

3D silicon sensors from different manufacturers

International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

Andrea Micelli, Università degli studi di Udine/INFN on behalf of the ATLAS 3D Pixel R&D Collaboration

Outline

- Introduction ATLAS 3D Pixel R&D Collaboration Motivation
- 3D Sensors Design and Technology
- Test Beam

Experimental setup Test Beam Studies Clusters Charge Charge Sharing Tracking Efficiency Active Edge

- Lab Measurements
 Radiation hardness
- Summary and Outlook

ATLAS 3D Collaboration

B. Stugu, H. Sandaker, K. Helle¹; M. Barbero, F. Hügging, M. Karagounis, V. Kostyukhin, H. Krüger, J-W Tsung, N.Wermes²; M. Capua, S. Fazio, A. Mastroberardino, G. Susinno³; B. Di Girolamo, D. Dobos, A. La Rosa, C. Gallrapp, H. Pernegger, S. Roe⁴; T. Slavicek, S. Pospisil⁵; K. Jakobs, M. Köhler, U. Parzefall⁶; N. Darbo, G. Gariano, C. Gemme, A. Rovani, E. Ruscino⁷; C. Butter, R. Bates, V. Oshea⁸; S. Parker⁹; M. Cavalli-Sforza, S. Grinstein, I. Korokolov, C. Padilla¹⁰; K. Einsweiler, M. Garcia-Sciveres¹¹; M. Borri, C. Da Vià, J. Freestone, S. Kolya, C. Li, C. Nellist, J. Pater, R. Thompson, S. J. Watts¹²; M. Hoeferkamp, S. Seidel¹³; E. Bolle, H. Gjersdal, K. Sjøbæk, S. Stapnes, O. Rohne¹⁴; D. Su, C. Young, P. Hansson, P. Grenier, J. Hasi, C. Kenney, M. Kocian, P. Jackson, D. Silverstein¹⁵; E. Devetak, B. DeWilde, D. Tsybychev¹⁶; G-F Dalla Betta, P. Gabos, M. Povoli¹⁷; M. Cobal, M-P Giordani, L. Selmi, A. Cristofoli, D. Esseni, A. Micelli, P. Palestri¹⁸ C.;Fleta, M. Lozano G. Pellegrini¹⁹; M. Boscardin, A. Bagolini, P. Conci, C. Piemonte, S. Ronchin, N. Zorzi²⁰; T. E. Hansen, A. Kok, N. Lietaer²¹; J. Hasi, C. Kenney²²; J. Kalliopuska, A. Oja²³

18 institutions

¹Bergen University, ²Bonn University, ³Calabria University, ⁴CERN, ⁵Czech Technical University, ⁶Freiburg University, ⁷University and INFN of Genova, ⁸Glasgow University, ⁹The University of Hawaii, ¹⁰IFAE Barcelona, ¹¹Lawrence Berkeley National Laboratory, ¹²The University of Manchester, ¹³The University of New Mexico, ¹⁴Oslo University, ¹⁵SLAC, ¹⁶Stony Brook University, ¹⁷University and INFN of Trento, ¹⁸University of Udine, ¹⁹CNM Barcelona, ²⁰FBK-Trento, ²¹SINTEF Norway, ²²Stanford, ²³VTT, Finland

4 (+1) processing facilities

CNM (Spain), FBK (Italy), SINTEF (Norway), Stanford (USA) [+VTT (Finland)]

Motivation

 Pixel detectors: technology choice in high-energy physics for innermost tracking and vertexing

Atlas pixel detector

- ► LHC p-p collisions at 14TeV (L~10³⁴ cm⁻²s⁻¹)
- ▶ B-layer at 5 cm from IP (2T magnetic field)
- designed for fluence of 10¹⁵ n_{eq}.cm⁻²
- technology: planar sensor
- Why a new Insertable B-Layer (IBL):
 - B-Layer suffers highest radiation damage
 - performance significantly degraded
 - add new layer:
 - closer to Interaction Point, smaller space, higher radiation...
 - 3 technologies under study: Diamond, new Planar, 3D

IBL mounted on new beam pipe, $r \approx 3$ cm

3D Sensors Design and Technology

• Two designs under study - similar behavior and performance

- agreed "baseline" sensor
- produced by Stanford/SINTEF (5th gen.)
- to-be-produced by FBK and CNM
- same dimensions and read-out:
 - ▶ 160×18 pixels, each 50×400 µm²
 - bump-bonded to ATLAS FE chip
 - ➡ time-over-threshold (ToT) signal
 - ➡ 60 ToT @ 20 ke⁻, threshold = 3200 e⁻

Modified 3D sensors

- partially overlapping electrodes
- simplified wafer handling
- double-sided double-type columns
- produced by FBK and CNM

Test Beam Setups

Bonn ATLAS Telescope - Oct '09

- 180 GeV pions from CERN SPS
- 3 planes: two-sided SI micro-strips (50 µm pitch)
- Trigger: two scintillators (+veto)
- Morpurgo dipole magnet (B~1.57 T)
- DUTs: STA-3E, FBK-3E, Atlas Planar (as reference)

Purpose:

sensors performance in B-field at different tilted angles (-30° to 30°):

➡ tracks efficiency, charge sharing etc.

EU Detector Telescope Oct, Nov '09 - June '10

- 120 GeV pions from CERN SPS
- 6 planes: 660k Si pixels (18.4 µm pitch)
- Trigger: four scintillators
- DUTs: STA-3E, SIN, FBK-3E (also p- and n-irradiated in June), Atlas planar (as reference)

Purpose:

sensors performance after irradiation at different tilted angles (-25° to 25°):

tracks efficiency, charge sharing electrode efficiency etc.

Test Beam Studies: Cluster Charge

- ATLAS planar for reference
- charge insensitive to B-field, but it depends on tilt angles
- at 0° cluster charge (TOT) is maximum but charge sharing is minimal (next slide)
- at angles \neq 0° charge sharing increases, therefore TOT decrease
 - a fraction of charge is lost in neighboring pixel cells (remain below electronic threshold)
- at large angles, more charge is produced from longer path through silicon bulk
 - the charge sharing is compensated
- FBK sensor was not complete depleted
 - Iower TOT

Test Beam Studies: Charge Sharing

Charge sharing:

- signal can be shared between two or more cells defined as N_{tracks}(hits>1) / N_{tracks} (all)
- 3D sensors almost insensitive to B-field
- less signal, less probability to be above the threshold
- always larger for the planar
- planar: minimum value corresponding to the Lorentz angle -(7.4 \pm 0.4)°
 - ▶ in agreement with ATLAS measurement -(7.6 ± 0.6)°

Test Beam Studies: Tracking Efficiency

3D sensors:

- lower efficiency for 0° (not 'uniform' color for the plot)
 - a lot of charge/signal loss for tracks
 - charge below the threshold
- tilt angle has large impact
 - hit efficiency becomes more uniform when the tracks are inclined
 - ➡ improving of the efficiency (see next slide)

Test Beam Studies: Tracking Efficiency

3D sensors:

- lower efficiency at 0° but > 99.5% for greater angles (fully recovered with tilt angles >10°)
 - signal loss for tracks passing through the electrodes
- same behavior with or without magnetic field
- at 0° 3D-FBK sensor slightly better efficiency
 - electrodes do not penetrate fully the sensors thickness

Active Edge

P. Hansson, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.06.321

- Traditional Si sensors have large dead region at edges (~1mm)
- ATLAS IBL has no overlap in z coordinate (along the beam)
- 3D sensors with active edge:
 - etched trench around sensor edge, doped similar to electrodes
 - minimize dead area between modules (IBL)
 - \blacksquare sensors is still active up to 6 µm from edge

Radiation Hardness

TDAQ software

Lab Measurements:

- Electrical and noise tests:
 - IV scan
 - Standard calibration at V_{nominal}: Threshold, ToT calib
 - Standard calibration repeated for different voltage settings
 - Noise scan vs HV

• Response to radioactive source (Am²⁴¹ (at Genova/Cern) - Cd¹⁰⁹, Sr⁹⁰ (Cern)):

The results shown here are still preliminary

Lab Measurements

3D-FBK-3E proton-irradiated to 1×10¹⁵ n_{eq}cm⁻² (thickness 200µm)

- radiation damage: run with bias voltage -80 V
 - ~ -20% signal loss
 - rightarrow in agreement with lab tests made with β source Sr⁹⁰
 - sensor was not fully depleted
- overall efficiency still high (~99%)

Lab Measurements

Summary and Outlook

• 3D sensors: good candidate for ATLAS IBL

- >99.8% efficient with tilted angle tracks
- insensitive to magnetic field
- radiation hardness
- development of passing-through column detector is on going (for FBK sensors first batch expected for the end of the year)

Test beam plans

- irradiated sensors in magnetic field (Oct 2010 and 2011)
- new ATLAS front-end FE-I4 read out chip

Lab measurements

- electrical (with also new front end FE-I4)
- noise tests
- response to radioactive sources (Am²⁴¹, Cd¹⁰⁹, Sr⁹⁰)

Post-irradiation validation

• Electrical measurements, Lab characterization, Test beam measurement

3D silicon sensors from different manufacturers for pixel upgrades at the LHC

Backup

Sensors in Magnetic Fields

B-field OFF

B-field ON

Sensors at Tilted Angle

Due to the small radius of IBL:

- the angle of the sensor to the radial direction is between 0°- 27° (TDR)
- important to test the sensors with tilt angle:
 - Increases charge sharing between pixels
 - 2-pixel clusters have better tracking resolution than 1-pixel
 - Less path length inside electrodes, but Potential signal loss if charge fraction in a pixel is not above threshold
 - Minimum cluster size at Lorentz angle

FE-I3 Layout: Single Cell

- sensor bump-bonded to the ATLAS Front-End Chip I3 (FE-3)
- 2880 readout cells, 160×18 pixels, each 50×400 μ m² size
- provides pixel charge measurement through digital-time-over-threshold (TOT)
 - measured in units of LHC bunch crossing rate
- the conversion have been tuned to each individual pixel to respectively:
 - ▶ 3200 e⁻ and 60 ToT for a deposited charge of 20 ke⁻
- 3D pixels: threshold tuned and TOT calibrated with "TurboDAQ" software

Radiation Hardness

