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  Next collider will be a linear collider 
  Still not clear whether a ~ 1TeV (ILC) or multi TeV (~3TeV) CLIC 

Motivation: Future colliders 



Detector requirements 

o  Strict technology requirements posed 
 by the ILD (International Large Detector) 
 Concept Group (last version Feb. 2010) 

•  Low material budget (0.2-0.5% X0) 
•  To reduce errors from multiple scattering 

•  High spatial resolution 
•  Best achievable Φ resolution → 5µm 

•  Pixel size → 20µm x 100µm 

•  Occupancy (3rd layer of the FTD) 
•  Background level →  0.001-0.002 hits/cm2/BX 

•  High readout speed 
•  BX ILC  →  337 ns 
•  BX CLIC  →  0.5 ns 

•  Radiaton tolerance & EMIs tolerance 
•  Minimum power dissipation (no cooling) 



Pixel detectors 



•  APD: p-n Junction biased above breakdown. Arrival 
of a photon or a particle generates e-h pair, which 
initiates an avalanche in the planar multiplication 
region. 

•  Premature edge breakdown avoidance to assure 
the planar multiplication region: 

–  Low doping profile in the corners 
–  Avoid 90º angles  round corners or octogonal shape 

in the layout 
Main drawbacks: 
•  Dark count: Spurious pulses generated in dark, due 

to thermal generation and carriers tunneling 
•  Afterpulsing: Pulse due to the release of a carrier 

trapped during a previous pulse. Depends on: 
Trapping probability, and lifetime of trapped charge 

Avalanche photodiodes in CMOS (1) 



o  Motivation for Geiger-mode APDs 
  A detector with high intrinsic gain (>108) 
  Excellent timing accuracy 

•  ps rise time 
•  short recovery times 
•  possible single hit detection 

  Compatible with standard CMOS technologies 
•  on-chip integration of readout circuits 
•  low supply voltage requirements 
•  reduced power consumption 

o  However... 
  High intrinsic level of noise (dark counts) 

•  false counts 
•  severe performance limitation 
•  increase of the readout electronics area to store the false hits 

Avalanche photodiodes in CMOS (2) 



HV-AMS 0.35µm:  
•  P-diffusion inside a deep n-tub 

with a low doping concentration 
used for high voltage isolation. 
The p-tub guard ring prevents 
premature edge breakdown. 

STM 0.13µm:  
•  P-diffusion inside a N-well with 

a deep p-well implantation. The 
p-well guard ring with a lower 
doping concentration prevents 
premature edge breakdown. 

Technologies under comparison 



Characteritzation: Breakdown 

Technology Vbd (V) Ia (mA) ΔVbd/ΔT (mV/K) 
HV-AMS 0.35 um 17.32 0.4 20 
STM 0.13 um 10.52 5 6 



Characteritzation: Dark counts 

Technology DC (KHz) Y0 (Hz) A (Hz) T (C) 
HV-AMS 0.35 um 2 143.2 1921.7 26.9 
STM 0.13 um 17.5 714.7 87.3 11.0 

Vov=0.4V 



Characterization: Afterpulsing & Timing 

Feature HV-AMS STM 

Tq @ 10 kΩ 41 ns 2.6 ns 

Tr @ 10 k Ω 520 ns 100 ns 



HV-AMS 0.35 
•  PROS: 

–  Low trap concentration 
–  Reduced dark count 

–  Lower storage data   
•  CONS: 

–  Reduced speed  active 
recharge 

–  Afterpulsing  active 
quenching 

–  Higher T dependence 

STM 0.13 
•  PROS: 

–  High density of integration 
–  High speed 
–  No afterpulsing 
–  Lower T dependence 

•  CONS: 
–  High dark count  gated 

mode 
–  High storage data 

Discussion 



o  ILC timing 
•  2820 BX in 0.95ms 
•  BX spacing of 337ns 
•  199.05ms quiet time 

o  ILC background 
•  0.001-0.003 hits/cm 2/BX for the 3rd layer of the FTD 

o  0.35µm AMS HV-CMOS DC noise in ILC 
•  38kHz/pixel (20µm x 100µm @ 18.28V) 

Beam structure 

Gated 

acquisition 

→      readout phase 

→      acquisition phase 



Readout circuits. Vbias generation. 

o  Vbias generation 
•  Current source → control of ∆Vsensing during the ‘off’ period thanks to IDC → 
•  Traps emptied before the new ‘on’ period → afterpulsing probability ↓ 

o  Passive quenching/recharge 

•  QUENCH  Active load → pMOS or nMOS topology? 
•  nMOS topology allows fully isolation between the deep 

 ntub/p-substrate and the sensing node → reduction of 
 the total capacitance → response time ↓ 

•  nMOS transistor with (W/L)n = (0.8µm/5µm) 
•  ID < IGAPD latching current → correct quenching 

•  INH  Gate command through pMOS transistor. 
•  INH = ‘1’ → ‘on’ period → free running 
•  INH = ‘0’ → ‘off’ period → no particle detection 

•  RST  GAPD recharge through nMOS transistor. 
•  RST = ‘1’ → VOP is restored (1ns) 

o  L.O. readout 

Vbias 
generation 

Passive Q/R L.O. 
readout 



power consumption ~ pA 

Readout circuits. Level shifter. 

Post-layout simulation 

Minimum area 
latch to store 
the resulting 
value of the 
‘on’ period 

‘on’ period →  •   CLK1 = ‘1’ 
•   INH  = ‘1’ 

‘off’ period →  •   CLK1 = ‘0’ 
•   INH  = ‘0’ 

reset  →   RST  = ‘1’ 
readout  →   CLK2 = ‘1’ 

Pass gate 
with external 

control 

VEX = 0.3V → Vsensing = 1.3V 

avalanche → Vsensing ↑ 

particle hit 

output delay < 2ns 

jitter = 100ps 
GND = 0V  

VEX = 0.5V → Vsensing = 1.5V 

VEX = 1 → Vsensing = 1.8V 

Level shifter 



Readout circuits. Level shifter. Test 

Level shifter preliminar 
results 



Readout circuits. Two grounds scheme. 

Post-layout simulation 

Minimum area 
latch to store 
the resulting 
value of the 
‘on’ period 

‘on’ period →  •   CLK1 = ‘1’ 
•   INH  = ‘1’ 

‘off’ period →  •   CLK1 = ‘0’ 
•   INH  = ‘0’ 

reset  →   RST  = ‘1’ 
readout  →   CLK2 = ‘1’ 

Pass gate 
with external 

control 

GNDA GND 

VEX = 0.3V → Vsensing = 1.3V 

avalanche → Vsensing ↑ 

particle hit 

output delay < 3ns 

jitter = 100ps 
GNDA = 1V  

VEX = 0.5V → Vsensing = 1.5V 

VEX = 1 → Vsensing = 2V 

power consumption ~ pA 



Readout circuits. Track-and-latch comparator. 

•  No particle hit →  Vsensing < VREF → Vout = ‘1’ 
•  Particle hit  →  Vsensing > VREF → Vout = ‘0’ 

•  CLK1 = ‘1’ → Track phase 
•  Differential pair is sampling 
•  Vout+, Vout- = ‘0’ 

•  CLK1 = ‘0’  →  Latch mode 
•  Vout+, Vout-  →  Decision 

  point 

Post-layout simulation 

avalanche → Vsensing ↑ 

particle hit 

after CLK1 ↓ 
output delay < 3ns 

jitter = 100ps 

power consumption ~ pA 

VREF = 50mV 

VEX =  0.3V, 
 0.5V, 
 1V 



Conclusions 

o  Conclusions 
  GAPD-pixels are possible candidates for tracking systems in future linear 

colliders in order to have single BX resolution 
  We have designed GAPD-pixels with low dark count rate 

•  Standard 0.35µm HV-AMS CMOS technology 
•  Sensitive area of 20µm x 100µm 
•  Gated acquisition with an ‘on’ period of 10ns 
•  Readout electronics for low reverse bias overvoltage operation 
•  Quick response time and low power consumption 

  We work to fit ILC requirements 
?  Coming soon... 

•  Fabricated chips have already been received 
•  Test is under development 

?  In the future... 
•  Study of different parameters of the sensor for the forward region tracker 
•  Arrays, 3D….  



Questions and comments are welcome 

Thank you very much for being 
such an attentive audience 


