 2010

T

......

_

-

Analog tier

Sensor

Sn-Pb Bump Bon

Deep N-Well (DNW) sensor concept

New approach in CMOS MAPS design compatible with data sparsification architecture to improve the readout speed potential

A classical optimum signal processing chain for capacitive detectors can be implemented at pixel level:

- Charge-to-Voltage conversion done by the charge preamplifier
- The collecting electrode (Deep N-Well) can be extended to obtain higher single pixel collected charge (the gain does NOT depend on the sensor capacitance), reducing charge loss due to competitive N-wells where PMOSFETs are located

\bigcirc

DNW MAPS R&D SLIM5 Co

IC group contribution: •Pavia (PV)-Bergamo(BG) analog front-end •Pisa(PI)-PV-BG in pixel digital logic •Bologna-PI digital readout architecture

Implemented in ST 130 nm process

- Proof of principle (APSELO-2)
 - first prototypes realized in 130 nm triple-well ST-Micro CMOS process
- APSEL3
 - 32×8 matrix with sparsified readout
 - Pixel cell optimization (50×50 um²)
 - Increase S/N (15 \rightarrow 30)
 - reduce power dissipation x2

- **APSEL4D**: 4K(32x128) 50x50 µm² matrix
 - data-driven sparsified readout + timestamp
 - Pixel cell & matrix implemented with full custom design and layout
 - Sparsifying logic synthetized in std-cell from VHDL model
 - Periphery inlcudes a "dummy matrix" used as digital matrix emulator
- Beam tests:

2008 - APSEL4D MAPS matrix + striplets

- 2009 MAPS structures with analog output & irrdiated devices
- Radiation tests:
 - Irradiation with ^{60}Co $\,\gamma$ up to 10MRad
 - Irradiation with neutrons under way

32x128 4k pixel matrix for beam test

Sept 9, 2010

APSEL4D

- In the active sensor area we minimized:
 - logical blocks with PMOS to reduce the area of competitive n-wells
 - digital lines for point to point connections to allow scalability of the architecture with matrix dimensions
- 4K(32x128) 50x50 µm² matrix subdivided in MacroPixel (MP=4x4) with point to point connection to the periphery readout logic:
 - Register hit MP & store timestamp
 - Enable MP readout
 - Receive, sparsify, format data to output bus

DNW MAPS Hit Efficiency measured in a CERN beam test (APSEL4D)

Measured with tracks reconstructed with the reference telescope extrapolated on MAPS matrix

MAPS hit efficiency up to 92 % @ 400 e- thr. 300 and 100 μ m thick chips give similar results Intrinsic resolution ~ 14 μ m compatible with digital readout.

Test Beam results in: *S. Bettarini, et al., Nucl. Instr.* and Meth. A (2010), doi:10.1016/j.nima.2010.08.026

Competitive N-wells (PMOS) in pixel cell steal charge reducing the hit efficiency: fill factor (DNW/tot N-well) ~ 90 %

- 2D MAPS: efficiency can improves adding multiple collecting electrodes around competitive nwells, even better using a quadruple well process (INMAPS being considered).
- **3D MAPS:** (2 tiers for sensor&analog + digital) fill factor and efficiency can improves significantly.

Sept 9, 2010

Tesbeam with irradiated MAPS - 2009

Hybrid Pixel R&D

Prototype Front-end chip for hybrid pixel tested before sensor connection

- ST 130 nm process (single tier)
- 32x128 pixels, 50x50 μ m pitch.

- Use data push readout architecture developed for MAPS chip, now optimized with target rate (100 MHz/cm2) for full chip size (~1.3 cm2)
- VHDL simulation: readout efficiency > 98% @ 60 MHz RDclock
- Space time coordinates with time granularity 0.2-5.0 μ s (BCO clock)
- □ Pixel sensor matrix ready and characterized (FBK-IRST)
- N-on-N: P-spray isolation on n-side, p implant on the back side
- Wafer thickness: 200 μ m (FZ, HR Si)

□ Bump bonding with the FE chip with IZM Berlin under way → characterization with beams for the TDR preparation.

FE chip for Hybrid Pixels - First Results

and dissipated power

radiation hard

✓ 3D front end chip: (2 tiers=more room for in-pixel logic) to be connected to high res. sensor with more (bump bonding) or less (direct bonding) standard technique

• first APSEL-like DNW MAPS (2 tiers) realized within the 3DIC Consortium to explore the 130 nm Chartered/Tezzaron process. <u>Run still ongoing</u>!

- → Test structures \rightarrow 3x3 analog matrix
 - first optimization of analog cell and sensor layout for 3D version
- →8x32 MAPS matrix with APSEL4D readout architecture
 - data-driven sparsified readout + timestamp; MacroPixel based
 - in next version improved architecture exploiting 3D (i.e. remove MacroPixel)

Exploiting 3D integration: pixel pitch and sensor efficiency

- W/L=30/0.3
- C_D=250 fF
- ~1 µs peaking time
- Charge sensitivity: 750 mV/fC
- Equivalent noise charge (ENC): 33 e rms

A three-dimensional technology makes it possible to significantly reduce the area of charge stealing N-wells \rightarrow significant improvement in charge collection efficiency expected

Sensor area: 346µm² NW-PMOS area: 22µm² Fill Factor: 0.94 (0.87 in the "2D" version)

Sept 9, 2010

G.Rizzo - Pixel 2010 - Grindelwald - CH

Exploiting 3D integration for next submission: in-pixel logic with time-stamp latch for a time-ordered readout

- No Macropixel
- Timestamp (TS) is broadcast to pixels & pixel latches the current TS when is fired.
- Matrix readout is timestamp ordered
 - A readout TS enters the pixel, and a HIT-OR-OUT is generated for columns with hits associated to that TS.
 - A column is read only if HIT-٠ OR-OUT=1
 - DATA-OUT (1 bit) is generated for pixels in the active column with hits associated to that TS

HIT-OR-OUT

VHDL simulation of the data push chip (100MHz/cm² input hit rate)

Readout Effi > 99 % @ 50 MHz clock with timestamp of 200 ns.

Conclusions & Perspectives

- → The SuperB project is in good shape waiting for the government approval.
- Physics and background conditions set stringent requirements on the SuperB LayerO: thickness, readout speed, segmentation, rad resistance.
- → The LayerO baseline option for the TDR preparation (2011) is based on striplets sensors but an upgrade to thin pixel is foreseen for the full luminosity run (~ 2 years after t0).
- Technology options under development for LayerO upgrade at full luminosity: DNW MAPS & hybrid pixel + vertical integration.
 - → A first DNW MAPS matrix with in-pixel sparsification and timestamp information fully characterized with beams with good results.
 - \rightarrow A FE prototype chip for hybrid pixel (50x50 μm^2 pitch, single tier) realized, tests ongoing.
- → Plan to exploit the vertical integration both for hybrid pixel (FE chip with 2 tiers + high res. sensor) and DNW MAPS with an expected improvement in performance.
 - First prototype 3D DNW MAPS in production to evaluate the Chartered/Tezzaron 130 nm process.
 - Larger DNW matrix and FE chip for high resistivity matrix will be submitted next year
 optimization to fully exploit 3D opportunities.

Sept 9, 2010

G.Rizzo - Pixel 2010 - Grindelwald - CH

The INFN VIPIX collaboration

VIPIX - Vertically Integrated **PIX**els

G. Batignani¹, S. Bettarini¹, M. Dell'Orso¹, F. Forti¹, P.Giannetti¹, M. A. Giorgi¹, F. Morsani¹, N. Neri¹, E. Paoloni¹, M. Piendibene¹, G. Rizzo¹

L. Ratti², V. Speziali², M. Manghisoni^{2,3}, V. Re^{2,3}, G. Traversi^{2,3}, L.Gaioni²

L. Bosisio⁴, L. Lanceri⁴

G. Bruni⁵, M. Bruschi⁵, R. Di Sipio⁵, B. Giacobbe⁵, F. M. Giorgi⁵, A. Gabrielli⁵, C. Sbarra⁵, N. Semprini⁵, M. Villa⁵, A. Zoccoli⁵,

M. Caccia⁶, F. Risigo⁶

G.F. Dalla Betta⁷, A. Repchankova⁷, V. Tyzhnevyi⁷, G. Verzellesi⁷

L. Bissi⁸, P. Ciampolini⁸, A. Marras⁸, G. Matrella⁸, P. Placidi⁸, E. Pilicer⁸, D. Passeri⁸, L. Servoli⁸, P. Tucceri⁸

E. Bernieri⁹, G. Conte⁹, M. C. Rossi⁹, G. Assanto⁹, L. Colace⁹, E. Spiriti⁹

¹INFN Pisa

²INFN Pavia

³Università di Bergamo

⁴INFN Trieste

⁵INFN Bologna

⁶INFN Milano

⁷Università degli Studi di Trento and INFN Padova

⁸INFN Perugia

⁹INFN Roma III

G.Rizzo - Pixel 2010 - Grindelwald - CH

FE Chip architecture

- Use data push readout architecture developed for MAPS chip, now optimized with target rate (100 MHz/cm2) for full chip size (~1.3 cm2)
- VHDL simulation: readout efficiency > 98% @ 60 MHz RDclock
- Space time coordinates with time granularity 0.2-5.0 us (BCO clock)

Column-wide shared data-bus One column read per clock cycle Pixel Matrix PIKEL Active Column BUFFER OUT EN and COL_ENIA(3) BUS COL_ENA [3..0 dal MC-Address-Decoder

Matrix overview

Binary pixels matrix

Common Pixel Data Bus - Active 1 column of pixel at a time

21

Readout electronics in a 40 x 40 μ m² 3D MAPS pixel cell

Sept 9, 2010

Exploiting 3D integration: readout architecture without MacroPixel

- The MacroPixel arrangement was adopted for 2D MAPS to reduce the pixel-level logic (limiting the area of competitive N-wells) and the digital switching lines running above pixel columns
- Reasons to eliminate the MacroPixel architecture:
 - The routing of private lines (FastOR, Latch Enable) scales with matrix column dimension
 - Inefficiency due to dead time (freezed MP) depends on MP dimensions
 - Not-fired MP columns of fired MPs are also scanned (time consuming) by the sparsification logic
- Matrix readout speed can increase, also carrying along a readout logic simplification
- Removing the MacroPixel and implementing timestamp latching at the pixel level appears possible with 3D integration, without reducing the pixel efficiency

Pixel Sensor Matrix

- Layout of the sensor wafer almost completed:
 - Several matrix sizes $32 \times 128 \rightarrow 256 \times 128$ (for multichip assembly)
 - N-on-N: P-spray isolation on n-side, p implant on the back side
- Wafer thickness: 200 μm (FZ, HR Si)
- Pixel capacitance (~ 20 fF) is dominated by the bump bond capacitance ~ 80 fF
- Termination structures:
 - Large GR on the pixel side
 - Multiguards on the bias side

Plans for Hybrid Pixel (II)

Sept 9, 2010

PAD on test chip positioned to allow single <u>chip on carrier</u> test but also production of a <u>multichip pixel module</u>:

- 3 chips + pixel sensor matrix + Al bus + support with integrated cooling.

Pixel module 2 or more chips + sensor and Al pixel bus.

Light pixel module support & cooling

- Light support with integrated cooling needed for pixel module: P~2W/cm²
- Carbon Fiber support with microchannel for coolant fluid developed in Pisa:
 - Total support/cooling thickness = 0.28 % X_0 full module, 0.15% X_0 net module
- Thermo-hydraulic measurements in TFD Lab: results within specs

Radiation tolerance of DNW MAPS

- Irradiation with ⁶⁰Co γ -ray up to ~ 10 Mrad
- Gain reduction ~ 3%/MRad
- Noise increase ~ 15%/MRad
- Significant recovery after 100°C/168h annealing cycle
 - Noise increase ~ +33% @ 10 MRad
- Charge collection efficiency under test
- Next step investigate bulk damage

Why flavour physics

1. Explore the origin of CP violation

- Key element for understanding the matter content of our present universe
- Established in the B meson in 2001
- Direct CPV established in B mesons in 2004

2. Precisely measure parameters of the standard model

- For example the elements of the CKM quark mixing matrix
- Disentangle the complicated interplay between weak processes and strong interaction effects
- 3. Search for the effects of physics beyond the standard model in loop diagrams
 - Potentially large effects on rates of rare decays, time dependent asymmetries, lepton flavour violation, ...
 - Sensitive even to large New Physics scale, as well as to phases and size of NP coupling constants

Very high luminosity

Ways to increase luminosity by two order of magnitude:

E

Cz

KEKB:

Brute-force method not RI

- High currents
 Small damping time approved. Now High order modes
- Short bunche investigating "the Italian Kgrounds
- Crab cavit es for head approach"

Italian approach for a SuperB @ 10³⁶

To make a long/complicated story short:

- Luminosity depends on beam currents (∞ N) and collision area (∞ beam sizes σ)
 - Machine people like to express beam size with transverse emittance $\varepsilon = \pi \sigma \sigma'$ and amplitude function $\beta = \sigma/\sigma' : \sigma = (\varepsilon \beta)^{1/2}$

How to reach high Luminosity:

- SuperKEKB approach: increase the currents (squeeze moderately the beams)
 - wall power and detector background explosion
 - effective limitation around 5x10³⁵cm⁻² s⁻¹
- SuperB approach: low currents (2A), squeeze the beams and keep them small after collisions:
 - Ultra-low emittance (ILC-DR like)
 - Very small β at IP
 - Large Piwinski angle: $\Phi = fg(\theta)\sigma_z/\sigma_x$ With large θ (17 mrad) and small σ_x (4µm)
 - e- e+ bunches well separated after IP (σ_{z} =6mm)
 - "Crab Waist" scheme
 - also improves Lumi by a factor ~2

Sept 9, 2010

G.Rizzo - Pixel 2010 - Grindelwald - CH

Reduce σ_{y} from 3 $\mu\text{m}(\text{KEK})$ to 0.035 μm \rightarrow ~L(KEK) \times 100

Reduce beam beam effects and preserve the low emittance This new IP scheme tested succesfully in $DA\Phi NE$.

Italian approach for a SuperB @ 10³⁶

y waist can be moved along z with a sextupole on both sides of IP at proper phase "Crab Waist"

How to reach high Luminosity:

- SuperKEKB approach: increase the currents (squeeze moderately the beams)
 - wall power and detector background explosion
 - effective limitation around 5x10³⁵cm⁻²s⁻¹
- SuperB approach: low currents (2A), squeeze the beams and keep them small after collisions:
 - Ultra-low emittance (ILC-DR like)
 - Very small β at IP
 - Large Piwinski angle: $\Phi = tg(\theta)\sigma_z/\sigma_x$ With large θ (17 mrad) and small σ_x (4µm)
 - e- e+ bunches well separated after IP (σ_z =6mm)
 - C"Crab Waist" scheme
 - also improves Lumi by a factor ~2

Sept 9, 2010

G.Rizzo - Pixel 2010 - Grindelwald - CH

Reduce σ_{y} from 3 $\mu\text{m}(\text{KEK})$ to 0.035 $\mu\text{m}\rightarrow$ ~L(KEK) \times 100

Reduce beam beam effects and preserve the low emittance This new IP scheme tested succesfully in DADNE.

SuperB Detector Concept

- Babar and Belle designs have proven to be very effective for B-Factory physics
 - Follow the same ideas for SuperB detector
 - Try to reuse same components as much as possible
- Main issues

Sept 9, 2010

- Machine backgrounds somewhat larger than in Babar/Belle
- Beam energy asymmetry a bit smaller
- Strong interaction with machine design
- A SuperB detector is possible with today's technology
 - Baseline is reusing large (expensive) parts of Babar
 - Quartz bars of the DIRC
 - Barrel EMC CsI(Tl) crystal and mechanical structure
 - Superconducting coil and flux return yoke.

- Some areas require moderate R&D and engineering developments to improve performance
 - Small beam pipe technology
 - Thin silicon pixel detector for first layer
 - Drift chamber CF mechanical structure, gas and cell size
 - Photon detection for DIRC quartz bars
 - Forward PID system (TOF or focusing RICH)
 - Forward calorimeter crystals (LSO)
 - Minos-style scintillator for Instrumented flux return
 - Electronics and trigger need to revise Bfactory "¹/₂-track" trigger style
 - Computing large data amount
- More details in:
 - <u>www.pi.infn.it/SuperB/CDR</u> SuperB Conceptual Design Report
 - <u>http://agenda.infn.it/categoryDisplay.p</u>
 <u>y?categId=109</u>
 SuperB Workshops

Detector Layout - Reuse parts of Babar

Backgrounds @ SuperB

- Low currents (2A):
 - Beam-gas are not a problem (similar to BaBar)
 - SR fan can be shielded
- High luminosity → dominated by QED cross section

Optimization of sensor layout

- Small size prototype module with functionalities and cooling/mechanics close to SuperB specifications needs a 128x128 (or 320x80) MAPS chip (APSEL5D) with 40µm x 40µm pixel cells
 - With respect to APSEL4D, scaling to larger matrix size dictates to remove the shaper stage to make room for additional macropixel private lines and to reduce the pixel pitch
 - Inside the pixel cell, sensor layout has to be changed to increase detection efficiency (\rightarrow 99%)
- Beam test results of APSEL4D show a ~90% efficiency, which agrees very well with TCAD simulations
- Optimized cell with <u>satellite</u> <u>N-wells</u> (right): efficiency ~ 99% from TCAD, promising results from laser tests

Charge collecting electrode with annular shape

Sensor area: 480µm² CNW-PMOS area: 70µm² Fill Factor: 0.87

The analog section in the pixel cell

 A new design ("shaperless" analog front-end) and layout (charge collecting electrode with satellite N-wells) of the pixel cell was successfully tested in small test structures (APSEL5T)

Sept 9, 2010

G.Rizzo - Pixel 2010 - Grindelwald - CH

Module LayerO (striplets): 3D-view

Final Layer 0 (striplets) structure

Mechanical aspects worked out in some detail: from module assembling up to final mounting on the beam pipe.

G.Rizzo - Pixel 2010 - Grindelwald - CH